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Abstract—Renewable energy research has become significant in the modern period due to escalating fossil fuel prices and the pressing 

need to reduce greenhouse gas emissions. Solar energy stands out among these sources due to its abundance and global accessibility. 

However, its weather-dependent and cyclical nature adds inherent risks, making effective planning and management difficult. Soft 

computing technologies provide attractive solutions for modeling such systems, while machine learning and optimization techniques 

are gaining popularity in the solar energy industry. The current literature highlights the growing use of soft computing technologies, 

emphasizing their potential to address difficult challenges in solar energy systems. To effectively reap the benefits, these strategies 

must be seamlessly connected with emerging technologies like the Internet of Things (IoT), big data analytics, and cloud computing. 

This integration provides a unique opportunity to improve solar energy systems' scalability, flexibility, and efficiency. Researchers 

can use these synergies to create intelligent, linked solar energy ecosystems capable of real-time optimization of energy production, 

delivery, and consumption. These technologies have the potential to transform the renewable energy environment, allowing for more 

resilient and sustainable energy infrastructures. Furthermore, as these technologies improve, there is a growing demand for trained 

experts to address associated cybersecurity problems, assuring the integrity and security of these sophisticated systems. The urgency 

and importance of interdisciplinary collaboration in this field cannot be overstated. Researchers may pave the road for a more 

sustainable and energy-efficient future by working collaboratively and using interdisciplinary methodologies. 
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I. INTRODUCTION

The present scenario of escalating fuel prices, greenhouse 
gas emissions, and changing geo-political conditions are 
driving the research toward renewable energy sources [1]–
[4]. The researchers are investigating energy sources like 
tidal [5], [6], wave and ocean [7]–[9], biomass [10], [11], 
biofuels with some typical types, such as biodiesel [12]–
[14], alcohol [15]–[19], furan [20]–[22], ether [23]–[25], 
natural gas [26]–[28]), wind [29]–[31], solar [32]–[34], and 
several other energy sources.  

Solar energy is derived from solar irradiance, which might 
be thermal energy, a chemical transformation or process, or 
even clean electrical energy [35], [36]. The total quantity of 
solar energy that strikes the planet exceeds its present and 
future demands; therefore, if properly harnessed, this highly 

distributed source might supply all of our energy needs [37], 
[38]. Solar energy, unlike typical forms of energy like coal, 
petroleum, and natural gas, has lately emerged as one of the 
most widely used and ecologically safe energy sources, 
implying that it will endure millions, if not billions, of years. 
The sun is more than simply a powerful energy source; it is 
by far the most plentiful source of energy the planet 
acquires. However, its strength at the surface is relatively 
low, mainly owing to the distance between the Earth and the 
sun, which causes a wide radial dispersion of energy along 
the route [39]–[41]. The atmosphere of the earth and clouds 
absorb or disperse over half of the sunlight that enters, 
resulting in a minor additional loss. More than half the 
amount of sunlight from the sun is visible light, while the 
remainder comprises infrared, ultraviolet, and other types of 
electromagnetic radiation. The quantity of raw energy 
obtained from the sun is sufficient to meet the planet's 
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energy demands hundreds of times because solar energy has 
an insurmountable potential that must be fully explored 
[42]–[44]. Unfortunately, notwithstanding having been 
proven that solar energy is free and available practically 
everywhere, the high cost of gathering, converting, and 
storing it limits its utilization in many areas worldwide. 
Solar radiation may be converted into thermal energy or 
electrical energy. However, the former type is more 
accessible since the heat released by the sun can be applied 
immediately for heating for an extended period [45]–[47]. 
Sun-derived solar energy is growing in popularity due to its 
adaptability in various industrial uses [48], [49]. These 
applications include the production of electricity for 
domestic and commercial usage [49]–[51], freshwater 
production [52]–[54], the sun drying of fruits for food 
industry processing [55]–[57], hydrogen production [58]–
[60], and heat production [61]–[63]. 

In addition, organizations and governments are supporting 
the utilization of renewable energy and solar energy via a 
variety of laws and incentives because it is relatively safe to 
use, can be scaled up, and has a positive influence on the 
environment in comparison to other sources [64]–[68], this 
shifting progress to renewable energy could be observed for 
the post-COVID19 pandemic [69], [70]. The present 

installed generation capacity for solar energy may be larger 
than that of wind energy; nevertheless, it is anticipated that 
solar power will have a growth rate of 47.6% on an annual 
basis, while wind energy has been projected to have a 
growth rate of 18.9% [71]. Recent years have seen 
significant advancements in solar power, notably in the field 
of photovoltaic (PV) technology, in which solar energy 
could be integrated into energy production along with other 
sources such as coal, biomass, wind, and geothermal [72]–
[74]. The manufacture of perovskite solar cells has the 
promise of increased efficiency as well as decreased 
manufacturing costs, which has the possibility of completely 
transforming the market [75]–[78]. Building-integrated 
photovoltaics, which is an expansion of solar technology that 
incorporates solar energy tracking systems and the 
incorporation of solar activity into construction supplies, has 
increased the usefulness of solar technology while also 
improving its aesthetics [79], [80]. On a bigger scale, 
concentrated solar power facilities are reaping the benefits of 
increased thermal storage capacities. These capabilities 
enable resource dispatch ability regardless of whether the 
sun is shining [81], [82]. A brief comparison of solar-based 
power systems is depicted in Fig. 1 [83].  

 
Fig. 1  Solar power system  [83] 

 
Soft computing is a subfield of Artificial intelligence (AI) 

that includes several approaches for handling complex and 
non-linear real-life problems [84], [85]. Unlike traditional 
computing methods, which depend on specific mathematical 
functions and algorithms [34], [86], [87]. Soft computing 
techniques simulate human-like reasoning and selection-
making procedures [88], [89]. These methods are 
particularly useful for dealing with demanding situations 
consisting of ambiguity, imprecision, and inadequate data 
[90][91]. Thus, it renders them crucial in plenty of sectors of 
manufacturing, finance, engineering, healthcare, and 
environmental studies [92]–[94]. Several principal 

approaches underpin soft computing, like genetic algorithms 
(GA), ANN, fuzzy logic, support vector machines (SVM), 
and evolutionary algorithms. These techniques reflect human 
cognitive strategies and use historical data to make educated 
judgments [95]–[98]. For example, artificial neural networks 
are stimulated by the human brain's shape and features, 
which include linked nodes (neurons) that procedure and 
examine information. ANNs can identify patterns, categorize 
information, and forecast with exquisite accuracy after being 
trained [99]–[101]. A brief classification of soft computing 
is depicted in Fig. 2 [102].  

 
Fig. 2  Main soft computing methods [102] 
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Fuzzy logic is one of the crucial ML approaches in soft 
computing. The adaptability of fuzzy logic makes it ideal for 
applications requiring linguistic variables and fuzzy sets, 
which include temperature manage systems, choice-making 
tactics, and professional systems [103], [104]. Genetics and 
evolutionary approaches are heavily influenced by biological 
evolution and natural selection theory. These optimization 
methods entail generating and developing a desired solution 

to the problem throughout multiple generations. Mutation, 
cross-over, selection, and other genetic algorithms are 
commonly used for candidates in difficult regions, preferred 
solutions or closest approach assertions, genetics, and 
algorithms [105]–[108]. Fig. 3 depicts a typical application 
framework of soft computing in the solar energy domain 
[109].  

 

 
Fig. 3  Application framework of soft computing in solar energy [109] 

 
Support vector machines (SVMs) are highly effective 

supervised learning models for classification and regression 
problems. SVMs work by feeding input data into a high-
dimensional feature space and identifying the optimum 
hyperplanes separating classes or showing continuous results 
by maximizing margins between classes; kernel functions 
have been employed to manage nonlinear relationships 
[110]–[112]. SVMs may effectively categorize complex data 
and generalize previously unseen data. In the context of solar 
energy uses, soft computing plays a vital part in harvesting, 
converting, and using solar energy. A simple computer 
model can precisely predict solar radiation and maximize the 
efficiency of the solar power system [113], [114].  

II. MATERIAL AND METHOD 

A. Artificial Neural Networks  

The artificial neural network, also known as an ANN, is a 
simplified form of biological-based neural architecture that 
is capable of effectively correlating a greater number of 
uncertain input points to a variety of characteristics [115]–
[117]. There is no need for mathematical equations or a 
sophisticated mathematical base when it comes to the 
process of building relationships between various factors 
[118], [119]. ANN models use such an approach. 
Consequently, when trying to link the ‘n’ number of control 
factors with several numbers of indeterminate data values, 
ANN needs less processing effort than traditional 
techniques. This is because ANNs can learn from their data 
[120]–[122].  

The process of training the ANN by making use of data 
that has been imported is referred to as supervised training or 
learning. Similar to neurons that are found inside a human 
brain, the ANN is made up of a number of neurons. The 
weight of these neurons is a fractional number that 
represents their connection to one another [123], [124]. 
These neurons are related to one another by this weight. It is 
necessary to make adjustments to the weights throughout the 
training process to provide accurate predictions of the 
outcomes. Once the error has reached a level that is 
considered acceptable, the weight values will remain 
constant [125]–[127].  

It is shown in Fig. 4 that the fundamental structure of the 
ANN comprises three levels: the input layer, the hidden 
layer, and the output layer. Each of these layers is composed 
of neurons [128]. Whereas the selection of input parameters 
determines the number of neurons in the input layer, the 
selection of output parameters determines the number of 
neurons in the output layer [129], [130]. In other words, the 
neurons in the output layer are controlled by the output 
parameters. To determine the total number of neurons that 
are concealed, the trial-and-error approach is used in a 
variety of contexts. The bias is an additional parameter that 
is used to change the output of the neural network according 
to the requirements of the situation, the symbol ‘t’ represents 
the passage of time [131]–[133].  

The whole data set of control factors-response variables is 
divided into two groups: the first group, which contains a 
more significant chunk of data points, is referred to as the 
training data set, and it is used to train the neural network 
[134]–[136]. The second group, which contains the 
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remaining data points, is utilized to verify the trained neural 
network. Using a neural network, the input-output 
parameters and training data points are loaded [137], [138]. 
This network is trained until it reaches an error level that is 
considered acceptable. After defining the degree of error that 
is considered sufficient, the trained network is validated by 
importing the values of the input parameters from the 
validation data set and predicting the values of the output 
parameters that correspond to those values [139], [140]. 

These predicted values of the test data set's output parameter 
are contrasted to the corresponding actual values of the 
validation data set's output parameter. If the variance across 
the real and anticipated outcomes is less than the permissible 
limit, the trained neural network may be recommended as 
the ideal neural network for the prediction. This conclusion 
is reached if the error is less than the allowable limit. A 
typical architecture of ANN is depicted in Fig. 4 [128], 
[141].  

 
Fig. 4  ANN architecture [128] 

During the process of training a neural network, several 
different training algorithms are used. The training function, 
the learning variant, the transfer function, and the number of 
hidden neurons are all taken into consideration by these 
respective approaches [142]. For the purpose of training, 
there are a number of different transfer functions, learning 
versions, and training functions that may be used [143]. The 
training is carried out for the period specified in the 
requirements. To choose the appropriate training technique 
and training epochs, a neural network will take into account 
the values of the input parameter and then make predictions 
about the values of the output parameter based on those 
predictions [144], [145]. In the event that the error value is 
lower than the permissible value, the trained neural network 
that employs that particular combination of training 
algorithms has the possibility of being selected as the ideal 
neural network with the most effective training algorithm. 
For training the NN, the same technique is followed, but the 
number of epochs or the training algorithm that is used may 
vary [146], [147]. This process continues until the maximum 
allowable error is achieved. For the purpose of providing a 
greater error value, this is done. The generalization of the 
training neural network is validated by the outcomes that are 
anticipated by the ideal neural network, which are based on 
validation data points [148]–[150].  

B. Fuzzy Logic  

The usage of fuzzy logic, which is often linked primarily 
to rule-based systems including expert systems, is in fact 
capable of being utilized as a regressor in machine learning. 
In specific circumstances, fuzzy logic has several distinct 
advantages, despite the fact that it may not be utilized for 
regression jobs as frequently as other methods, such as linear 

regression or neural networks [103], [151], [152]. When 
modeling the correlation between input and output variables, 
fuzzy logic-based regression makes use of fuzzy rules as 
well as membership functions rather than exact 
mathematical formulae. This allows for a more accurate 
representation of the relationship [153], [154]. The modeling 
of complicated, non-linear connections that may be difficult 
to quantify using typical regression approaches is made 
possible by these rules, which capture the linguistic linkages 
that exist between the characteristics that are input and the 
result that is desired [155]. A flow chart for fuzzy logic is 
depicted in Fig. 5 [156]. 
 

 
Fig. 5  Flow chart of fuzzy logic [156] 

829



The following are the stages that are involved in the 
procedure of fuzzy logic regression [103], [157]:  

1) Fuzzification: Converting crisp input values into 
fuzzy sets by utilizing membership functions is the first step 
in the fuzzification process. These membership functions are 
used to express the extent to which a given input value is 
associated with each possible fuzzy set [158].  

2) Rule Evaluation: Applying fuzzy logic laws to the 
fuzzy inputs to assess the degree of activation of each rule is 
the second step in the regulation evaluation process. Input 
variables are defined by these rules, which specify how they 
interact to generate an output [159].  

3) Inference: Combine the rules that have been activated 
to produce a fuzzy output by utilizing fuzzy inference 
methods such as Mamdani or Sugeno [160].  

4) Defuzzification: Reconvert the fuzzy output into a 
crisp output value by employing defuzzification techniques 
such as the centroid or the weighted average [161].  

Fuzzy logic regression may be especially helpful in 
circumstances in which the link between the variables that 
are input and those that are output is not well defined or in 
which the data is intrinsically uncertain or imprecise [162], 
[163]. Fuzzy logic regression, for instance, can be a flexible 
and interpretable method of modeling that can be utilized in 
applications such as climate modeling, economic 
forecasting, or medical diagnosis, all of which involve inputs 
that may be qualitative or uncertain [164], [165]. It is 
essential to remember that fuzzy logic regression might only 
sometimes be the most suitable option for every single 
regression problem. It may have difficulty with datasets that 
are extremely vast or high-dimensional, and its success may 
be largely dependent on the design of the fuzzy rules and 
membership functions, which can be subjective and need 
knowledge in the relevant domain [166]–[168].  

Generally speaking, fuzzy logic regression might not be 
as extensively utilized as other regression approaches, yet it 
provides a distinctive method for modeling complicated 
connections and dealing with uncertainty, which makes it a 
handy instrument in some machine learning applications. 

C. Support Vector Machines  

Support Vector Machines, commonly known as SVMs, 
are well acknowledged for their effectiveness in 
classification tasks; nevertheless, they may also be employed 
as regressors. When it comes to dealing with non-linear and 
high-dimensional data, Support Vector Machine (SVM) 
regression, which is additionally referred to as Support 
Vector Regression (SVR), can be especially useful [169]–
[171]. SVM regression is a technique that is very similar to 
SVM classification in that the goal is to locate the 
hyperplane that provides the most incredible fit to the data 
points while simultaneously maximizing the margin. 
Regression, on the other hand, seeks to reduce the departure 
or inaccuracy of the data points relative to the hyperplane 
rather than precisely splitting them into classes [172]–[174]. 
This is contrary to the purpose of classification using 
regression. The flow chart of SVM applied to solar energy is 
depicted in Fig. 6 [175].  
 

 
Fig. 6  SVM framework for solar energy prediction [175] 

The following are the steps that are involved in the 
process of SVM regression:  

1) Kernel Selection: To translate the input data into a 
higher-dimensional space, selecting an appropriate kernel 
function is necessary. Some examples of kernel functions are 
linear, polynomial, and radial basis functions (RBF) [176], 
[177].  

2) Training of model: During model training, locate the 
hyperplane (decision boundary) that provides the best fit to 
the training data while using the least amount of error 
possible. By finding a solution to the optimization issue that 
was defined within the SVR framework, this may be 
accomplished [178].  

3) Evaluation: Using data from validation or cross-
validation techniques, evaluate the performance of the trained 
SVR model before moving on to the next step, model 
evaluation. The mean squared error (MSE), the mean absolute 
error (MAE), and the coefficient of determination (R2) are all 
examples of standard metrics used in assessment [179].  

4) Prediction: You should use the taught SVR model to 
generate predictions on fresh data points you have not seen 
before. The continuous output variable is represented by the 
values that were expected [180].  

SVM regression provides some benefits in comparison to 
more conventional regression methods. It is resistant to 
overfitting because of the margin parameter, which regulates 
the balance between the complexity of the model and its 
ability to generalize about the data [181]. In addition, 
support vector machines can successfully manage high-
dimensional data and non-linear correlations between input 
and output variables, making them suited for various 
regression problems [182], [183]. On the other hand, SVM 
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regression does have a few distinct drawbacks. Especially 
when dealing with big datasets, it may be computationally 
costly, and the kernel function and hyperparameters 
selection can significantly influence the algorithm's 
performance. Furthermore, when the data contains noise or 
outliers, the performance of the SVM regression algorithm 
could not be excellent [184]–[186]. 

In general, SVM regression is an efficient tool for 
modeling complicated relationships and making correct 
predictions in regression tasks. This is especially true when 
standard regression approaches may have difficulty 
capturing non-linearities or highly dimensional interactions. 

D. Evolutionary Algorithms  

Evolutionary algorithms, often known as EAs, are a 
category of optimization algorithms that are created by 
drawing inspiration from the concepts of natural selection 
and biological evolution [187], [188]. Even though EAs are 
often employed for optimization tasks like function 
optimizing, tuning of parameters, and choosing features, 
they are additionally capable of being modified for 
regression tasks [189], [190]. The process by which 
evolutionary algorithms function in the context of regression 
involves the evolution of a population of potential solutions 
over the course of numerous generations to locate an optimal 
or near-optimal solution that minimizes the error amongst 
the results that were anticipated and those that were 
produced [191], [192]. A flowchart for EA-based regression 
is depicted in Fig. 7 [193].  

 
Fig. 7  EA-based ML framework [193] 

It is common practice for the procedure to include the 
following steps [194]–[196]:  

1) Initialization: Beginning with the initialization 
process, a population of possible solutions, each representing 
a potential regression model, should be established. In most 
cases, these solutions are shown as vectors of variables that 
describe the model structure [197]. 

2) Evaluation: Evaluate the fitness of each candidate 
solution by applying it to the training data and producing a 
fitness score determined by its performance in terms of 
regression error metrics like mean squared error or mean 
absolute error. This will allow you to determine whether or 
not the solution is suitable for use [198].  

3) Selection: As part of the selection process, a subset of 
candidate solutions, sometimes referred to as parents, will be 
chosen to go through the process of reproduction based on 
their fitness ratings. In a manner that is analogous to the 
process of natural selection, situations in which solutions 
have higher fitness scores are more probable to be picked for 
reproduction [199], [200].  

4) Crossover: In order to generate offspring solutions, it 
is necessary to carry out crossover or recombination 
procedures on the parents that have been chosen. By 
integrating aspects of two parent solutions, crossover is a 
process that results in the creation of new solutions that have 
the potential to function more effectively [201].  

5) Mutation: To preserve the genetic variety of the 
population and to investigate new areas of the search space, 
it is necessary to add random variations or mutations to the 
progeny solutions [202], [203]. 

6) Replacement: To establish the next generation, it is 
necessary to replace some of the solutions that are already 
present in the population with the solutions that have been 
produced by the children. The selection of replacement 
solutions may be based on parameters such as elitism or 
fitness score [204]. 

7) Termination: Repeat the steps of evaluation, 
selection, crossover, mutation, and replacement for a 
predetermined number of generations or until a termination 
condition, such as convergence or a maximum number of 
iterations, is satisfied. This procedure is repeated until the 
completion of the termination process [205].  

The capacity of evolutionary algorithms for regression to 
cope with high-dimensional query spaces, non-linear 
relationships, and chaotic or non-smooth objective functions 
is one of the many advantages that these methods provide 
[206], [207]. They can also explore different parts of the 
search space and avoid local optima, making them useful for 
complicated regression tasks, in which classic optimization 
methods may have difficulty. On the other hand, 
evolutionary algorithms could call for many function 
assessments and processing resources, mainly when dealing 
with high-dimensional or massive datasets. It is also possible 
for the efficiency of evolutionary algorithms to be sensitive 
to the parameter settings that are used as well as the 
evolutionary operators that are selected [208]–[212].  

Evolutionary algorithms provide a versatile and powerful 
solution to regression problems. They can handle 
complicated connections and unclear data, making them 
ideal for certain situations. These algorithms can 
successfully improve regression models and identify 
solutions that reduce prediction error because they replicate 
the procedure of natural selection from which they get their 
results. 
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E. Genetic Algorithms  

Genetic algorithms (GAs), which are derived from the 
concepts of biological evolution as well as natural selection, 
have the potential to be modified for use as machine learning 
regressors throughout the process of solving regression 
challenges [213], [214]. GAs provides significant benefits in 
specific cases, notably when dealing with non-linear 
connections and high-dimensional data, despite the fact that 
they are not as often utilized as standard regression methods 
like linear regression or support vector machines. In the 
process of genetic algorithm-based regression, the algorithm 
repeatedly generates a population of candidate solutions, 
which are referred to as chromosomes, to optimize a fitness 
function that quantifies the quality of each alternative answer 
[215]–[217].  

Several essential phases are involved in the process 
[218]–[220]:  

1) Initialization: Creating a starting point of random 
chromosomal every one of which represents a potential 
solution to the regression issue, is the first step in the 
initialization process. Typically, these chromosomes encode 
possible solutions in the form of vectors that contain 
parameters [221]. 

2) Evaluation: Using a fitness function, which quantifies 
the degree to which each solution performs on the regression 
task, evaluates the viability of each chromosome in the 
population. This is the second step in the evaluation process. 
For the most part, this fitness function is determined by the 
difference between the projected output values and the actual 
output values [222].  

3) Selection: It involves choosing a subset of 
chromosomes from the population to act as parents for the 
subsequent generation. The fitness of each chromosome is 
often taken into consideration throughout the selection 
process, with more fit chromosomes having a greater chance 
of being approved for selection [223], [224]. To generate 
offspring chromosomes, it is necessary to carry out 
crossover or recombination procedures on pairs of parent 
chromosomes chosen separately. To develop new candidate 
solutions, this includes the exchange of genetic information 
between the parents as mentioned earlier [225], [226].  

4) Mutation: To preserve the genetic variety within the 
population, it is necessary to introduce random alterations or 
mutations to the chromosomes of the progeny. The 
algorithm is prevented from prematurely converging to 
solutions that are less than optimum by the use of mutation 
[227], [228].  

5) Replacement: To generate the next generation, it is 
necessary to replace part of the chromosomes already 
present in the population with the chromosomes inherited 
from the offspring. The replacement process may involve 
picking the people who are the healthiest from both the 
parent population and the child population [229], [230].  

6) Termination: Repeat the procedures of assessment, 
selection, crossover, mutation, and replacement until a 
predefined number of generations have passed or when 
convergence conditions have been satisfied. This is the 
seventh and last phase in the process. The criteria for 

convergence may include attaining a maximum number of 
iterations or achieving a level of fitness that is in accordance 
with the requirements [231].  

The use of GA-based regression can be especially useful 
in situations when the search space is huge, non-linear, or 
discontinuous, and where conventional optimization 
methods may have difficulty locating the global optimal 
solution. In situations where the link between the variables 
that are input and those that are output is not well known, 
GAs are also an excellent choice for solving issues that 
include complicated, multi-modal fitness landscapes. On the 
other hand, as compared to standard regression approaches, 
GAs may need a more incredible amount of processing 
resources and longer execution times. This is especially true 
for big datasets or situations that are very complicated. It is 
also possible that the efficacy of GA-based regression is 
dependent on the selection of genetic operators, such as 
crossover and mutation, in addition to the design of the 
fitness function [232]–[234].  

In conclusion, even though genetic algorithms might not 
be the best option for regression tasks in every circumstance, 
they provide a powerful and flexible approach to 
optimization that can be advantageous in certain machine-
learning applications. This is especially true when dealing 
with complex, non-linear relationships and high-dimensional 
data. 

III. RESULTS AND DISCUSSION  

The complexity and ever-changing character of renewable 
energy systems are reflected in the fact that using soft 
computing in solar energy brings both obstacles and 
possibilities. Several intriguing pathways may be pursued to 
solve critical difficulties and unleash the full potential of 
solar energy usage. Some of these approaches include 
artificial neural networks (ANN), fuzzy logic, genetic 
algorithms (GA), and support vector machines (SVM) 
[235]–[237].  

One of the most significant obstacles that must be 
overcome to use soft computing in the field of solar energy 
successfully is the inherently unpredictable and fluctuating 
nature of solar irradiation [238], [239]. As a result of the fact 
that solar radiation levels might change due to variables such 
as weather conditions, cloud cover, and seasonal 
fluctuations, reliable prognosis and forecasting can be 
challenging to achieve. To guarantee the dependability of 
solar energy production and grid integration, soft computing 
techniques need to be able to efficiently manage these 
uncertainties and adapt to the ever-changing circumstances 
of the environment [240]–[242].  

One further obstacle is optimizing solar energy systems to 
achieve the highest possible levels of efficiency and 
performance. Several features of solar energy systems may 
be optimized using soft computing methods. These aspects 
include panel alignment, tilt angle, tracking mechanisms, 
and energy storage management [243]–[245]. Nevertheless, 
to achieve the ideal design of the system, it is necessary to 
consider several different aspects, including the geographical 
location, the climatic conditions, the patterns of energy use, 
and the economic restrictions. Soft computing methods need 
to strike a balance between these aspects and produce 
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insights that can be put into action for the design and 
operation of the system [246], [247].  

Furthermore, the incorporation of soft computing into the 
current solar energy infrastructure may be met with 
challenging technological and practical obstacles. To 
successfully implement artificial intelligence-based control 
systems, predictive maintenance algorithms, and energy 
management platforms, it is necessary to have robust 
hardware, dependable data connection, and smooth 
compatibility with preexisting systems and protocols. In 
addition, it is of the utmost importance to guarantee the 
cybersecurity and data privacy of solar energy systems that 
are enabled by artificial intelligence to protect against 
possible attacks and weaknesses [248]–[250].  

The use of soft computing in solar energy gives much 
potential for innovation and growth despite the presented 
limitations. Creating intelligent solar energy forecasting 
models has significant potential that should be considered. 
Through historical and real-time data, soft computing 
approaches can enhance the precision and dependability of 
solar irradiance forecasts, hence facilitating more efficient 
energy planning, grid management, and resource allocation. 
In addition, improved forecasting skills may make it easier 
to incorporate solar energy into the larger energy ecosystem, 
which includes power markets and the architecture of smart 
grids [251], [252].  

The optimization of the operation and maintenance of 
solar energy systems presents yet another possibility. The 
algorithms used in soft computing can assess sensor data, 
recognize performance irregularities, and provide 
recommendations for preventative maintenance measures to 
avoid system failures and outages. Solar energy operators 
can reduce operational interruptions, prolong the lifetime of 
equipment, and optimize energy production via predictive 
maintenance procedures. This results in considerable cost 
savings and better system dependability [253]–[255].  

In addition, using soft computing methods has 
opportunities to enhance the efficiency and efficacy of solar 
energy conversion systems. The operation of solar 
photovoltaic (PV) arrays, concentrating solar power (CSP) 
systems, and solar thermal collectors may be optimized with 
the use of advanced control algorithms to maximize the 
amount of energy produced while simultaneously 
minimizing the number of resources that are consumed 
[256], [257]. Furthermore, soft computing techniques have 
the potential to assist in the development of solar materials, 
devices, and technologies of the future generation using 
better modeling, simulation, and optimization of design 
[258].  

In addition, using soft computing in solar energy offers 
opportunities for developing intelligent energy management 
and grid integration solutions. Energy management systems 
that are powered by artificial intelligence can maximize the 
integration of solar energy into the grid, sustain dynamic 
pricing and demand response programs, and strike a balance 
between supply and demand [259], [260]. By using soft 
computing approaches, utilities, grid operators, and energy 
service providers can improve grid stability, resilience, and 
sustainability while simultaneously supporting the 
integration of renewable energy sources and decarbonization 
[261], [262]. 

In the case of solar energy, using soft computing provides 
several obstacles, including unpredictability, optimization, 
integrating, and cybersecurity. However, it also presents 
several significant potentials for innovation, development, 
and sustainability [263], [264]. Soft computing methods can 
play a revolutionary role in realizing the full capability of 
solar energy as a clean, plentiful, and sustainable energy 
source for the future. This can be accomplished by solving 
the obstacles that are provided and by capitalizing on the 
possibilities that are offered [265], [266].  

Knowledge about global solar radiation serves as the 
foundation for various solar energy applications and is 
critical for environmental and economic problems. On the 
other hand, precise global solar insolation statistics are 
sometimes problematic or complex because solar radiation is 
subject to change, and observations are not always readily 
accessible [267], [268]. On the other hand, models that are 
based on machine learning can solve very nonlinear 
problems [269]. Deep learning, regarded as a potent method 
for moving machine learning closer to one of its original 
aims, Artificial Intelligence (AI), offers a feasible answer to 
this issue [270]. A study by Gujio-Rubio et al. [271] 
assessed the efficacy of several evolutionary neural network-
based prediction models for sun radiation for the location of 
Toledo, Spain. The forecast was done by employing data 
from satellite-based observations and variables. Three kinds 
of neural computing systems are investigated: radial basis 
function units, neural networks containing sigmoid-based 
neurons, and product units. The findings of the sun radiation 
estimate at Toledo's radiometric station demonstrate that the 
evolving neural networks tested performed very well. With 
evolutionary training, the structure of the sigmoid unit-
product unit was shown to be the best-performing model 
across all of those tested in this study. It generated an exact 
solar radiation forecast via satellite image data, surpassing 
all of the other tested evolutionary type NN, as well as 
alternative machine learning methods such as support vector 
machines (SVM) or evolutionary learning machines (ELM). 
Jumin et al.  [272] employed a boosted decision tree 
regression model to forecast variations in sun radiation based 
on data obtained in Malaysia. The suggested model was then 
compared against other standard regression techniques, 
including linear regression and neural networks. Two 
distinct normalizing strategies (Binning and Gaussian 
normalizer), splitting size, and input parameters were studied 
to improve model accuracy. Uncertainty analysis and 
Sensitivity were employed to assess the suggested model's 
correctness. The findings showed that BDTR beat other 
algorithms with high accuracy. Rabehi et al.  [273] 
employed several prediction models for sun radiation 
applications in a comparative study. This work evaluated the 
efficacy of ANN and BRT models and used a novel 
combination of the models above with LR to forecast daily 
global sun irradiation (DGSR). Different input combinations 
were examined to identify the most important input variables 
for DGSR prediction. The findings suggest that the MLP 
model outperforms the other models concerning two 
statistical indicators: normalized root MSE (0.033) along R2 
(97.7%). 

In the field of solar energy, the incorporation of artificial 
intelligence (AI) has sparked a revolution, greatly improved 

833



technology, and redefined the landscape of solar energy 
collection and usage [274]–[276]. Solar energy systems have 
advanced significantly in intellect, effectiveness, and 
dependability due to artificial intelligence algorithms and 
methodology. This article goes into the many uses and 
advances of AI in the solar energy sector, emphasizing its 
competitive potential [277], [278]. At the forefront of AI's 
effect is the improvement of solar panel efficiency. AI 
algorithms play an essential role in establishing ideal 
operating settings for individual panels by continuously 
monitoring and evaluating solar irradiance, temperature, and 
the panels' efficiency. AI increases energy production while 
avoiding losses due to shading dirt, or panel deterioration, 
assuring optimal system performance and increased energy 
output [279], [280]. Accurate energy forecasting is essential 
for successful grid integration and energy administration in 
solar power plants. AI algorithms assess massive amounts of 
historical and present data, such as weather patterns, solar 
irradiance, consumption of energy, and market pricing, to 
produce accurate estimates of solar energy output. These 
projections provide grid managers, energy administrators, 
and solar power facility managers with crucial insights into 
energy distribution, grid balancing, and trading of energy, 
resulting in a more dependable and stable system 
infrastructure [281]–[283]. 

In solar energy systems, operational issues and 
component failures may hamper power output. Artificial 
intelligence-based fault identification and maintenance 
systems use machine learning methods to analyze real-time 
data through sensors and monitoring devices, quickly finding 
irregularities and diagnosing probable problems. AI 
algorithms improve system dependability by allowing for 
preventative maintenance and rapid fixes [284]–[286]. AI-
enabled management technologies provide unique 

advantages for substantial solar farms regarding energy 
production and distribution optimization. AI algorithms 
enable efficient energy production and distribution, balance 
of load, allocation of resources, and predictive maintenance 
planning by assessing various data sources, including solar 
panel performance, meteorological conditions, energy 
consumption, and market dynamics. These management 
strategies increase operational efficiency, lower operating 
costs, and improve the overall efficiency of solar farms 
[287]–[289]. In addition, AI-driven energy storage 
management is critical for maximizing solar energy usage 
during low sunshine. AI algorithms assess data on energy 
prices, grid demand, and solar output to optimize the 
charging and discharging processes of energy storage 
components, boosting grid stability, lowering grid 
dependency, and enhancing self-consumption [290]–[292].  

AI enables system designers to optimize panel setting up, 
system size, and configuration for solar energy projects 
based on criteria like solar perspective, shade studies, and 
energy consumption patterns. AI modeling and forecasting 
skills allow designers to analyze and choose the most 
effective and cost-effective solutions, increasing the project's 
viability and efficiency [293]–[295]. The incorporation of AI 
into solar energy systems ushers in a new age of possibilities 
and revolutionary potential, resulting in increased 
performance, lower costs, and more project feasibility 
[296]–[298]. AI applications in solar energy have the 
potential to further revolutionize the industry by driving 
productivity, trustworthiness, and sustainability in the 
worldwide energy landscape. They range from maximizing 
solar panel efficiency to intelligent energy projections, 
problem detection, handling solar farms, energy storage 
optimization, and layout planning [299]–[302].  

TABLE I 
THE FOLLOWING IS A SUMMARY OF THE APPLICATION OF SOFT COMPUTING TECHNIQUES IN THE DOMAIN OF SOLAR ENERGY 

 
A large amount of attention has been drawn to the use of 

machine learning (ML) methods in solar prediction because 
these approaches have the potential to increase the accuracy 
and reliability of solar radiation forecasting [312], [313]. 

Soft computing method Application Main outcomes Source 

ANN of six different learning 
algorithms 

Solar radiation prediction Prediction was 94% accurate. [303] 

ANN models with Logsigmoidal 
transfer function and TRAINLM 
training algorithm and 

Prediction of global solar insolation ANN model helped in prediction with 
low errors as Root mean squared error 
(RMSE) – 3.96% 

[304] 

Feed forward algorithm-based ANN Monthly as well as daily solar insolation Solar radiation prediction for 83 sites in 
China could be predicted with high 
precision 

[305] 

Random forest combined with firefly 
algorithm and ANN 

Short-term prediction of solar radiation The prediction was with low error as 
RMSE was 18.98% 

[306] 

Different types of ANN, ANFIS Global horizontal irradiation forecasting Accurate forecasting with RMSE as 
2.78% and R2 as 0.982 

[307] 

GA and ANN Data from 83 sites used for the prediction 
of global solar radiation 

Forecasting accuracy of 99% and RMSE 
as 6.74% 

[308] 

Extreme gradient boosting (XGBoost) Use of public data for solar radiation 
prediction 

Highly accurate results provided by 
XGBoost 

[309] 

Gaussian process regression (GPR) and 
wavelet 

Three years of data was used for model 
training and a fourth year of data was used 
for comparison 

The hybrid approach of wavelet-GPR 
could predict with R2 as 0.923 and RMSE 
as 2.4191. 

[310] 

ANN, Response surface methodology, 
and ANFIS 

Energy yield and performance of solar 
farm 

ANFIS could predict with R2 as 0.983 
and 0.6. 

[311] 

SVM based regression Solar power generation prediction model The model could predict with less than 
3.08% error 

[175] 
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Some research has investigated various machine learning 
techniques and their applications in solar prediction, and 
each of these studies has produced distinctive results and 
insights. Since their introduction, Artificial Neural Networks 
(ANN) have become one of the most popular ML algorithms 
for predicting solar radiation [314]. A number of studies, 
including those conducted by Azadeh et al., have 
demonstrated the effectiveness of artificial neural network 
(ANN) models in accurately predicting solar radiation with 
high precision. [303] and Rao K et al. [304]. These studies 
have achieved prediction accuracies of up to 94% and low 
errors, as measured by RMSE of 3.96%, respectively.  

In addition, the integration of ANN with other algorithms, 
such as Random Forest and Firefly Algorithm, has exhibited 
promising results in short-term solar radiation prediction, 
reaching low error rates with RMSE of 18.98%. This was 
reported by Ibrahim and Khatib [306]. In a similar vein, the 
combination of ANN and GA is effective, with predicting 
accuracies approaching 99% and RMSE as low as 6.74% 
[308]. Furthermore, recent machine learning approaches 
such as Extreme Gradient Boosting (XGBoost) and Gaussian 
Process Regression (GPR) have shown exceptional promise 
in the prediction of renewable energy [315]–[318]. Li et al. 
[309] proved the high accuracy of XGBoost in forecasting 
solar radiation using public data, while Ferkous et al.  [310] 
employed a hybrid technique of Wavelet-GPR to obtain 
excellent prediction performance with R2 of 0.923 and 
RMSE of 2.4191. The research conducted by Das et al. [175] 
demonstrates that other machine learning techniques, such as 
regression based on Support Vector Machines (SVM), have 
also been used to predict solar power production. This 
demonstrates the usefulness of support vector machines 
(SVM) in solar prediction tasks since their model obtained 
prediction accuracies with an error rate of less than 3.08%.  

The scientific discussion on several ML-based approaches 
in solar prediction highlights the wide variety of obtainable 
methodologies and the distinctive contributions each of these 
methodologies makes to enhancing the precision and 
dependability of solar radiation forecasting procedures. 
These studies provide valuable insights into the strengths 
and limits of different machine learning algorithms, 
therefore paving the path for improved usage of solar energy 
and grid integration [319]–[321]. 

A look into the future reveals that the scope of this 
research will expand in some potential ways. In the first 
place, further research is needed to increase the capabilities 
of soft computing approaches for predicting, optimizing, and 
controlling solar energy. This involves creating more 
accurate and dependable forecasting models, optimization 
algorithms and control techniques that can dynamically 
adapt to changing environmental circumstances and needs 
for the system. In the second place, there is a need for the 
incorporation of soft computing approaches with new 
technologies such as the Internet of Things (IoT), big data 
analytics, and cloud computing to improve the scalability, 
flexibility, and efficiency of energy systems [322]–[324]. 
Using these synergies, researchers can construct intelligent 
and networked solar energy ecosystems, optimizing energy 
production, distribution, and usage in real-time. 
Furthermore, it is recommended that future research 
concentrates on tackling the practical issues involved with 

installing and deploying soft computing systems in solar 
energy infrastructure. This consists of establishing 
established protocols, interoperability standards, and 
cybersecurity measures to assure the dependability, security, 
and privacy of solar energy systems that are empowered 
with artificial intelligence. Additionally, there is a need for 
in-depth research on the economic, social, and 
environmental effects of solar energy solutions that are 
facilitated by soft computing. Policymakers and industry 
stakeholders can make educated judgments on investment 
priorities and policy interventions if they quantify the 
advantages of these technologies in terms of cost savings, 
improvements in energy efficiency, reductions in carbon 
emissions, and social benefits.  

IV. CONCLUSION 

In conclusion, the investigation of soft computing 
approaches in the field of solar energy highlights the 
potential of these techniques to resolve critical difficulties 
and open up new prospects for developing renewable energy 
systems. Using methods from artificial intelligence, machine 
learning, and computational intelligence, researchers have 
made substantial progress in improving the efficiency, 
dependability, and sustainability of solar energy production, 
prediction, optimization, and management. These 
improvements have been made possible using these 
techniques. The problems that have been found, which 
include the fluctuation of solar irradiance, the complexity of 
system optimization, the integration barriers, and 
cybersecurity concerns, underline the need for continuing 
research and development activities in soft computing for 
solar energy. To properly address these difficulties, it will be 
necessary for scientists, engineers, policymakers, and 
industry stakeholders to work together across disciplinary 
lines to build robust solutions. 
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