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Abstract— The incidence of stroke cases has witnessed a rapid global rise, affecting not only the elderly but also individuals across all 

age groups. Accurate prediction of stroke occurrence demands the utilization of extensive data pre-processing techniques. Moreover, 

the automation of early stroke forecasting is crucial to prevent its onset at the initial stage. In this study, stroke prediction models are 

evaluated to estimate the likelihood of stroke based on various symptoms such as age, gender, pre-existing medical conditions, and 

social variables. The machine learning techniques employed include Linear Support Vector Classifier, Extreme Gradient Boosting 

Classifier, Multilayer Perceptron, Adaptive Boosting Classifier, Bootstrap Aggregating Classifier, and Light Gradient-Boosting 

Machine. The purpose of this paper is to optimize the hyperparameters of machine learning approaches in developing stroke prediction 

models. The goal was achieved through a comprehensive comparison of three different sampling techniques for handling imbalanced 

datasets and evaluating their performance by using various metrics. The most effective model is identified, which is the Adaptive 

Boosting Classifier utilizing the Tomek Links, with a cross-dataset accuracy of 99% which demonstrated a reliable performance and 

generalization as evidenced by high cross-validation scores and accuracy on an independent dataset. The next stage of this endeavor 

entails looking into multiple ways to forecast the development of new dangerous diseases such as breast cancer and skin disorders. In 

the long run, the aim of subsequent work is to build a powerful toolset that is obtainable to all medical practitioners, allowing for the 

pre-emptive diagnosis of all potentially hazardous illnesses. 
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I. INTRODUCTION

Stroke is the most common but preventable cause of 

mortality and disability. If predicted early, individuals can 

prevent the stroke, by controlling modifiable lifestyle factors 

such as blood pressure, low-density lipoprotein (LDL) 

cholesterol, blood sugar, smoking, obesity, etc. A blockage or 

rupture of a blood artery in the brain is the cause of the stroke. 

A stroke may cause permanent impairment, such as partial 

paralysis and difficulties with speech, comprehension, and 
memory. The kind and severity of impairment are determined 

by the affected region of the brain and the duration of the 

blood supply obstruction. 

Blood flow in the brain is thought to increase as neuron 

regeneration occurs in certain brain regions. It is transported 

via carotid and vertebral arteries. Blood then travels past the 

head to the heart’s chambers via the inner jugular veins 

[1]. According to a study, Harrar et al. [2] stated that blood 

loss may occur in two situations: an ischemic stroke happens 

when blood flow between blood tissues declines, whereas a 
hemorrhagic stroke occurs when bleeding occurs under the 

surface within brain tissues. Rasmussen et al. [3] and Lattanzi 

& Silvestrini [4] discovered that this occlusion of the brain’s 

arteries may occur when atherosclerosis-caused plaque 

fragments get damaged, causing a blood vessel clot. 

According to Verma et al. [5] and Boukobza et al. [6] 

publications, a hemorrhagic stroke is a severe stroke in which 

a ruptured artery causes bleeding or arterial burst. In contrast, 

when a coagulum forms in the heart rather than the brain, it 

causes an ischemic embolic stroke. Therefore, limiting the 

brain’s arteries. For the elderly, a stroke may be fatal. A heart 

attack damages the heart and a stroke similarly harms the 
brain. Uppal et al. [7] explain that when blood is exposed and 

leaks, it opens up and exerts strain on the brain. The stroke 

begins with transient ischemic attacks known as ministrokes. 

It is the circumstance that indicates that the individual will 

have a stroke around a few days following the ministroke. If 

a stroke is recognized or diagnosed early, Lee et al. [8] 
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mentioned that death and serious brain damage may be 

prevented in 85% of cases. 

Previous attempts to identify people at risk for stroke have 

focused on using hardware tools or generating predictions 

based on medical examination data, such as Magnetic 

Resonance Imaging (MRI). Even though stroke occurs with 

few, if any, warning signals (Centers for Disease Control and 

Prevention (CDC), [9], many assume that they are healthy and 

decline to have such tests, decreasing the efficacy of such 

measures. 
This paper focuses on investigating the use of machine 

learning models using low-cost factors to forecast the 

likelihood of individuals developing a stroke disease, thus 

lowering the cost of medical check-ups while boosting the 

overall rate of survival. The number of individuals who are 

susceptible to stroke is expected to be far lower in real-world 

circumstances than the overall number of individuals reported 

by the great majority of hospitals. As a result, the dataset will 

always favor the minority group. It is critical for the proper 

execution of every research to create a baseline of goals that 

act as its route map. The goal of this paper is to optimize the 
hyperparameters of machine learning approaches in 

developing stroke prediction models and evaluate the 

effectiveness of the trained models on cross-datasets. 

The academic community has focused on the development 

of instruments and techniques for observing and forecasting a 

variety of illnesses that have a substantial influence on 

people’s well-being. Several models were constructed and 

assessed with the purpose of establishing a viable approach 

for protracted forecasting of stroke incidence. Dritsas & 

Trigka [10] identified the Stacking Classification (SC) to be 

their best model for identifying patients who were at a serious 
rate of having a stroke over a lengthy time frame since it 

produced a high performance over several criteria. This yields 

an accuracy of 98%, which made the proposed classification 

model outperform other approaches in the trial. In the 

meantime, Abedi et al. [11] showed that a fine-tuned training 

dataset including many features may be used to create models 

of stroke recurrence. The stroke forecast in recurrence within 

a one-year prediction window has an accuracy of 88%, a 

positive predictive value of 42%, and a specificity of 96% 

using Random Forest (RF) with up-sampling of the training 

dataset. On the other hand, Victor et al. [12] created a cost-

effective solution to the imbalanced data problem associated 
with ECG datasets. The technique penalizes the minority class 

using class-imbalance-ratio-weight which utilizes the 

suggested model loss function without additional expense, 

attaining model generalizability. The study achieved the 

highest accuracy compared to existing works using a similar 

dataset of 98.14%. 

There has been analysis made by previous reseach on 

predicting the incidence of stroke in patients using Electronic 

Health Records. It demonstrates that both efforts employ 

distinct datasets and techniques to predict stroke. 

EHR data was employed as a feature in the development of 
all indicated prediction models. An EHR is a database 

containing patient data that includes the patient’s vital 

statistics, diagnosis, and medical examination findings [13]. 

The optimal approaches that past researchers found to be 

useful for the prediction are Weighted Voting Classifer by 

Emon et al. [14], AdaBoost and J48 by Jalajajayalakshmi et 

al. [15], Decision Tree with removed outliers and application 

of Chi-square by Kavitha et al. [16], Neural Network by Rana 

et al. [17] and Biswas et al. [18]. Shafiul Azam et al.  [19] 

found that the accuracy percentage by using Random Forest 

is significantly the highest which measured at 99.98% than 

that of other result indicating that the model used is reliable. 

Besides that, the Support Vector Classifier that has been 

employed by Biswas et al. [18]. 

Biswas et al. [18] also achieved a relatively high accuracy 

result of 99.9%. Alongside with the study analysis that has 
been made by Kavitha et al. [16], they found that Decision 

Tree with removed outliers and application of Chi-square 

results in the accuracy of 98.5%. 

For predicting stroke using imbalanced datasets, it has been 

found that RF with the utilization of the Synthetic Minority 

Over-sampling Technique (SMOTE) to handle the 

imbalanced target variable has been used by Wu & Fang [20] 

and Ferdib-Al-Islam & Ghosh [21]. Among those two papers, 

Ferdib-Al-Islam & Ghosh [21]. 

Ferdib-Al-Islam & Ghosh [21] achieved a higher accuracy 

of 99.07%. However, a substantial difference can be seen in 
the sample sizes chosen by the two studies, with the latter 

using 5,110 observations to achieve a better level of precision. 

Phankokkruad & Wacharawichanant [22] found that their 

Extreme Gradient Boosting (XGBoost) model outperformed 

other models in the paper with the implementation of SMOTE 

to handle the imbalance between the classes. This 

investigation was done on two stroke datasets and the result 

indicates that XGBoost produces an accuracy of between 

96.73% and 98.08%. 

Based on the literature review, the following gaps have 

been identified and addressed within the scope of this paper. 
Firstly, stroke prediction methods that utilize visual 

processing & medical devices have a limitation in that it fails 

to be feasible since it needs respondents’ cooperation, making 

it uncommon because stroke development is seen as 

unexpected with relatively infrequent symptoms [9]. The 

subsequent stroke prediction methods utilize electronic health 

information. The number of records is highly constrained for 

any similar research of this nature. Consequently, overfitting 

is a risk for machine learning models. Fang et al. [23] claim 

that the lack of several essential components makes the 

models less reliable for making predictions about the future. 

In addition to this, there was no extensive research on 
employing SMOTE + Tomek for predicting stroke with an 

imbalanced dataset. To the best of our knowledge, there is no 

previous research that has examined doing cross-validation on 

an independent dataset to assess the model’s generalizability 

to forecast stroke. 

II. MATERIAL AND METHOD 

This section explains the methodology that includes data 
collection, exploratory data analysis, data pre-processing, 

feature selection, data scaling, cross-validation, data sampling 

methods, dataset partitioning, and the evaluation criteria. 

A. Methodology Approach and Design 

The improvised Knowledge Discovery in Databases (KDD) 

[24] methodology was used for this work, as shown in Fig. 1. 

It consists of five distinct phases that include data collection, 
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data pre-processing, data mining, and interpretation or 

evaluation. 

 

 
Fig. 1 Improvised Knowledge Discovery in Databases (KDD) Technique in 

Stroke Forecasting 

 

The construction of the prediction starts from the data 

collection unit as the base cluster, which contains electronic 

health records. The dataset was loaded into Jupyter Notebook 

to process the data. The data processing consists of cleaning 

the data and employing feature selection. Transformation of 
the data was done by standardization. Then, training and 

testing are done on six distinct machine learning algorithms 

using a larger dataset to find the best-performing model by 

observing different evaluation metrics. The optimal model 

identified is used for cross-validation on an independent 

dataset. 

B. Data Collection 

This paper utilizes two stroke prediction datasets. The 
datasets have been collected from Kaggle. For a summary of 

the characteristics of the dataset, see Table 1. In the following 

sections, each dataset will be described in further depth. 

TABLE I 

DATASETS USED IN THE STUDY, NUMBER OF SAMPLES AND FEATURES 

Dataset Size Features 

Framingham Heart 
Disease Prediction 
Dataset 

4,240 15 

Heart Disease 
Health Indicators 
BRFSS2015 

253,680 21 

 

The Framingham heart Disease Prediction Dataset is 

publicly accessible on Kaggle [25] was gathered from on-

going cardiovascular study involving residents of 

Framingham, Massachusetts. The collection contains 4,240 

data with 15 characteristics, all of which pertain to patients. 

Each trait serves as a risk factor, which includes concerns 

about demographic, behavioral, and medical aspects. This 

dataset is being used to assess and validate the efficacy and 

accuracy of a prediction model. It is to be employed as a 

means of cross-testing the model’s capabilities and 
guaranteeing its dependability. 

Annually gathered by the Centers for Disease Control and 

Prevention (CDC), the Behavioral Risk Factor Surveillance 

System (BRFSS) is a health-related telephone survey (Alex 

Teboul, 2022) [26]. Each year, the survey gathers answers 

from more than 400,000 Americans about health-related risk 

behaviors, chronic health issues, and the use of preventative 

care. This has occurred annually since 1984. The dataset is 

accessible on Kaggle for the year 2015. The dataset comprises 

of 253,680 survey answers from the BRFSS 2015 that will be 

utilized largely for the binary categorization of stroke illness. 

The dataset is used for building machine learning models, 

giving them the knowledge needed to examine and identify 
patterns and correlations on different variables within the data. 

This can improve their ability to make precise predictions or 

carry out tasks based on the patterns learned during the 

training process. 

C. Exploratory Data Analysis (EDA) 

While attempting to analyze the class distribution of the 

dependent variable in both datasets, it was discovered that the 

data were insufficient, as seen in Fig. 2 and Fig. 3 respectively. 
It has been shown that both datasets are significantly 

imbalanced, with just 25 occurrences of stroke recorded 

against 4,215 instances of healthy cases in the Framingham 

dataset, while 10,276 observations for stroke against 208,318 

entries among the healthy cases in the context of stroke in the 

BRFSS dataset. 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

Fig. 2 Stroke Class Distribution in Framingham Dataset 

 

 
Fig. 3 Stroke Class Distribution in BRFSS Dataset 

D. Data Pre-Processing 

Data processing allows for the processing of raw data and 

the extraction of significant characteristics, making it ideal for 

application by machine learning models. 

The ‘male’ column is supposed to represent the 

population’s gender in the Framingham dataset. Hence, the 
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column can be renamed as ‘Sex’. Besides that, 

‘currentSmoker’, ‘prevalentHyp’, and ‘prevalentStroke’ is 

also being renamed to ‘Smoker’, ‘HighBP’, and ‘Stroke’ 

respectively to match with the name convention in the BRFSS 

dataset. 

Since only the Framingham dataset contains missing values, 

the imputation will be applied solely to this dataset. For 

imputation, the central tendency measure, such as mean, 

median, or mode is examined. The objective is to determine 

the optimal measure of the data’s central tendency and replace 
missing values accordingly. 

Fig. 4 illustrates the comparison boxplot, which reveals 

that the data is skewed. There are a substantial number of data 

points that serve as outliers. Outlier data points will have a 

major influence on the mean; thus, it is not advised to utilize 

the mean to replace missing values in this scenario. For 

symmetric data distribution, one may impute missing values 

using the mean value. 

In the data points of the comparison boxplot, there are 

multiple patients with high total cholesterol and glucose levels. 

The data seems right skewed which means it has a long tail in 
the right direction. The mode value will be substituted for 

missing data as part of the mode imputation procedure. For 

data points such as ‘education’ and ‘BPMeds’, it is 

recommended to replace the numbers with mode. Another 

approach is median imputation, which replaces missing data 

with the column’s median value. This method will be applied 

to the columns ‘totalChol’, ‘BMI’, ‘heartRate’, and ‘glucose’. 

The median value for ‘cigsPerDay’, however, was zero. 

Therefore, it is inappropriate to populate the null values being 

set to zero. To address this issue, the null values of the 

‘cigsPerDay’ column will be replaced with the mean. 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
Fig. 4 Comparative Boxplot of All Features in Framingham Dataset 

 
For both datasets, the Inter-Quartile approach has been 

used for outlier treatment. Tables 2 and 3 describe the impact 

of eliminating outliers. If the outliers are eliminated, many 

rows will be lost, which might result in predicting a healthy 

person as having a high chance of getting a stroke. A function 

is utilized that returns columns with the risk of outlier 

elimination and it will be classified as upper and lower limit, 

upper and lower removal, and risk percentage. Table 2 lists 

the percentage of the risk, if the outlier is removed from the 

feature in the data frame for Framingham Dataset. 

TABLE II 

PERCENTAGE OF RISKS FOR OUTLIERS REMOVAL IN FRAMINGHAM DATASET 

Feature Percentage of Risk (%) 

cigsPerDay 100.0 
totChol 100.0 
sysBP 98.4 
diaBP 100.0 
BMI 97.9 
heartRate 100.0 

glucose 98.8 

 

According to Table 2, it is known that people with high 
levels of cigarette use, cholesterol, diastolic blood pressure, 

and heart rate are susceptible to stroke. Therefore, deleting a 

high percentage of risks is not being considered, hence no 

feature in the dataset was to be removed. 

On the other hand, the same procedure has been applied to 

the BRFSS dataset, and Table 3 displays the resulting 

percentage of risk for outlier elimination. Only three attributes 

in this dataset include outliers: ‘BMI’, ‘MentHlth’, and 

‘PhysHlth’. Each of the three columns has a rather high-risk 

percentage, thus none of them are deemed to be eliminated. 

TABLE III 

PERCENTAGE OF RISKS FOR OUTLIERS REMOVAL IN BRFSS DATASET 

Feature Percentage of Risk (%) 

BMI 94.9 
MentHlth 92.5 
PhysHlth 89.0 

E. Feature Selection 

This section elaborates on the process of selecting and 

transforming the most relevant characteristics while 

constructing a predictive machine learning model utilizing 

domain knowledge. The objective is to offer only relevant 

characteristics to models, enhancing the performance of 

machine learning algorithms, and preventing model fitting 

difficulties. 

Supervised models feature selection consists of intrinsic, 
wrapper method, and filter methods. It refers to a process that 

selects features based on the output label class. Target 

variables will be utilized to determine which variables may 

boost the model’s efficiency. The filter approach eliminates 

characteristics depending on their relationship to the output or 

how the features in the dataset correspond to the output. 

Correlation is used to determine if the characteristics are 

favorably or negatively associated with the output labels, and 

features are dropped based on the result. In addition, 

correlations between the characteristics were detected to 

confirm the lack of multicollinearity. In this paper, two filter 

methods have been applied as feature selection techniques. 
Pearson’s Correlation Coefficient has been applied to 

indicate the strength and direction of the association between 

two variables. It is a linear correlation coefficient with a range 

of -1 to 1. It is a descriptive statistic that describes a dataset's 

features. Specifically, it represents the magnitude and 

direction of the linear connection between two quantitative 

variables. Due to their linear dependency, two strongly 

correlated variables may have roughly the same predictive 

power for an observation's result value. Eliminating one of the 

linked variables before training the model is advantageous to 

the learning process and may result in performance 
comparable to that of the whole model. Fig. 5 and Fig. 6 
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illustrate the outcome of the modification described in the 

preceding calculation. On the heatmaps, the dendrogram 

illustrates the hierarchical connection between items. 
 

 
Fig. 5 Correlation Matrix between Variables in BRFSS Dataset 

 
As the variable selection threshold, the absolute value has 

been set to 0.1 in the BRFSS dataset and 0 in the Framingham 

dataset. Fig. 6 demonstrates that the absolute correlation 

coefficient is less than 0.7 at a threshold of 0.51. It is possible 

to argue that multicollinearity does not exist for the selected 

variables. Hence, variables having a lower correlation 

coefficient with the target variable will not be eliminated. 

 

Fig. 6 Correlation Matrix between Variables in Framingham Dataset 

In the Framingham dataset, based on the depiction in Fig. 

6, it is possible to infer that multicollinearity exists in the 

chosen features at a threshold of 0.77, which is slightly more 

than the absolute correlation coefficient of 0.7. To solve the 

multicollinearity issue, more research has led to the 

conclusion that the column ‘currentSmoker’ should be 
removed. Since the columns ‘currentSmoker’ and 

‘cigsPerDay’ are identical, the data is attempting to convey 

that regardless of how many cigarettes a person smokes per 

day, ‘currentSmoker’ will always be a 1 indicating ‘yes’. 

 
Fig. 7 SelectKBest of Best 20 Features 

 

On the other hand, SelectKBest ranks the input variables 

according to their strength of link with the target variables 

using statistical measurements (Brownlee, J., 2020) [27]. By 

selecting only the twenty most important features, it is a 

helpful feature selection strategy for decreasing the variables 

in a dataset. The performance of models can be enhanced by 

removing less crucial portions of the data and shortening the 

training period. After selecting the best 20 features which can 

be observed from Fig. 7, ‘fruits’ column has been eliminated 
as it offers the lowest value in the SelectKBest() function. 

F. Data Scaling 

Python was used to scale the data for the continuous 

variables using the StandardScaler() function from the 

sklearn library. The MinMaxScaler maintains the original 

distribution form. It does not significantly alter the 

information included in the original data. Consequently, 

MinMaxScaler does not diminish the significance of outliers. 
With this, the preparation of the datasets has been completed 

for model training. 

G. K-Fold Cross-Validation 

Cross-validation is a fundamental technique used in 

machine learning to evaluate the performance and 

generalization ability of predictive models. The 

sklearn.model_selection module in Python’s scikit-learn 

library offers various classes and functions to implement 

k-fold cross-validation. This method is widely employed due 
to its robustness and effectiveness. The dataset is divided into 

K equally sized folds of 5, where each fold serves as a 

validation set once, while the remaining K-1 folds are used 

for training the model. This technique helps to mitigate the 

bias introduced by a single train-test split and provides a more 

reliable estimation of the model’s performance. 

As K = 5 or K = 10 have been demonstrated empirically to 

produce test error rate estimates that do not suffer from 

excessively high bias or from extremely high variation, these 

values are typically used in K-Fold Cross-Validation. In 2022, 

Vodencarevic et al. employed double-nested cross-

validation loops with K = 5 in each loop in the instance of 
predicting stroke. 
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In summary, adopting 5-folds for K-Fold Cross-Validation 

for predicting stroke is a sensible option, since it has been 

demonstrated to produce test error rate estimates that suffer 

from neither excessively high bias nor from extremely high 

variation. It is also important to note that using a smaller K 

value will decrease the computational cost of the procedure. 

H. Data Sampling Methods 

The sensitivity of machine learning algorithms to the 

distribution of classes in the training set is extensively 

documented in (Witten et al., 2011) [28]. The dataset has a 

distinct distribution across classes and training and test sets. 

These distinctions may affect the classification’s usefulness. 

In this regard, it is intriguing to determine how balancing the 

training set of a classifier affects its classification accuracy. 

SMOTE is an over-sampling strategy described by Chawla 

et al. (2002) [29], in which the minority class is over-sampled 

by the creation of “synthetic” samples, as opposed to over-

sampling using replacement. SMOTE algorithm is used to 
determine the k closest neighbors for each positive class, 

followed by constructing as many data duplications as 

required between each positive class and the randomly 

selected k nearest neighbors. The class distribution before and 

after implementing SMOTE strategy can be listed in Table 4. 

In the initial class distribution, the majority class contains 

166,667 instances, which is a substantially greater number 

than the minority class's 8,208 occurrences. The class 

distribution significantly changes after using the SMOTE 

sampling approach. The number of instances for the majority 

class and the minority class are now equal, with each having 

around 166,667 occurrences. By creating synthetic samples 
for the minority class, SMOTE successfully increases its 

representation in the collection and achieves this balance. 

TABLE IV 

CLASS DISTRIBUTION BEFORE AND AFTER SMOTE IMPLEMENTATION 

Sampling 

Technique 
Class 0 Class 1 

Original 166,667 8,208 

SMOTE 166,667 166,667 

 

Tomek linkages is a method for undersampling that 

eliminates edge instances from a dataset. As this is an under-

sampling technique, only negative class data will be discarded. 

If two samples create Tomek linkages, one of them is 

considered to be noisy data, or both are considered to be 

borderline. Based on Table 5, the majority class in the original 

class distribution has more occurrences of 166,667 than the 

minority class, which has 8,208 instances. The class 

distribution changes after using the Tomek Links under-
sampling approach. The minority class has 8,208 occurrences, 

whereas the dominant class has been reduced to 163,093 

instances. By removing majority class samples that are close 

to minority class samples, Tomek Links tries to eliminate 

occurrences that are close to the decision boundary. 

TABLE V 

CLASS DISTRIBUTION BEFORE AND AFTER TOMEK LINKS IMPLEMENTATION 

Sampling 

Technique 
Class 0 Class 1 

Original 166,667 8,208 

Tomek Links 163,093 8,208 

 

A hybrid sampling method called SMOTE + Tomek 

combines SMOTE with Tomek Links. For class equilibrium, 

SMOTE uses generated samples. SMOTE, however, does not 

assess cross-border cases. After SMOTE, Tomek Links 

emerged to deal with this issue. Table 6 shows that the 

majority class has 166,710 instances, substantially more than 

the minority class, which has just 8,165 instances. However, 

the class distribution significantly changes after using the 

SMOTE + Tomek sampling strategy. Both the majority class 

and the minority class now have an equal number of instances, 
with each class having around 166,032 instances. This shows 

that SMOTE + Tomek's strategy of undersampling the 

dominant class and oversampling the minority class to 

generate a more balanced distribution has effectively handled 

the issue of class inequality. 

TABLE VI 

CLASS DISTRIBUTION BEFORE AND AFTER SMOTETOMEK IMPLEMENTATION 

Sampling 

Technique 
Class 0 Class 1 

Original 166,710 8,165 

SMOTETomek 166,032 166,032 

I. Dataset Partitioning 

The datasets are divided into two subsets in an 80:20 ratio, 

with 80% used for training and 20% used for testing, to make 

it easier to build and assess machine learning models. 
The model may gain knowledge from a sizable chunk of 

the dataset due to the larger size of the training subset. The 

input characteristics and target class are presented to the 

model during the training phase. Multiple algorithms can be 

utilized to analyze this training data and change its internal 

parameters to minimize the discrepancy between its 

predictions and the actual labels. The objective is to identify 

the underlying correlations and patterns in the data. 

The remaining 20% of the testing subset is set aside for 

assessing how well the trained model performed. To enable a 

fair evaluation of the model's capacity to generalize to new 

data, this subset is kept separate and unaltered throughout the 
training process. On the testing subset, the model is used, and 

the predictions are compared with the real labels. To gauge 

how well the model works on unobserved data, evaluation 

measures like accuracy, precision, recall, or F1-score can be 

determined. 

J. Evaluation Metrics 

The Confusion Matrix, Accuracy, Precision, Recall, F1 

Score, and Area Under the ROC Curve are the evaluation 
metrics used to assess performance. The four points for 

identifying a prediction using the method utilized are True 

Positive, True Negative, False Positive, and False Negative. 

Accuracy as a performance metric should no longer be used 

because of the gap across classes. As a result, it is not 

employed for genuine assessments but rather as an addition to 

the other metrics. 

All performance measurements are built on the confusion 

matrix. A classification model’s performance on a set of test 

data for which the true values are known is described using a 

table-based performance assessment. This evaluation metric 

presents the results of the predictions in terms of the matrix 
with True Positives for stroke patients that were precisely 

predicted, True Negatives for healthy individuals that were 
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successfully forecasted, False Positives for healthy cases that 

were misclassified as stroke patients, and False Negatives for 

stroke patients that were mistakenly classified to be healthy 

cases. The effectiveness of the classification findings is 

represented by accuracy. It is crucial for assessing the overall 

efficacy of the model for assessing stroke prediction models 

since accuracy indicates the percentage of properly 

categorized occurrences among all instances. 

Precision describes the proportion of accurately predicted 

positive cases among the sum of predicted positive cases. It is 
effective in situations when False Positives are of more 

concern than False Negatives. The relevance of Precision in 

stroke prediction stems from the fact that inaccurate findings 

might result in misclassification of healthy cases, which can 

lead to further analysis. 

Recall describes the amount of real positive instances that 

the model can accurately predict. In situations where False 

Negatives are of more importance than False Positives, this 

statistic is beneficial. It is crucial in stroke prediction when a 

false negative should not go unnoticed. Stroke patients should 

not be wrongly predicted as healthy cases as this affects early 
treatment. 

 The F1-score, which is a harmonic mean of recall and 

precision and takes into consideration of both false positives 

and false negatives, is a crucial metric for assessing stroke 

prediction models if the data set is unbalanced. Hence, when 

there are considerably more instances of one class over the 

other, the F1 score becomes particularly beneficial. 

The AUC-ROC curve is a crucial metric for assessing stroke 

prediction algorithms because it represents the trade-off 

between true positive rate and false positive rate at various 

classification thresholds. It is one of the most crucial 
assessment criteria for assessing the effectiveness of any 

classification model. The AUC measures how well a model 

can discriminate between classes and indicates the degree of 

separability. The model performs better at differentiating 

between individuals with the disease and those who do not 

have it as the AUC value is higher. 

III. RESULT AND DISCUSSION 

In this research study, the BRFSS dataset is used for 
building the model, while the Framingham dataset is utilized 

for cross-dataset testing. There are several algorithms that 

were trained on the BRFSS dataset to develop a prediction 

model that can be tested on unseen data from the Framingham 

dataset. The subsequent section will elaborate on the benefits 

of using a particular model and the performance of each 

model. 

A. Extreme Gradient Boosting Classifier 

XGBoost is particularly helpful for predicting stroke 
because it is a scalable, distributed gradient-boosted decision 

tree technique that can handle both regression and 

classification for predictive modeling issues. Contrary to 

traditional gradient descent approaches that aim to minimize 

output error with each iteration, XGBoost aids in the 

prediction of the additive model's ideal gradient. It is well-

liked for use in machine learning because of its speed and 

effectiveness. Overall, XGBoost is a strong and adaptable 

algorithm that is excellent for handling vast and complicated 

datasets and can predict stroke outcomes efficiently. 

Table 7 shows the results that the XGBoost achieved using 

three different sampling techniques. The accuracy 

comparisons show the model’s capability to distinguish 

between healthy controls and stroke victims. The findings 

provided here demonstrate that good accuracy, precision, 

recall, and f1-score may be attained through the usage of the 

three sampling techniques. As a result, it may be inferred that 

applying different sampling techniques has no influence on 

the performance of the model. 

TABLE VII 

EXTREME GRADIENT BOOSTING CLASSIFIER PERFORMANCE WITH DIFFERENT 

SAMPLING TECHNIQUES 

Evaluation 

Metrics 
SMOTE  

Tomek 

Links 

SMOTE 

Tomek 

Accuracy 0.95 0.95 0.95 
Precision 0.95 0.95 0.95 
Recall 1.00 1.00 1.00 
F1-Score 0.98 0.98 0.98 

AUC Score 0.809 0.803 0.802 

B. Adaptive Boosting Classifier 

Boosting is a broad technique that seeks to “boost” the 

accuracy of any learning algorithm by merging all the weak 

classifiers into a single strong classifier, which can also 

reduce overfitting. In past research in predicting strokes, 

Adaboost has demonstrated great accuracy, beating other 

machine learning methods. It is an efficient scalable algorithm 

that can operate on huge datasets, making it appropriate for 

studying sizable datasets of stroke patients. 

In Table 8, it can be observed that AdaBoost with Tomek 

links achieved the highest AUC score and relatively high 

accuracy, precision, recall, and f1-score compared to the other 
two sampling techniques and other algorithms. Hence, it can 

be deemed that this model is the best model to predict stroke. 

TABLE VIII 

ADAPTIVE BOOSTING CLASSIFIER PERFORMANCE WITH DIFFERENT 

SAMPLING TECHNIQUES 

Evaluation 

Metrics 
SMOTE  

Tomek 

Links 
SMOTE Tomek 

Accuracy 0.94 0.95 0.94 
Precision 0.96 0.95 0.96 
Recall 0.98 1.00 0.98 

F1-Score 0.97 0.98 0.97 
AUC Score 0.786 0.812 0.786 

C. Bootstrap Aggregating Classifier 

Bagging, a short-form for bootstrap aggregating is one of 

the oldest, most straightforward, and maybe simplest 

ensemble-based algorithms, with a performance that was 

initially shown by Breiman [30] to be unexpectedly excellent 

in 1996. Bagging lowers the variance of a prediction model 

and is used to handle bias-variance trade-offs. It prevents data 

overfitting and is used to raise the precision of regression and 

classification models. Stroke datasets can be studied using a 

scalable method such as bagging since it operates effectively 

on huge datasets. 

Table 9 demonstrates the performance results by using the 

Bagging classifier together with different techniques to 
handle the skewed dataset. All sampling techniques achieve 

similar performance. The usage of the Bagging model 

alongside with Tomek Links sampling method attained the 

highest AUC score in contrast to the other two sampling 
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techniques, however, it is still not the best model compared to 

the rest of the algorithms. 

TABLE IX 

BOOTSTRAP AGGREGATING CLASSIFIER PERFORMANCE WITH DIFFERENT 

SAMPLING TECHNIQUES 

Evaluation 

Metrics 
SMOTE  

Tomek 

Links 
SMOTE Tomek 

Accuracy 0.95 0.95 0.95 
Precision 0.95 0.95 0.96 
Recall 0.99 1.00 0.99 
F1-Score 0.97 0.98 0.97 

AUC Score 0.786 0.803 0.788 

D. Linear Support Vector Classifier 

Medical datasets frequently contains high-dimensional 

data, which makes linear SVC particularly advantageous. 

Clinicians may better understand the significance of many 

characteristics throughout the prediction process. 

Additionally, recognizing the risk factors for stroke and 

creating preventive measures that are more potent is also 

essential. Linear SVC may be utilized for a variety of tasks 

such as predicting stroke outcomes, determining important 

variables, and categorizing patients into distinct risk groups. 

The performance analysis from employing Linear SVC 
with three sampling methods can be obtained in Table 10. Due 

to the fact that utilizing SMOTE method to handle the 

imbalanced dataset with Linear SVC attained a high AUC 

score of 0.811, however, the value of accuracy is relatively 

low at 0.73. Thus, this model with SMOTE was not used to 

measure its performance on an independent dataset. 

TABLE X 

LINEAR SUPPORT VECTOR CLASSIFIER PERFORMANCE WITH DIFFERENT 

SAMPLING TECHNIQUES 

Evaluation 

Metrics 
SMOTE  

Tomek 

Links 
SMOTE Tomek 

Accuracy 0.73 0.95 0.74 
Precision 0.98 0.95 0.98 
Recall 0.73 1.00 0.74 
F1-Score 0.84 0.98 0.84 
AUC Score 0.811 0.804 0.803 

E. Multilayer Perceptron 

MLP is an artificial neural network model can be used to 

predict strokes. An input layer, one hidden layer, and an 

output layer make up the model, which is intended to 

resemble the structure and operation of biological neurons. 

ANN can discover intricate patterns in a huge amount of 

information and use those patterns to predict the future. In 

general, MLP is an effective way of foretelling the results of 

strokes and may spot intricate patterns from enormous 

datasets that may be missed by conventional statistical 
techniques. 

The performance of MLP is shown in Table 11 with three 

sampling techniques. The results of Tomek links with MLP 

showed that the model outperformed other sampling methods 

based on accuracy, recall, f1-score, and AUC score. 

Nevertheless, it is still not reliable enough to be cross-

validated on another dataset. 

 

 

TABLE XI 

MULTILAYER PERCEPTRON PERFORMANCE WITH DIFFERENT SAMPLING 

TECHNIQUES 

Evaluation 

Metrics 
SMOTE  

Tomek 

Links 
SMOTE Tomek 

Accuracy 0.90 0.95 0.88 
Precision 0.96 0.95 0.96 

Recall 0.94 0.99 0.91 
F1-Score 0.95 0.97 0.94 
AUC Score 0.664 0.745 0.671 

F. Light Gradient Boosting Machine Classifier 

Light GBM, an implementation of gradient boosting 
machines, offers several advantages over traditional gradient 

boosting methods, making it a promising choice for various 

applications. It offers a quick and precise approach for 

supervised learning tasks. It is a fantastic option for large-

scale research where precision is crucial because of its high 

speed and scalability. Because it can handle skewed datasets, 

which are typical in medical datasets, Light GBM is a well-

liked method for predicting strokes and an interpretable model 

since it sheds light on the significance of many characteristics 

in the prediction process. This can aid medical professionals 

in better comprehending the risk variables for stroke and 
creating more potent preventative measures. 

Table 12 shows the Light GBM classifier’s result 

performance by implementing three sampling techniques. All 

the models attained similar accuracy, precision, and recall 

metrics. As a consequence, adopting alternative sampling 

approaches has no effect on the model's performance. 

TABLE XII 

LIGHT GRADIENT BOOSTING MACHINE CLASSIFIER PERFORMANCE WITH 

DIFFERENT SAMPLING TECHNIQUES 

Evaluation 

Metrics 
SMOTE  

Tomek 

Links 
SMOTE Tomek 

Accuracy 0.95 0.95 0.95 
Precision 0.95 0.95 0.95 
Recall 1.00 1.00 0.99 
F1-Score 0.97 0.98 0.97 
AUC Score 0.806 0.808 0.798 

G. Cross-Validation with an Independent Data 

To validate the model robustness, Framingham Heart 

Disease Prediction Dataset was utilized as a testing set to 

employ cross-validation. It helps to assess how well the model 

generalizes to unseen data and detect overfitting. Based on 

Table 13, the cross-validation scores show how well the 

model performed when tested on various folds or subset of the 

data. Each score shows the level of accuracy the model 

attained on a certain fold. 

It is worth noting that only five attributes match between 
these two datasets, hence the five variables are tested to 

measure their cross-validation scores, in which the attributes 

are ‘Sex’, ‘Smoker’, ‘HighBP’, ‘BMI’ and ‘Age’. An overall 

assessment of the model’s performance over all folds is 

provided by the average cross-validation score, which is 

determined as 0.957, which shows the model’s typical 

accuracy level during cross-validation. Additionally, the 

model’s performance on a different dataset from the one used 

for cross-validation is represented by this accuracy number. 

With an accuracy of 0.994, it appears that the model works 

well on the Framingham dataset. 
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Overall, the evidence indicates that the model works well 

on the other dataset, achieves high accuracy during cross-

validation, and reduced level of overfitting, as the model can 

achieve a good performance on an independent dataset. 

TABLE XIII 

PERFORMANCE EVALUATION USING ADABOOST CLASSIFIER ON 

FRAMINGHAM DATASET 

K-Fold 

Cross-

Validation 

(CV) 

1st 

Fold 

2nd 

Fold 

3rd 

Fold 

4th 

Fold 

5th 

Fold 

CV Score 0.95 0.95 0.95 0.95 0.95 

H. Discussion 

Based on the findings, three separate sampling methods 

which are SMOTE, Tomek links, and SMOTE + Tomek were 

used to provide an adequate representation of the actual data. 

Six machine learning models were built on the BRFSS dataset 

by tuning various parameters. The model built on the BRFSS 

dataset was used to test on the Framingham dataset and it is 
found that higher cross-dataset accuracy can be achieved. 

By detecting those who are at risk of having a stroke early 

on using low-cost features, this model has the potential to save 

lives and reduce the likelihood of permanent disabilities 

brought on by strokes. A stroke case may be misdiagnosed if 

it is erroneously detected or categorized as a healthy case. The 

patient's health and well-being may be seriously impacted by 

this misclassification. 

The imbalanced dataset was addressed using a variety of 

strategies. The most popular sampling techniques were found 

after a detailed examination of the literature. Following a 
review of various sampling techniques, three popular 

sampling approaches, each of a different type were chosen. 

Following the analysis, it can be concluded that Tomek Links 

was the best sampling strategy for improving the performance 

of the model for stroke prediction. 

IV. CONCLUSION 

The objective of this paper was to provide an optimal 

solution that would aid in the early identification of stroke 
using low-cost features. The goal was achieved by 

implementing different machine learning models, each of 

which made use of three different sampling techniques for 

handling imbalanced datasets and evaluating their 

performance by using various metrics. The model built using 

one dataset was tested on another dataset. Higher cross-

dataset accuracy obtained demonstrated the generalizability 

of the identified optimal model on an unseen dataset collected 

in a different environment. Future studies might include 

building machine learning models that allow for real-time 

monitoring of stroke risk and early intervention options. This 
might entail creating online applications or mobile health 

technologies that continually analyze and update stroke risk 

based on dynamic patient data. It is also important to validate 

the efficacy of models to classify stroke cases using varied 

and independent datasets as well as assess the models’ 

generalizability across diverse demographics, healthcare 

settings, and geographical locations. 
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