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Abstract—This study aims to enhance the RC5 algorithm to improve encryption and decryption speeds in devices with limited power 

and memory resources. These resource-constrained applications, which range in size from wearables and smart cards to microscopic 

sensors, frequently function in settings where traditional cryptographic techniques because of their high computational overhead and 

memory requirements are impracticable. The Enhanced RC5 (ERC5) algorithm integrates the PKCS#7 padding method to effectively 

adapt to various data sizes. Empirical investigation reveals significant improvements in encryption speed with ERC5, ranging from 

50.90% to 64.18% for audio files and 46.97% to 56.84% for image files, depending on file size. A substantial improvement of 59.90% 

is observed for data files sized at 1500000kb. Partitioning larger files notably reduces encryption time, while smaller files experience 

marginal benefits. Certain file types benefit from both strategies. Evaluation metrics include encryption execution time and throughput, 

consistently demonstrating ERC5's superiority over the original RC5. Moreover, ERC5 exhibits reduced power consumption and 

heightened throughput, highlighting its multifaceted benefits in resource-constrained environments. ERC5 is developed and tested on 

various file types and sizes to evaluate encryption speed, power consumption, and throughput. ERC5 significantly improves encryption 

speed across different file types and sizes, with notable gains for audio, image, and large data files. While partitioning smaller files only 

slightly improves encryption time, larger files partitioning yields faster results. Future research could explore ERC5 optimizations for 

different computing environments, its integration into real-time encryption scenarios, and its impact on other cryptographic operations 

and security protocols. 

Keywords— Lightweight cryptography; RC5; encryption and decryption; time consuming. 

Manuscript received 14 Apr. 2024; revised 12 Jul. 2024; accepted 15 Sep. 2024. Date of publication 31 Jan. 2025. 

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License. 

I. INTRODUCTION

In today's interconnected world, the proliferation of 
Internet of Things (IoT) devices and embedded systems is 

rapidly expanding, ensuring security in resource-constrained 

environments poses a significant challenge. Lightweight 

cryptography emerges as a crucial solution to address this 

challenge, offering robust security measures tailored 

specifically for devices with limited computational power, 

memory, and energy resources. These resource-constrained 

applications, ranging from tiny sensors to wearable devices 

and smart cards, often operate in environments where 

traditional cryptographic techniques are impractical due to 

their high computational overhead and memory requirements. 
Therefore, lightweight cryptography plays a pivotal role in 

protecting sensitive data and communications in these 

contexts. This study explores the significance of lightweight 

cryptography in providing security to resource-constrained 

applications, emphasizing its role in enabling secure 

communication, data protection, and privacy preservation 

amidst the constraints imposed by the devices' limited 

resources [1], [2], [3]. These applications produce large 

capacities of data that require efficient processing. In such 

resource-constrained environments, the traditional 
cryptographic methods often prove cumbersome and 

impractical due to their high computational demands. 

Lightweight cryptography offers a tailored solution, 

providing robust security measures while minimizing the 

computational burden on these devices. By optimizing 

algorithms and protocols for efficiency and resource 

conservation, lightweight cryptography ensures that security 

is not compromised in the face of constrained resources [4]. 

The RC5 algorithm is considered lightweight by nature due 

to its minimal memory and power requirements, rendering it 

suitable for deployment in devices with limited resources [5]. 

This characteristic is particularly advantageous in resource-
constrained environments where conserving memory and 

power consumption is paramount. By minimizing the 
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computational overhead, RC5 efficiently balances security 

requirements with the constraints imposed by the device's 

capabilities. Its lightweight nature makes RC5 an attractive 

choice for implementation in various applications, ranging 

from embedded systems and IoT devices to smart cards and 

mobile devices. This adaptability ensures that RC5 can 

provide robust cryptographic protection without unduly 

taxing the resources available to the device, thereby 

facilitating secure operations in diverse scenarios [6]. RC5, 

standing for "Rivest Cipher," represents a pivotal 
advancement in the realm of cryptographic algorithms, 

distinguished by its rapid block encryption technique 

operating symmetrically [7]. What sets RC5 apart is its 

ingenious utilization of rotation operations based on data, a 

feature that contributes to its innovative approach to 

encryption. Unlike conventional cryptographic methods, RC5 

incorporates dynamic elements such as variable block sizes, 

round numbers, and key lengths, endowing it with a 

remarkable degree of adaptability to varying performance and 

security requirements [8]. This adaptability is crucial in 

modern computing environments where the trade-off between 
speed and security is often a delicate balance. Moreover, 

RC5's exceptional speed and minimal memory requirements 

further underscore its prowess as an efficient cryptographic 

solution [9]. 

The algorithm's ability to swiftly encrypt and decrypt data 

while consuming minimal memory resources is particularly 

advantageous in scenarios where computational efficiency 

and resource conservation are paramount. This makes RC5 an 

appealing choice for a diverse range of applications, spanning 

from embedded systems and IoT devices to high-performance 

computing platforms. Its versatility extends to environments 
where memory constraints and power limitations dictate the 

feasibility of cryptographic implementations. By leveraging 

RC5, developers can ensure robust cryptographic protection 

without compromising on system performance or resource 

availability. The algorithm's ability to strike a balance 

between speed, security, and resource efficiency makes it a 

valuable asset in safeguarding sensitive data across a myriad 

of computing platforms.  

Consequently, RC5 stands as a testament to the ingenuity 

and adaptability of cryptographic techniques, offering a 

reliable solution tailored to meet the evolving demands of 

modern computing landscapes [10], [11]. The RC5 algorithm 
utilizes several parameters to govern its operations [12], [13], 

[14], [15], [16], [17], [18]. One of these parameters is the size 

of the word � in bits. This parameter determines the size of 

the word used in the algorithm's computations. The options 

typically include 16, 32, and 64 bits, with 32 bits often 

recommended as the optimal choice. 

Encoding blocks into two words (A and B): Blocks of data are 

encoded into two words, denoted as A and B, as part of the 

RC5 algorithm's process. 

The maximum number of rounds in algorithm �(ℛ): This 
parameter specifies the maximum number of rounds that the 

algorithm will iterate through during encryption or decryption. 

ℛ can be any integer between 0 and 255 inclusive, allowing 

for flexibility in adjusting the algorithm's complexity and 

security level. The size of the secret key in bytes: The secret 

key's size is expressed in bytes and determines the length of 

the key used for encryption and decryption. Similar to the 

maximum number of rounds, the size of the secret key can 

range from 0 to 255 bytes, providing versatility in 

accommodating different security requirements and key 

lengths. These parameters collectively define the 

configuration and behavior of the RC5 algorithm, allowing 

for customization to suit various cryptographic needs and 

constraints. 

The focal point of this research involves enhancing the 

RC5 algorithm to fulfill the requirements of rapid processing 

essential for specific applications, such as video conferencing 
and remote sensing imagery. Given RC5's nature as an 

iterative and block cipher algorithm, its performance is 

pivotal in scenarios prioritizing minimal processing time for 

effective encryption and decryption tasks. The primary aim of 

this study is to enhance the performance of the RC5 algorithm 

by harnessing the potential of multiple computation cores, 

rather than relying solely on individual cores. This entails 

distributing the computational workload across several cores 

to notably augment the algorithm's efficiency and speed, 

particularly when managing various data types. This strategy 

aims to optimize resource utilization and decrease encryption 
time, consequently addressing the pressing demand for swift 

cryptographic processing in real-time applications like video 

conferencing and remote sensing image analysis. 

The structure of the paper is organized into several sections. 

The second section focuses on discussing related works that 

have contributed significantly to shaping the research's 

objectives and perspectives. Following this, the third section 

provides a comprehensive explanation of the RC5 algorithm, 

elucidating its principles and operational mechanisms. 

Subsequently, the fourth section presents a detailed account 

of the proposed enhancement of the RC5 algorithm, outlining 
the modifications and strategies aimed at improving its 

performance. In the fifth section, the paper delves into the 

results obtained from the implementation of the enhanced 

algorithm, accompanied by a thorough performance 

evaluation. Finally, the paper concludes by summarizing the 

key findings and insights drawn from the research, providing 

closure to the study. 

This study undertakes a comprehensive review of the 

existing literature focusing on the adaptation and refinement 

of the RC5 block cipher algorithm. A plethora of research 

endeavors has been dedicated to exploring various methods 

aimed at enhancing both the encryption time and security 
levels associated with RC5. One notable contribution, 

highlighted in reference [5], introduces an enhanced RC5 

algorithm that seeks to bolster its encoding speed by 

leveraging a straightforward yet remarkably effective 

technique involving the incorporation of random numbers 

followed by their integration into the key expansion phase. 

This enhancement strategy encompasses the iterative 

generation of random numbers to be added to the generated 

key, a process reiterated for two consecutive rounds, along 

with the introduction of supplementary blocks and bitwise 

operations aimed at further fortifying the algorithm's 
performance. Empirical findings gleaned from 

experimentation underscore the substantial efficacy of the 

upgraded RC5 algorithm, evidencing significant 

improvements in both encryption and decryption performance, 

surpassing the conventional RC5 approach by remarkable 

margins of 75.73% and 42.05%, respectively. 
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Moreover, another notable study, referenced as [12], delves 

into the practical implementation of the Enhanced RC5 

(ERC5) algorithm within the context of an RFID-based 

payment system deployed at the DMMMSU-NLUC Fast 

Food Centre, tasked with safeguarding sensitive information 

within the system. The enhancement process unfolds across 

three pivotal phases: Key Expansion, Encryption, and 

Decryption. Results stemming from this implementation 

endeavor showcase the successful integration of the ERC5 

algorithm into the RFID-based payment system, 
demonstrating marked enhancements over the traditional RC5 

in terms of cryptographic efficiency and decryption speed, 

boasting improvements of 75.73% and 42.05%, respectively. 

Furthermore, ERC5 emerges as a more resource-efficient 

alternative compared to its predecessor, classic RC5, 

exhibiting notably higher encryption and decryption 

percentages, registering at 316.90% and 77.04%, respectively. 

These findings collectively underscore the transformative 

potential of enhanced RC5 variants in significantly 

augmenting the cryptographic capabilities and operational 

efficiency of security-sensitive systems and applications.  
A study by [19] introduced two suggested improvement 

techniques (ERC5 and ERSA) in a parallel environment to 

provide quick and effective picture encryption and decryption. 

The RC5 technique has been enhanced to use four distinct 

cipher keys and four cores to encrypt images, as opposed to 

just one key and one core. Improvement Instead of utilizing 

two prime numbers, one public key, one private key, and one 

core, the RSA algorithm (ERSA) encrypts keys ERC5 using 

four prime numbers, two public keys, two private keys, and 

four cores. This method Less time than the RSA and RC5 

methods initially required roughly 18 seconds. Acceleration 
of the suggested system using a quad-core parallel 

environment Approximately 105.16% higher than the 

acceleration of primitive sequence-based (RC5, RSA) 

algorithms in the Core environment.  

According to [20], the proposition of Format-Preserving 

Encryption (FPE) based on the RC5 block cipher algorithm 

emerges as a solution aimed at safeguarding data integrity 

while simultaneously preserving the original formatting of the 

data. This innovative approach seeks to overcome the 

limitations encountered in existing systems, particularly those 

relying on AES FPE, by accommodating all forms of data 

formats without imposing a significant overhead on execution 
time. In contrast to AES FPE, the proposed format-preserving 

RC5 algorithm demonstrates notably faster execution times, 

thus offering a compelling alternative for applications 

requiring efficient data protection mechanisms while 

maintaining data integrity.  

Similarly, reference [21] presents an innovative adaptation 

of the RC5 method tailored specifically to enhance security 

measures and expedite encryption processes, particularly for 

image data. This novel iteration introduces a new operation 

denoted as (#), which supplants the conventional XOR 

procedure within the algorithm's sixteen rounds, alongside an 
additional security layer incorporating two distinct keys. The 

outcomes of this refinement showcase remarkable efficacy in 

bolstering security protocols and reducing encryption times, 

all while preserving a diminished Peak Signal-to-Noise Ratio 

(PSNR) and minimizing the time discrepancy between 

original and encrypted images, thus demonstrating time-

efficient encryption practices without compromising on 

security or image quality. 

Furthermore, in a study by [1], the introduction of two 

distinct RC5 hardware architectures geared towards 

minimizing latency emerges as a significant contribution. The 

first architecture, denoted as RC5-1b, adopts a bit-serial 

design methodology, achieving noteworthy improvements in 

Transactions Per Second (TPS) compared to minimal bit-

serial AES and SIMON implementations. Conversely, the 

second architecture, RC5-8b, employs an 8-bit design strategy 
featuring dual Data-Direct Memory (DDR) units, 

demonstrating substantial enhancements in TPS compared to 

the smallest 8-bit AES LED implementations. Through this 

comparative analysis, it is inferred that RC5 presents a 

favorable choice for DDR-based block ciphers, boasting low 

latency and optimal utilization of hardware resources, thereby 

emphasizing its suitability for applications demanding 

efficient and low-latency cryptographic solutions. In a study 

by [22], the novel HEVC video encoding method Sensitive 

portions of the video are encrypted using RC5, to realize low 

latency. The average time needed for videos with low quality 
drops by 0.7 seconds, while that of videos with high resolution 

drops by 19 seconds. The research aims to achieve real-time 

systems with low complexity and quick encoding times. 

In a research by [23], a novel method is proposed for 

organizing keys hierarchically to bolster the security of a 

variety of Wireless Sensor Networks (WSNs) operating under 

the Hybrid Energy-Efficient Distributed (HEED) routing 

protocol. The incorporation of Cipher Block Chaining-Rivest 

Cipher 5 (CBC-RC5) within this method ensures the 

fulfillment of cryptographic objectives, particularly 

confidentiality. To assess the efficacy of the newly proposed 
approach, a comprehensive comparison is conducted against 

existing methods, including Dynamic Secret Key 

Management (DSKM) and Smart Security Implementation 

(SSI), under identical conditions. The findings reveal that the 

suggested hierarchical key organization approach offers 

notable advantages in terms of scalability, security, 

adaptability, and energy efficiency. By minimizing power 

consumption in both encryption and decryption processes, the 

proposed method effectively reduces processing time within 

the CBC-RC5 algorithm. Consequently, this innovative 

approach demonstrates significant promise in enhancing the 

security and operational efficiency of WSNs, particularly in 
resource-constrained environments, by leveraging the robust 

cryptographic capabilities of CBC-RC5 while optimizing 

energy utilization and processing time.  

Another study by [24], the challenges and importance of 

privacy and security in genomic data storage and management, 

particularly in the context of utilizing cloud services, are 

discussed in the provided reference. Emphasis is placed on the 

necessity for effective solutions, including cryptography, to 

address concerns related to data tampering and unauthorized 

access. Insights into the significance of privacy-preserving 

methods for genomic data are provided by this source, 
rendering it relevant to the literature review. In reference [25], 

the proposed algorithm for image encryption using the AES 

algorithm, combined with error detection using Cyclic 

Redundancy Check (CRC) to maintain data integrity, is 

discussed in the provided reference. Emphasis is placed on 

optimizing the size of redundant bits for error detection, 
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particularly for compatibility with various computer 

architectures and software implementation. Different noise 

ratios are applied to tested images to evaluate their effect on 

encrypted images, with findings indicating varying impacts 

based on image size and noise levels. The significance of this 

research lies in its contribution to enhancing confidentiality in 

color image transmission over noisy communication channels. 

Table 1 demonstrates in brief the aforementioned research for 

RC5 enhancement algorithm. 

TABLE I 

COMPARATIVE PRESENTATION OF VARIOUS TECHNIQUES FOR RC5 ENHANCEMENT 

Ref.  Techniques Performance Metric Results evaluation 

[5] The enhanced RC5 (ERC5) algorithm T-test-performance ERC5 performs better than the traditional RC5 
by 75.73% and 42.05%, respectively in 
encrypted and decrypted time 

[ 12] ERC5 algorithm in RFID T-test- performance ERC5 is exhibiting extremely high levels of 
encryption and decryption, at 316.90 and 77.04 
percent respectively. 

[19] New approach based on AES and RC5 
algorithm cryptosystem. 

MSE - Peak Signal to Noise 
Ratio (PSNR) 

105.16% faster acceleration than RSA and 
RC5 algorithms 

[20] Format preserved RC5 algorithm for data 
security 

Execution Time graphical 
visualization 

The amount of time required by the suggested 
algorithm is extremely reduced. 

[21] Modifying the RC5 algorithm ���	
��- mean square error 
(MSE) - PSNR- Correlation 
Value- Encryption Time 

Enhance security, significantly reducing 
encryption and decryption time. 

[1] Two RC5 hardware architectures latency comparison a 72% and 33% increase in TPS in (RC5-1b), 
it showcases a remarkable 69% and 4× boost 

in TPS in (RC5-8b), resulting in low-latency. 
[22] HEVC RC5-based SE algorithm PSNR – SSIM- Histograms 

Test- Correlation Coefficient 
The average time decreases for low-quality 
video by 0.7 seconds and for high-resolution 
video by 19 seconds. 

[23] a hierarchical key management method for 
safeguarding heterogeneous WSNs on hybrid 
energy-efficient distributed (HEED) routing 

Energy consumption test scalability, reliability, flexibility, and energy 
conservation. 

[24] Homomorphic encryption (HE), Garbled 

Circuit (GC), and Differential Privacy (DP) 

Many methods had been 

reviewed. 

The results were listed in tables. 

[25] AES algorithm, Cyclic Redundancy Check 
(CRC), CRC64 (Slicing-by-4 algorithm) 

Mean Square Error (MSE) different tested images by added different 
noise ratios (1% and 5%) of total images size 
to study the noise effect on the encrypted 
images. 

 

The summarized findings from Table 1 highlight the 

superior performance of the RC5 algorithm compared to 

competing cryptographic algorithms such as RSA, AES, 

SIMON, and Blowfish, particularly in terms of both speed and 

security. Despite these advantages, RC5, being a symmetric 

key cryptosystem, faces challenges in efficiently encrypting 

large volumes of data due to processing time constraints. To 
mitigate this issue, leveraging multiple cores presents a viable 

solution. The subsequent sections of this paper delve into a 

detailed analysis of RC5 and introduce a novel technique 

aimed at addressing these time challenges. 

II. MATERIALS AND METHOD 

The RC5 algorithm, a symmetric key block cipher, forms 

the basis of this study. It operates on variable-length blocks, 
with customizable key sizes, utilizing modular arithmetic 

operations. The Enhanced RC5 (ERC5) algorithm is an 

extension of RC5, integrating the PKCS#7 padding method to 

adapt to various data sizes more effectively, enhancing 

encryption and decryption speeds in resource-constrained 

environments. 

A. RC5 Algorithm 

The RC5 algorithm, conceived by Ronald Rivest of RSA 

Security, stands as a symmetric key block cipher renowned 
for its simplicity, efficiency, and adaptability. At the heart of 

its operation lies a few fundamental principles, rendering it a 

preferred choice for a diverse array of cryptographic 

applications. RC5 operates on data blocks represented as 

sequences of fixed-size words, denoted by the parameter � 

(typically 16, 32, or 64 bits), influencing the algorithm's block 

size and key length. Key expansion plays a pivotal role in RC5, 
where a set of round keys is generated from the original user-

provided secret key. This process involves mixing the secret 

key with a constant value derived from the mathematical 

constant ϕ  (the golden ratio). The algorithm employs a round 

function to execute encryption and decryption operations on 

data blocks, usually comprising modular arithmetic 

operations like addition, bitwise XOR, and rotations.  RC5 

conducts multiple rounds (typically 12, 16, or 20 rounds) of 

encryption or decryption operations. During each round, the 

data block undergoes a sequence of transformations utilizing 

the round keys generated during the key expansion phase. 
RC5 supports various block cipher modes, including 

Electronic Codebook (ECB), Cipher Block Chaining (CBC), 

Cipher Feedback (CFB), and Output Feedback (OFB), 

enhancing its versatility in cryptographic protocols and 

applications [24]. 

Operationally, RC5 encrypts plaintext by dividing it into 

two halves (A and B), subjecting them to operations such as 

addition with round keys, bitwise XOR, and circular rotations, 

culminating in the generation of ciphertext blocks. Decryption, 

conversely, follows the reverse sequence of operations, 
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employing the same round keys generated during encryption 

to revert ciphertext blocks back to plaintext. Flexibility is a 

hallmark of RC5, permitting parameter customization such as 

word size, number of rounds, and key length to cater to 

specific security requirements and performance constraints. 

This adaptability, combined with its operational efficiency 

and simplicity, solidifies RC5's position as a prominent and 

extensively studied cryptographic algorithm in contemporary 

cryptography [26], [27]. 

 
Fig. 1  Flow chart of RC5 algorithm [28]. 

 

The RC5 algorithm stands out for its ease of use and 

versatility as an infinite block cipher. Notably, RC5's reliance 

on rotating data, variable round numbers, and adjustable key 
sizes further distinguishes it among cryptographic algorithms. 

Its simplicity, attractiveness, and minimal RAM requirements 

contribute to its reputation as a faster and safer option across 

various applications. The structure of the RC5 algorithm is 

visually depicted in Figure 1. 

B. Enhanced RC5 Algorithm 

This research endeavors to tackle a significant drawback of 

the RC5 Algorithm: its relatively slow encryption speed. To 

address this challenge, the study proposes an enhanced 
approach aimed at improving the algorithm's efficiency, 

particularly in terms of encryption time. The overarching goal 

is to comprehensively evaluate the encryption time across a 

spectrum of data sizes while harnessing the computational 

power of multiple cores. Additionally, the study seeks to 

gauge the performance gains achieved by employing multiple 

cores for both encryption and decryption processes. 

The initial step in this enhancement methodology involves 

partitioning input files into multiple blocks. Each block's size 

is meticulously determined to align with the number of 

threads available on the user's machine, ensuring optimal 
resource utilization. Subsequently, the encryption process is 

initiated for each block, and the resulting encrypted data is 

stored in assembler format for further analysis. 

A critical precondition is established at the outset, 

mandating that the file length must precisely match 0.5 

megabytes. Prior to encryption, another pivotal condition is 

assumed to ascertain whether the size of each block conforms 

to the requisite number of words. If this criterion is satisfied, 

the block is subjected to encryption without further ado. 

However, if additional processing, such as padding, is 

warranted, the encryption process is duly adjusted to 

accommodate these requirements. This intricate process flow 

is meticulously detailed and illustrated in Figure 2, providing 

a clear visual representation of the proposed encryption 

enhancement methodology. 

 
Fig. 2  Flowchart for the standard RC5 and the proposed ERC5 algorithm 

 

In this study, the primary focus revolves around the 

efficient execution of the encrypted and decrypted functions, 

which are implemented through threads in both operations. 
However, the utilization of multiple threads introduces certain 

overheads, particularly during the thread preparation process. 

One notable issue is the potential waiting time incurred when 

threads are engaged in system programming processes. 

Additionally, the requirement to write results into separate 

files for each thread incurs additional overhead, as assembling 

the results into a single main file necessitates reading from 

multiple files.  To mitigate these drawbacks, a modified 

framework has been developed, comprising the following key 

steps. 

1) Enhanced Encrypted Function: Within the encrypted 

function, all variables and functions required by the threads 
for encryption and decryption processes are provided within 

the chunk itself. This ensures that each thread has access to all 

necessary resources without the need for sharing or contention 

with other threads. 

2) Dictionary Manager: Instead of dealing with file 

reading and writing, a Dictionary Manager function from the 

multiprocessing library in Python is employed. This function 

facilitates storing results in RAM in a key-value format, 

thereby eliminating the need to write results to separate files. 

This significantly reduces overhead associated with file I/O 

operations. 

3) Optimized Chunk Size: Rather than dividing the file 

into a number of chunks equal to the number of threads, the 

file is divided into larger chunks. The distribution of work 
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among threads is then handled by the multiprocessing library 

based on the available cores. This approach optimizes 

resource utilization and reduces waiting time by efficiently 

utilizing the available processing power. 

By implementing these modifications, the proposed system 

effectively minimizes waiting time during thread preparation, 

streamlines result handling, and optimizes resource allocation. 

This results in enhanced efficiency and performance of the 

encryption and decryption processes, ultimately improving 

the overall performance of the RC5 algorithm. 

III. RESULTS AND DISCUSSION 

In this section, the outcomes of the proposed enhancement 

approach are meticulously analyzed and scrutinized. Various 

performance metrics are assessed, including encryption and 

decryption speeds, throughput, and resource utilization. These 

results are compared against baseline measurements to 

ascertain the efficacy of the enhancement methodology. 

Additionally, the impact of utilizing multiple cores on the 

overall performance of the RC5 algorithm and ERC5 are 

thoroughly evaluated. After a number of experimental 

attempts, the following have been reached:  

For larger file sizes, dividing the data into a smaller number 

of large pieces significantly accelerates both encryption and 

decryption processes, as demonstrated in Tables 2, 3, and 4. 

Notably, when the chunk size equals 20, the proposed 

enhancement exhibits smooth performance, leading to 

substantial improvements. Specifically, the enhancement 
achieved improvement rates of 50.90% and 64.18% for audio 

files of sizes 5000kb and 10000kb, respectively, as depicted 

in Table 8. Similarly, for image files of the same sizes, 

improvement rates of 56.84% and 46.97% are observed in 

Table 9, while a 59.90% enhancement is evident for a 

10500kb data file in Table 10. Conversely, smaller files of 

sizes 1000kb and 2000kb did not benefit from this division, 

as indicated in Tables 2, 3, and 4. 

TABLE II 

ENCRYPTION TIME FOR AUDIO FILES FOR SINGLE AND MULTI-CORE (16 THREAD). 

File name File Size (kb) No. chunk Time(sec)/ single core Time(sec)/ multi core 

Audio1.mp3 1000 7 0.7129194736480713 0.5310373306274414 
20 0.6719334125518799 1.0443308353424072 

Audio2.mp3 2000 7 1.4054770469665527 0.7903072834014893 
20 1.4010844230651855 1.1030058860778809 

Audio3.mp3 5000 7 3.5060722827911377 2.1484169960021973 
20 3.451677083969116 1.6945405006408691 

Audio4.mp3 10000 7 7.193301439285278 19.53294801712036 
20 6.934879541397095 2.5319912433624268 

TABLE III 

ENCRYPTION TIME FOR IMAGE FILES FOR SINGLE AND MULTI-CORE (16 THREAD). 

File name File Size(kb) No. chunk Normal encryption Multi encryption 

image1.jpg 2000 7 1.505091905593872 1.1136949062347412 
20 1.4239342212677002 1.1237168312072754 

image2.png 3000 7 1.866837739944458 1.156327247619629 
20 2.043825626373291 1.15238618850708 

image3.jpg 5000 7 3.735459089279175 2.282346248626709 

20 3.5905044078826904 1.549600601196289 
Image4.tiff 10000 7 7.283079147338867 17.679017066955566 

20 7.187985897064209 2.5173842906951904 

TABLE IV 

ENCRYPTION TIME FOR DATA FILES FOR SINGLE AND MULTI-CORE (16 THREAD) 

File name Text file size (kb) No. chunk Classic (sec) Enhanced(sec) 

File1.pdf 800 7 0.9380898475646973 0.8603897094726562 
20 0.5765552520751953 1.0760319232940674 

File2.pdf 1000 7 1.3273088932037354 0.9134235382080078 
20 0.7841880321502686 1.0756402015686035 

File3.pdf 1500 7 1.9120330810546875 1.2361254692077637 
20 1.192474365234375 1.116013765335083 

File4.pdf 10500 7 11.804539680480957 35.172152519226074 
20 7.532015800476074 2.9433376789093018 

 

Conversely, for smaller file sizes, dividing the data into a 

larger number of smaller pieces yields favorable results. 

Tables 2, 3, and 4 illustrate that files of sizes 1000kb and 

2000kb experience notable improvement rates of 25.51% and 

43.76% in audio files, respectively, as shown in Table 8. 

Similarly, for image files of the same sizes, speedup 

improvements of 26.00%, 38.05%, and 38.90% are observed. 

However, larger files, such as 10000kb and 10500kb, did not 

benefit from this division, as it led to a significant increase in 

encryption and decryption times, as evidenced in Tables 8, 9, 

and 10, respectively. 

After conducting numerous experimental trials, it has been 

deduced that the optimal strategy depends on the size of the 

file being processed. For larger file sizes, dividing the file into 

larger pieces proves to be more advantageous, leading to 

expedited encryption and decryption times. This observation 

is substantiated by the findings presented in below tables, 

particularly for files sized at 5000kb, 10000kb, and 10500kb. 

Conversely, for smaller file sizes, a smaller number of pieces 
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is preferred. This is because smaller files inherently require 

less processing time and dividing them into more pieces does 

not significantly reduce the encryption time. This incongruity 

with the research objective is evident in these tables, where 

files sized at 1000kb and 2000kb benefit from being divided 

into 7 pieces, while larger files, such as 10000kb, experience 

a substantial increase in encryption and decryption time when 

divided into fewer pieces. 
Table (2) illustrates the encryption times for audio files of 

varying sizes and different piece counts. It is evident that 
larger files with a higher number of pieces’ experience 

accelerated encryption times, aligning with expectations. 

However, for smaller files with larger piece counts, there is a 

notable increase in encryption time. Conversely, smaller files 

with fewer pieces exhibit a decrease in encryption time. This 

observation underscores the importance of considering both 

file size and piece count when optimizing encryption 

processes. 

In Table (3) we note that file is encrypted of image type 

and of different size. As can be seen from the fact that large-

sized and many-piece-counts have been accelerated from 

encryption time, and small-sized filaments also accelerated, 

but with tiny proportions. Only file 10000KB and cut-off 

number = 7 decreased encryption time. 

In Table 4, the processing of text files of varying sizes is 

presented. Interestingly, the 10500kb file, when divided into 

numerous parts, exhibited quicker encoding times with the 

enhanced algorithm compared to the baseline. Conversely, 

smaller files proved to be inefficiently split into multiple parts, 

but benefited from fewer divisions. When decoding the results, 
two scenarios were considered: when the number of pieces is 

7 and 20, respectively. 

In Table 5, decryption results for audio files of varying 

sizes are presented. It is observed that larger files, such as 

those sized at 5000kb and 10000kb, demonstrate improved 

decryption times when split into a larger number of pieces 

compared to smaller files of 1000kb and 2000kb. This trend 

highlights the importance of optimizing the division of files 

into pieces based on their respective sizes to achieve efficient 

decryption performance. 

TABLE V 

DECRYPTION TIME FOR AUDIO FILES FOR SINGLE AND MULTI-CORE (16 THREAD). 

File name File Size (kb) No. chunk Classic(sec) Enhanced(sec) 

Audio1.mp3 1000 7 0.6048743724822998 0.5106022357940674 
20 0.631829023361206 1.0198681354522705 

Audio2.mp3 2000 7 1.26908278465271 0.837064266204834 
20 1.2436838150024414 1.068835973739624 

Audio3.mp3 5000 7 1.26908278465271 1.7774937152862549 
20 3.084986925125122 1.6945405006408691 

Audio4.mp3 10000 7 6.295373916625977 19.858016967773438 
20 6.153172969818115 2.5319912433624268 

TABLE VI 

DECRYPTION TIME FOR IMAGE FILES FOR SINGLE AND MULTI-CORE (16 THREAD). 

File name File Size(kb) No. chunk Classic(sec) Enhanced(sec) 

image1.jpg 2000 7 1.3583087921142578 1.077310562133789 
20 1.2845025062561035 1.1402215957641602 

image2.png 3000 7 1.866837739944458 1.115419864654541 
20 1.7862679958343506 1.1090426445007324 

image3.jpg 5000 7 3.5318500995635986 2.0596723556518555 
20 3.245405912399292 1.6482517719268799 

image4.tiff 10000 7 6.325125455856323 18.638334274291992 
20 6.41200852394104 2.5004501342773438 

TABLE VII 

DECRYPTION TIME FOR DATA FILES FOR SINGLE AND MULTI-CORE (16 THREAD). 

File name Text File Size(kb) No chunk Classic (sec) Enhanced(sec) 

File1.pdf 800 7 1.0161395072937012 0.7819924354553223 
20 0.4986586570739746 1.071523666381836 

File2.pdf 1000 7 1.2481083869934082 0.8989977836608887 
20 0.6483018398284912 1.0348796844482422 

File3.pdf 1500 7 1.6352155208587646 1.1935415267944336 
20 0.98117995262146 1.1402912139892578 

File4.pdf 10500 7 11.542507886886597 35.368311405181885 
20 6.716280460357666 2.6931724548339844 

In Table 6, decryption results for image files of various 

sizes are displayed. It is evident that larger files, such as those 

with sizes of 5000kb and 10000kb, experienced reduced 

decryption times when divided into a greater number of pieces. 

Conversely, smaller files exhibited benefits from fewer pieces. 

This underscores the importance of tailoring the division of 
files into pieces based on their specific sizes to optimize 

decryption efficiency. 

Table 7 shows the decryption results for data files of 

varying sizes are presented. It is apparent that larger files 

derive benefits from being split into more pieces, resulting in 

reduced decryption times. 

Conversely, for smaller files, accelerating decryption is 

achieved with fewer chunks. This highlights the importance 
of appropriately dividing files based on their sizes to optimize 

decryption efficiency. Both audio and text files of larger sizes 
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have demonstrated benefits from being divided into multiple 

pieces, resulting in reduced encryption times. Conversely, 

smaller files in both categories have shown improvements 

when divided into fewer pieces. Similarly, image files have 

exhibited considerable improvements in encryption time for 

larger files, with smaller but noticeable improvements 

observed for smaller files. The same trend is observed in 

decryption, where dividing files into fewer pieces is beneficial 

for reducing time, although the extent of improvement varies 

across file types. 
Two sets of classes and programs have been meticulously 

developed: one for the classic RC5 algorithm and another for 

the enhanced version. The experimentation was conducted on 

a laptop equipped with an 11th Gen Intel(R) Core (TM) i7-

11800H @ 2.30GHz processor and 16.0 GB of RAM. Both 

sets of programs were implemented in the Python 

programming language. The primary objective of this study is 

to assess the encryption speed of each algorithm across 

various file sizes and media types, with the aim of maximizing 

their performance. To quantify the performance, the 

throughput of each encryption scheme is calculated by 
dividing the total plaintext size in kilobytes by the total 

encryption time in seconds. It is worth noting that the power 

consumption of the encryption method tends to decrease as 

the throughput increases [23]. In the following subsections the 

performance evaluation of encryption/decryption with the 

throughput are discussed in detail. 

A. Encryption and Decryption performance 

To evaluate the encryption and decryption performance of 

both algorithms, Eq (1) is employed, which takes into account 
the implementation of the RC5 algorithm in both single and 

multi-core processes [12]. Additionally, the PKCS#7 padding 

scheme is utilized to check the last block of the file [29]. 

 Performance = ((r – p) / r) * 100 (1) 

where: 

r = performance for algorithm in single core. 

p = performance for algorithm in multi-core. 

The simulation made use of a 64-bit size password XORed 

with a 128-bit key size and 12 round. 

B. Throughput 

The throughput of the RC5 algorithm can be calculated by 

dividing the total plaintext size (in kilobytes) by the total 

encryption or decryption time (in seconds). This yields a 

measure of the amount of data processed per unit of time. The 

formula for throughput (T) can be expressed as [30]: 

 T=(S/t) (2) 

where: S is the total plaintext size in kilobytes. 

t is the total encryption or decryption time in seconds. 

Throughput is typically measured in kilobytes per second 

(KB/s). 
In Table (8), the encryption of audio files is presented 

across various sizes and numbers of pieces. The table 

illustrates that encryption speed is notably improved for larger 

documents, while smaller files benefit from being split into 

smaller pieces. Notably, the 5000kb file demonstrates benefits 

from both types of partitions. Additionally, a comparison of 

encryption speeds for audio files between the classic RC5 

algorithm and the enhanced RC5 algorithm is provided in the 

table below and Figure 3. 

TABLE VIII 

AUDIO FILES ENCRYPTION TIME AND SPEED PERFORMANCE  

File name 

File 

size 

(kb) 

chunk 

No. 

time(sec)/ 

single 

core 

time(sec)/ 

multi-core 

speedup 

rate 

Audio1.mp3 1000 7 0.7129 0.5310 25.51 % 

20 0.6719 1.0443 -55.42% 

Audio2.mp3 2000 7 1.4054 0.7903 43.76 % 

20 1.4010 1.1030 21.27% 

Audio3.mp3 5000 7 3.5060 2.1484 38.72% 

20 3.4516 1.6945 50.90% 

Audio4.mp3 10000 7 7.1933 19.5329 171.54% 

20 6.9348 2.4834 64.18% 

 

 

Fig. 3  Encryption speed comparison for audio file 

 

Table 8 compares encryption speed rates between 

Enhanced RC5 and Classic RC5 across various file sizes and 

chunk counts. Enhanced RC5 exhibits faster encryption, 

especially for small files with low chunk counts and large files 

with high chunk counts. For example, for large files (5000kb 

and 10000kb) with 20 chunks, Enhanced RC5's average 

encryption time reduces significantly compared to Classic 

RC5. Similarly, for small files (1000kb and 2000kb) with 7 

chunks, Enhanced RC5 demonstrates quicker encryption. 
Overall, Enhanced RC5 proves more efficient in encrypting 

audio data compared to Classic RC5. The encryption speed 

comparison between the classic RC5 algorithm and the 

enhanced RC5 algorithm for image files is presented in the 

following table and Figure 4. 

TABLE IX 

ENCRYPTION SPEED COMPARISON FOR IMAGE FILE. 

File name 
File size 

(kb) 

No. 

chunk 

Classic 

(sec) 

Enhanced 

(sec) 

Speedup 

rat 

Image1.jpg 2000 7 1.5050 1.1136 26.00% 

20 1.4239 1.1237 21.08% 

Image2.png 3000 7 1.8668 1.1563 38.05% 

20 2.0438 1.1523 43.61% 

Image3.jpg 5000 7 3.7354 2.2823 38.90% 

20 3.5905 1.5496 56.84% 

Image4.tiff 10000 7 7.2830 17.6790 142.74% 

20 7.1879 2.5173 64.97% 

 

In Table 9, we see that the enhanced RC5 algorithm 

achieves higher efficiency in encrypting image data compared 
to the classic RC5 algorithm. The encryption time decreases 

for both large files with high chunk counts and small files with 

low chunk counts. For instance, for large files (5000kb and 
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10000kb) with 20 chunks, the average encryption time 

decreases significantly from 10.7784 seconds to 4.0669 

seconds in the enhanced RC5 algorithm. Similarly, for small 

files (1000kb and 2000kb) with 7 chunks, the average 

encryption time decreases from 3.3718 seconds to 2.2699 

seconds. Overall, the throughput also improves in the 

enhanced RC5 algorithm across both file sizes and chunk 

counts. 

 
Fig. 4  Encryption speed comparison for image file. 

 

Table 10 and Figure 5 present the encryption speed 

comparison between the classic RC5 algorithm and the 

enhanced RC5 algorithm for image files. The enhanced RC5 

algorithm consistently demonstrates faster encryption speeds 

across different file sizes and chunk counts compared to the 

classic RC5 algorithm. Notably, encryption times decrease for 

both large files with high chunk counts and small files with 

low chunk counts, leading to improved throughput in the 
enhanced RC5 algorithm. Overall, these findings highlight the 

enhanced efficiency of the RC5 algorithm in encrypting 

image data. 

TABLE X 

ENCRYPTION SPEED COMPARISON FOR FILE DATA TYPE 

File 

name 

Text File 

Size (kb) 

No. 

chunk 

Classic 

(sec) 

Enhanced 

(sec) 

Speedup 

rate 

File1.pdf 800 7 1.0161 0.7819 23.04% 

20 0.4986 1.0715 114.90% 

File2.pdf 1000 7 1.2481 0.8989 27.97% 

20 0.6483 1.0348 -59.61% 

File3.pdf 1500 7 1.6352 1.1935 27.01% 

20 0.9811 1.1402 -16.21% 

File4.pdf 10500 7 11.5425 35.3683 206.41% 

20 6.7162 2.6931 59.90% 

 

In Table 10, the enhanced RC5 algorithm shows increased 

enhancement rates and reduced encryption times, particularly 

for large files with high chunk counts and small files with low 

chunk counts. For instance, for a large file (10500kb) with 20 
chunks, encryption time decreases from 6.7162 seconds in the 

classic algorithm to 2.6931 seconds in the enhanced RC5 

algorithm, resulting in a higher throughput of 3,898.85 KB/s 

compared to 1,563.38 KB/s in the classic algorithm. Similarly, 

for small files (800kb and 1000kb) with 7 chunks, encryption 

time decreases from 2.2642 seconds to 1.6808 seconds, 

leading to an improved throughput of 1,070.91 KB/s 

compared to 794.98 KB/s in the classic algorithm. These 

results affirm the enhanced efficiency of the RC5 algorithm 

in encrypting image data. 

 

 
Fig. 5  Encryption speed comparison for file data. 

 

Table 5 and Figure 6 illustrate the decryption speed 

comparison between the classic RC5 algorithm and the 

enhanced RC5 algorithm. The decryption process is crucial in 

assessing the efficiency and performance of cryptographic 

algorithms, especially in real-world applications where data 

integrity and security are paramount. In Table 5, we observe 

the decryption times for various file sizes and chunk counts 

for both the classic and enhanced RC5 algorithms. The results 

demonstrate that the enhanced RC5 algorithm consistently 

achieves faster decryption speeds compared to the classic 
RC5 algorithm across different scenarios.  

For instance, consider the decryption time for large files 

(5000kb and 10000kb) with 20 chunks. In the classic RC5 

algorithm, the decryption time is notably higher compared to 

the enhanced RC5 algorithm. Similarly, for small files 

(1000kb and 2000kb) with 7 chunks, the enhanced RC5 

algorithm exhibits quicker decryption times compared to the 

classic RC5 algorithm. Figure 6 provides a visual 

representation of the decryption speed comparison, allowing 

for a more intuitive understanding of the performance 

differences between the two algorithms across different file 

sizes and chunk counts. 

TABLE XI 

DECRYPTION SPEED COMPARISON FOR AUDIO FILE 

File name 
Text File 

Size(kb) 

No. 

chunk 

Classic 

(sec) 

Enhanced 

(sec) 

Speedup 

rate 

Audio1.mp3 1000 7 0.6048 0.51060 15.57% 

20 0.6318 1.0198 - 

61.41% 

Audio2.mp3 2000 7 1.2690 0.8370 34.04% 

20 1.2436 1.0688 14.05% 

Audio3.mp3 5000 7 3.0923 1.7774 42.52% 

20 3.0849 1.6945 45.07% 

Audio4.mp3 10000 7 6.2953 19.8580 -215.44 

20 6.1531 2.5319 58.85% 

 

In Table 11, the decryption speed comparison between 

Enhancement RC5 and Classic RC5 is presented for various 

file sizes and chunk counts. Across all scenarios, we observe 

an enhancement in decryption speed and a decrease in 

encryption time, particularly for small files with low chunk 

counts and large files with high chunk counts. 
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Fig. 6  Decryption speed comparison for audio file. 

 

Figure 6 depicts the decryption speed comparison for audio 

files. It likely presents a visual representation of the 

decryption times for different scenarios, such as various file 

sizes and possibly different chunk counts, comparing the 

performance of the classic RC5 algorithm with the enhanced 

RC5 algorithm. The graph may show how the decryption 

times vary across these different scenarios, highlighting any 

improvements or differences between the two algorithms. 

IV. CONCLUSION  

This study proposes an efficient enhancement technique, 

the ERC5 algorithm, aimed at accelerating encryption speeds. 

By leveraging multiple cores for computation instead of 

relying solely on a single core, the ERC5 algorithm 

demonstrates significant improvements in encryption and 

decryption times across various data types and sizes. The 

algorithm covers audio, image, and file data types, ensuring 

comprehensive applicability. Additionally, the integration of 
the PKSC#7 padding algorithm facilitates data block padding 

before encryption, ensuring optimal encryption performance. 

Evaluation metrics such as encryption time and throughput 

attest to the enhanced efficiency of the ERC5 algorithm. 

Experimental results highlight the superiority of ERC5 over 

the Classic RC5 algorithm. Notably, encryption improvement 

rates reach 50.90% and 64.18% for audio files, 56.84% and 

46.97% for image files, and 59.90% for large files with 

multiple pieces in the data file category. Moreover, even for 

smaller files, significant enhancements are observed, with 

encryption improvement rates of 25.51% and 43.76% for 

audio files, 26.00%, 38.05%, and 38.90% for image files, and 
27.97% for data types. Overall, the enhanced RC5 algorithm 

demonstrates higher encryption average times and superior 

throughput compared to the classic RC5 algorithm, validating 

its effectiveness in achieving faster encryption speeds across 

diverse data types and sizes.  
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