
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

RC5 Performance Enhancement Based on Parallel Computing

Suaad Ali Abead a, Nada Hussein M. Ali b,*
a Department of Computer Science, College of Science for Women, University of Baghdad, Baghdad, Iraq

b Department of Computer Science, College of Science, University of Baghdad, Baghdad, Iraq

Corresponding author: *nada.husn@sc.uobaghdad.edu.iq

Abstract—This study aims to enhance the RC5 algorithm to improve encryption and decryption speeds in devices with limited power

and memory resources. These resource-constrained applications, which range in size from wearables and smart cards to microscopic

sensors, frequently function in settings where traditional cryptographic techniques because of their high computational overhead and

memory requirements are impracticable. The Enhanced RC5 (ERC5) algorithm integrates the PKCS#7 padding method to effectively

adapt to various data sizes. Empirical investigation reveals significant improvements in encryption speed with ERC5, ranging from

50.90% to 64.18% for audio files and 46.97% to 56.84% for image files, depending on file size. A substantial improvement of 59.90%

is observed for data files sized at 1500000kb. Partitioning larger files notably reduces encryption time, while smaller files experience

marginal benefits. Certain file types benefit from both strategies. Evaluation metrics include encryption execution time and throughput,

consistently demonstrating ERC5's superiority over the original RC5. Moreover, ERC5 exhibits reduced power consumption and

heightened throughput, highlighting its multifaceted benefits in resource-constrained environments. ERC5 is developed and tested on

various file types and sizes to evaluate encryption speed, power consumption, and throughput. ERC5 significantly improves encryption

speed across different file types and sizes, with notable gains for audio, image, and large data files. While partitioning smaller files only

slightly improves encryption time, larger files partitioning yields faster results. Future research could explore ERC5 optimizations for

different computing environments, its integration into real-time encryption scenarios, and its impact on other cryptographic operations

and security protocols.

Keywords— Lightweight cryptography; RC5; encryption and decryption; time consuming.

Manuscript received 14 Apr. 2024; revised 12 Jul. 2024; accepted 15 Sep. 2024. Date of publication 31 Jan. 2025.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

In today's interconnected world, the proliferation of
Internet of Things (IoT) devices and embedded systems is

rapidly expanding, ensuring security in resource-constrained

environments poses a significant challenge. Lightweight

cryptography emerges as a crucial solution to address this

challenge, offering robust security measures tailored

specifically for devices with limited computational power,

memory, and energy resources. These resource-constrained

applications, ranging from tiny sensors to wearable devices

and smart cards, often operate in environments where

traditional cryptographic techniques are impractical due to

their high computational overhead and memory requirements.
Therefore, lightweight cryptography plays a pivotal role in

protecting sensitive data and communications in these

contexts. This study explores the significance of lightweight

cryptography in providing security to resource-constrained

applications, emphasizing its role in enabling secure

communication, data protection, and privacy preservation

amidst the constraints imposed by the devices' limited

resources [1], [2], [3]. These applications produce large

capacities of data that require efficient processing. In such

resource-constrained environments, the traditional
cryptographic methods often prove cumbersome and

impractical due to their high computational demands.

Lightweight cryptography offers a tailored solution,

providing robust security measures while minimizing the

computational burden on these devices. By optimizing

algorithms and protocols for efficiency and resource

conservation, lightweight cryptography ensures that security

is not compromised in the face of constrained resources [4].

The RC5 algorithm is considered lightweight by nature due

to its minimal memory and power requirements, rendering it

suitable for deployment in devices with limited resources [5].

This characteristic is particularly advantageous in resource-
constrained environments where conserving memory and

power consumption is paramount. By minimizing the

407

JOIV : Int. J. Inform. Visualization, 9(1) - January 2025 407-417

computational overhead, RC5 efficiently balances security

requirements with the constraints imposed by the device's

capabilities. Its lightweight nature makes RC5 an attractive

choice for implementation in various applications, ranging

from embedded systems and IoT devices to smart cards and

mobile devices. This adaptability ensures that RC5 can

provide robust cryptographic protection without unduly

taxing the resources available to the device, thereby

facilitating secure operations in diverse scenarios [6]. RC5,

standing for "Rivest Cipher," represents a pivotal
advancement in the realm of cryptographic algorithms,

distinguished by its rapid block encryption technique

operating symmetrically [7]. What sets RC5 apart is its

ingenious utilization of rotation operations based on data, a

feature that contributes to its innovative approach to

encryption. Unlike conventional cryptographic methods, RC5

incorporates dynamic elements such as variable block sizes,

round numbers, and key lengths, endowing it with a

remarkable degree of adaptability to varying performance and

security requirements [8]. This adaptability is crucial in

modern computing environments where the trade-off between
speed and security is often a delicate balance. Moreover,

RC5's exceptional speed and minimal memory requirements

further underscore its prowess as an efficient cryptographic

solution [9].

The algorithm's ability to swiftly encrypt and decrypt data

while consuming minimal memory resources is particularly

advantageous in scenarios where computational efficiency

and resource conservation are paramount. This makes RC5 an

appealing choice for a diverse range of applications, spanning

from embedded systems and IoT devices to high-performance

computing platforms. Its versatility extends to environments
where memory constraints and power limitations dictate the

feasibility of cryptographic implementations. By leveraging

RC5, developers can ensure robust cryptographic protection

without compromising on system performance or resource

availability. The algorithm's ability to strike a balance

between speed, security, and resource efficiency makes it a

valuable asset in safeguarding sensitive data across a myriad

of computing platforms.

Consequently, RC5 stands as a testament to the ingenuity

and adaptability of cryptographic techniques, offering a

reliable solution tailored to meet the evolving demands of

modern computing landscapes [10], [11]. The RC5 algorithm
utilizes several parameters to govern its operations [12], [13],

[14], [15], [16], [17], [18]. One of these parameters is the size

of the word � in bits. This parameter determines the size of

the word used in the algorithm's computations. The options

typically include 16, 32, and 64 bits, with 32 bits often

recommended as the optimal choice.

Encoding blocks into two words (A and B): Blocks of data are

encoded into two words, denoted as A and B, as part of the

RC5 algorithm's process.

The maximum number of rounds in algorithm �(ℛ): This
parameter specifies the maximum number of rounds that the

algorithm will iterate through during encryption or decryption.

ℛ can be any integer between 0 and 255 inclusive, allowing

for flexibility in adjusting the algorithm's complexity and

security level. The size of the secret key in bytes: The secret

key's size is expressed in bytes and determines the length of

the key used for encryption and decryption. Similar to the

maximum number of rounds, the size of the secret key can

range from 0 to 255 bytes, providing versatility in

accommodating different security requirements and key

lengths. These parameters collectively define the

configuration and behavior of the RC5 algorithm, allowing

for customization to suit various cryptographic needs and

constraints.

The focal point of this research involves enhancing the

RC5 algorithm to fulfill the requirements of rapid processing

essential for specific applications, such as video conferencing
and remote sensing imagery. Given RC5's nature as an

iterative and block cipher algorithm, its performance is

pivotal in scenarios prioritizing minimal processing time for

effective encryption and decryption tasks. The primary aim of

this study is to enhance the performance of the RC5 algorithm

by harnessing the potential of multiple computation cores,

rather than relying solely on individual cores. This entails

distributing the computational workload across several cores

to notably augment the algorithm's efficiency and speed,

particularly when managing various data types. This strategy

aims to optimize resource utilization and decrease encryption
time, consequently addressing the pressing demand for swift

cryptographic processing in real-time applications like video

conferencing and remote sensing image analysis.

The structure of the paper is organized into several sections.

The second section focuses on discussing related works that

have contributed significantly to shaping the research's

objectives and perspectives. Following this, the third section

provides a comprehensive explanation of the RC5 algorithm,

elucidating its principles and operational mechanisms.

Subsequently, the fourth section presents a detailed account

of the proposed enhancement of the RC5 algorithm, outlining
the modifications and strategies aimed at improving its

performance. In the fifth section, the paper delves into the

results obtained from the implementation of the enhanced

algorithm, accompanied by a thorough performance

evaluation. Finally, the paper concludes by summarizing the

key findings and insights drawn from the research, providing

closure to the study.

This study undertakes a comprehensive review of the

existing literature focusing on the adaptation and refinement

of the RC5 block cipher algorithm. A plethora of research

endeavors has been dedicated to exploring various methods

aimed at enhancing both the encryption time and security
levels associated with RC5. One notable contribution,

highlighted in reference [5], introduces an enhanced RC5

algorithm that seeks to bolster its encoding speed by

leveraging a straightforward yet remarkably effective

technique involving the incorporation of random numbers

followed by their integration into the key expansion phase.

This enhancement strategy encompasses the iterative

generation of random numbers to be added to the generated

key, a process reiterated for two consecutive rounds, along

with the introduction of supplementary blocks and bitwise

operations aimed at further fortifying the algorithm's
performance. Empirical findings gleaned from

experimentation underscore the substantial efficacy of the

upgraded RC5 algorithm, evidencing significant

improvements in both encryption and decryption performance,

surpassing the conventional RC5 approach by remarkable

margins of 75.73% and 42.05%, respectively.

408

Moreover, another notable study, referenced as [12], delves

into the practical implementation of the Enhanced RC5

(ERC5) algorithm within the context of an RFID-based

payment system deployed at the DMMMSU-NLUC Fast

Food Centre, tasked with safeguarding sensitive information

within the system. The enhancement process unfolds across

three pivotal phases: Key Expansion, Encryption, and

Decryption. Results stemming from this implementation

endeavor showcase the successful integration of the ERC5

algorithm into the RFID-based payment system,
demonstrating marked enhancements over the traditional RC5

in terms of cryptographic efficiency and decryption speed,

boasting improvements of 75.73% and 42.05%, respectively.

Furthermore, ERC5 emerges as a more resource-efficient

alternative compared to its predecessor, classic RC5,

exhibiting notably higher encryption and decryption

percentages, registering at 316.90% and 77.04%, respectively.

These findings collectively underscore the transformative

potential of enhanced RC5 variants in significantly

augmenting the cryptographic capabilities and operational

efficiency of security-sensitive systems and applications.
A study by [19] introduced two suggested improvement

techniques (ERC5 and ERSA) in a parallel environment to

provide quick and effective picture encryption and decryption.

The RC5 technique has been enhanced to use four distinct

cipher keys and four cores to encrypt images, as opposed to

just one key and one core. Improvement Instead of utilizing

two prime numbers, one public key, one private key, and one

core, the RSA algorithm (ERSA) encrypts keys ERC5 using

four prime numbers, two public keys, two private keys, and

four cores. This method Less time than the RSA and RC5

methods initially required roughly 18 seconds. Acceleration
of the suggested system using a quad-core parallel

environment Approximately 105.16% higher than the

acceleration of primitive sequence-based (RC5, RSA)

algorithms in the Core environment.

According to [20], the proposition of Format-Preserving

Encryption (FPE) based on the RC5 block cipher algorithm

emerges as a solution aimed at safeguarding data integrity

while simultaneously preserving the original formatting of the

data. This innovative approach seeks to overcome the

limitations encountered in existing systems, particularly those

relying on AES FPE, by accommodating all forms of data

formats without imposing a significant overhead on execution
time. In contrast to AES FPE, the proposed format-preserving

RC5 algorithm demonstrates notably faster execution times,

thus offering a compelling alternative for applications

requiring efficient data protection mechanisms while

maintaining data integrity.

Similarly, reference [21] presents an innovative adaptation

of the RC5 method tailored specifically to enhance security

measures and expedite encryption processes, particularly for

image data. This novel iteration introduces a new operation

denoted as (#), which supplants the conventional XOR

procedure within the algorithm's sixteen rounds, alongside an
additional security layer incorporating two distinct keys. The

outcomes of this refinement showcase remarkable efficacy in

bolstering security protocols and reducing encryption times,

all while preserving a diminished Peak Signal-to-Noise Ratio

(PSNR) and minimizing the time discrepancy between

original and encrypted images, thus demonstrating time-

efficient encryption practices without compromising on

security or image quality.

Furthermore, in a study by [1], the introduction of two

distinct RC5 hardware architectures geared towards

minimizing latency emerges as a significant contribution. The

first architecture, denoted as RC5-1b, adopts a bit-serial

design methodology, achieving noteworthy improvements in

Transactions Per Second (TPS) compared to minimal bit-

serial AES and SIMON implementations. Conversely, the

second architecture, RC5-8b, employs an 8-bit design strategy
featuring dual Data-Direct Memory (DDR) units,

demonstrating substantial enhancements in TPS compared to

the smallest 8-bit AES LED implementations. Through this

comparative analysis, it is inferred that RC5 presents a

favorable choice for DDR-based block ciphers, boasting low

latency and optimal utilization of hardware resources, thereby

emphasizing its suitability for applications demanding

efficient and low-latency cryptographic solutions. In a study

by [22], the novel HEVC video encoding method Sensitive

portions of the video are encrypted using RC5, to realize low

latency. The average time needed for videos with low quality
drops by 0.7 seconds, while that of videos with high resolution

drops by 19 seconds. The research aims to achieve real-time

systems with low complexity and quick encoding times.

In a research by [23], a novel method is proposed for

organizing keys hierarchically to bolster the security of a

variety of Wireless Sensor Networks (WSNs) operating under

the Hybrid Energy-Efficient Distributed (HEED) routing

protocol. The incorporation of Cipher Block Chaining-Rivest

Cipher 5 (CBC-RC5) within this method ensures the

fulfillment of cryptographic objectives, particularly

confidentiality. To assess the efficacy of the newly proposed
approach, a comprehensive comparison is conducted against

existing methods, including Dynamic Secret Key

Management (DSKM) and Smart Security Implementation

(SSI), under identical conditions. The findings reveal that the

suggested hierarchical key organization approach offers

notable advantages in terms of scalability, security,

adaptability, and energy efficiency. By minimizing power

consumption in both encryption and decryption processes, the

proposed method effectively reduces processing time within

the CBC-RC5 algorithm. Consequently, this innovative

approach demonstrates significant promise in enhancing the

security and operational efficiency of WSNs, particularly in
resource-constrained environments, by leveraging the robust

cryptographic capabilities of CBC-RC5 while optimizing

energy utilization and processing time.

Another study by [24], the challenges and importance of

privacy and security in genomic data storage and management,

particularly in the context of utilizing cloud services, are

discussed in the provided reference. Emphasis is placed on the

necessity for effective solutions, including cryptography, to

address concerns related to data tampering and unauthorized

access. Insights into the significance of privacy-preserving

methods for genomic data are provided by this source,
rendering it relevant to the literature review. In reference [25],

the proposed algorithm for image encryption using the AES

algorithm, combined with error detection using Cyclic

Redundancy Check (CRC) to maintain data integrity, is

discussed in the provided reference. Emphasis is placed on

optimizing the size of redundant bits for error detection,

409

particularly for compatibility with various computer

architectures and software implementation. Different noise

ratios are applied to tested images to evaluate their effect on

encrypted images, with findings indicating varying impacts

based on image size and noise levels. The significance of this

research lies in its contribution to enhancing confidentiality in

color image transmission over noisy communication channels.

Table 1 demonstrates in brief the aforementioned research for

RC5 enhancement algorithm.

TABLE I

COMPARATIVE PRESENTATION OF VARIOUS TECHNIQUES FOR RC5 ENHANCEMENT

Ref. Techniques Performance Metric Results evaluation

[5] The enhanced RC5 (ERC5) algorithm T-test-performance ERC5 performs better than the traditional RC5
by 75.73% and 42.05%, respectively in
encrypted and decrypted time

[12] ERC5 algorithm in RFID T-test- performance ERC5 is exhibiting extremely high levels of
encryption and decryption, at 316.90 and 77.04
percent respectively.

[19] New approach based on AES and RC5
algorithm cryptosystem.

MSE - Peak Signal to Noise
Ratio (PSNR)

105.16% faster acceleration than RSA and
RC5 algorithms

[20] Format preserved RC5 algorithm for data
security

Execution Time graphical
visualization

The amount of time required by the suggested
algorithm is extremely reduced.

[21] Modifying the RC5 algorithm ���	
��- mean square error
(MSE) - PSNR- Correlation
Value- Encryption Time

Enhance security, significantly reducing
encryption and decryption time.

[1] Two RC5 hardware architectures latency comparison a 72% and 33% increase in TPS in (RC5-1b),
it showcases a remarkable 69% and 4× boost

in TPS in (RC5-8b), resulting in low-latency.
[22] HEVC RC5-based SE algorithm PSNR – SSIM- Histograms

Test- Correlation Coefficient
The average time decreases for low-quality
video by 0.7 seconds and for high-resolution
video by 19 seconds.

[23] a hierarchical key management method for
safeguarding heterogeneous WSNs on hybrid
energy-efficient distributed (HEED) routing

Energy consumption test scalability, reliability, flexibility, and energy
conservation.

[24] Homomorphic encryption (HE), Garbled

Circuit (GC), and Differential Privacy (DP)

Many methods had been

reviewed.

The results were listed in tables.

[25] AES algorithm, Cyclic Redundancy Check
(CRC), CRC64 (Slicing-by-4 algorithm)

Mean Square Error (MSE) different tested images by added different
noise ratios (1% and 5%) of total images size
to study the noise effect on the encrypted
images.

The summarized findings from Table 1 highlight the

superior performance of the RC5 algorithm compared to

competing cryptographic algorithms such as RSA, AES,

SIMON, and Blowfish, particularly in terms of both speed and

security. Despite these advantages, RC5, being a symmetric

key cryptosystem, faces challenges in efficiently encrypting

large volumes of data due to processing time constraints. To
mitigate this issue, leveraging multiple cores presents a viable

solution. The subsequent sections of this paper delve into a

detailed analysis of RC5 and introduce a novel technique

aimed at addressing these time challenges.

II. MATERIALS AND METHOD

The RC5 algorithm, a symmetric key block cipher, forms

the basis of this study. It operates on variable-length blocks,
with customizable key sizes, utilizing modular arithmetic

operations. The Enhanced RC5 (ERC5) algorithm is an

extension of RC5, integrating the PKCS#7 padding method to

adapt to various data sizes more effectively, enhancing

encryption and decryption speeds in resource-constrained

environments.

A. RC5 Algorithm

The RC5 algorithm, conceived by Ronald Rivest of RSA

Security, stands as a symmetric key block cipher renowned
for its simplicity, efficiency, and adaptability. At the heart of

its operation lies a few fundamental principles, rendering it a

preferred choice for a diverse array of cryptographic

applications. RC5 operates on data blocks represented as

sequences of fixed-size words, denoted by the parameter �

(typically 16, 32, or 64 bits), influencing the algorithm's block

size and key length. Key expansion plays a pivotal role in RC5,
where a set of round keys is generated from the original user-

provided secret key. This process involves mixing the secret

key with a constant value derived from the mathematical

constant ϕ (the golden ratio). The algorithm employs a round

function to execute encryption and decryption operations on

data blocks, usually comprising modular arithmetic

operations like addition, bitwise XOR, and rotations. RC5

conducts multiple rounds (typically 12, 16, or 20 rounds) of

encryption or decryption operations. During each round, the

data block undergoes a sequence of transformations utilizing

the round keys generated during the key expansion phase.
RC5 supports various block cipher modes, including

Electronic Codebook (ECB), Cipher Block Chaining (CBC),

Cipher Feedback (CFB), and Output Feedback (OFB),

enhancing its versatility in cryptographic protocols and

applications [24].

Operationally, RC5 encrypts plaintext by dividing it into

two halves (A and B), subjecting them to operations such as

addition with round keys, bitwise XOR, and circular rotations,

culminating in the generation of ciphertext blocks. Decryption,

conversely, follows the reverse sequence of operations,

410

employing the same round keys generated during encryption

to revert ciphertext blocks back to plaintext. Flexibility is a

hallmark of RC5, permitting parameter customization such as

word size, number of rounds, and key length to cater to

specific security requirements and performance constraints.

This adaptability, combined with its operational efficiency

and simplicity, solidifies RC5's position as a prominent and

extensively studied cryptographic algorithm in contemporary

cryptography [26], [27].

Fig. 1 Flow chart of RC5 algorithm [28].

The RC5 algorithm stands out for its ease of use and

versatility as an infinite block cipher. Notably, RC5's reliance

on rotating data, variable round numbers, and adjustable key
sizes further distinguishes it among cryptographic algorithms.

Its simplicity, attractiveness, and minimal RAM requirements

contribute to its reputation as a faster and safer option across

various applications. The structure of the RC5 algorithm is

visually depicted in Figure 1.

B. Enhanced RC5 Algorithm

This research endeavors to tackle a significant drawback of

the RC5 Algorithm: its relatively slow encryption speed. To

address this challenge, the study proposes an enhanced
approach aimed at improving the algorithm's efficiency,

particularly in terms of encryption time. The overarching goal

is to comprehensively evaluate the encryption time across a

spectrum of data sizes while harnessing the computational

power of multiple cores. Additionally, the study seeks to

gauge the performance gains achieved by employing multiple

cores for both encryption and decryption processes.

The initial step in this enhancement methodology involves

partitioning input files into multiple blocks. Each block's size

is meticulously determined to align with the number of

threads available on the user's machine, ensuring optimal
resource utilization. Subsequently, the encryption process is

initiated for each block, and the resulting encrypted data is

stored in assembler format for further analysis.

A critical precondition is established at the outset,

mandating that the file length must precisely match 0.5

megabytes. Prior to encryption, another pivotal condition is

assumed to ascertain whether the size of each block conforms

to the requisite number of words. If this criterion is satisfied,

the block is subjected to encryption without further ado.

However, if additional processing, such as padding, is

warranted, the encryption process is duly adjusted to

accommodate these requirements. This intricate process flow

is meticulously detailed and illustrated in Figure 2, providing

a clear visual representation of the proposed encryption

enhancement methodology.

Fig. 2 Flowchart for the standard RC5 and the proposed ERC5 algorithm

In this study, the primary focus revolves around the

efficient execution of the encrypted and decrypted functions,

which are implemented through threads in both operations.
However, the utilization of multiple threads introduces certain

overheads, particularly during the thread preparation process.

One notable issue is the potential waiting time incurred when

threads are engaged in system programming processes.

Additionally, the requirement to write results into separate

files for each thread incurs additional overhead, as assembling

the results into a single main file necessitates reading from

multiple files. To mitigate these drawbacks, a modified

framework has been developed, comprising the following key

steps.

1) Enhanced Encrypted Function: Within the encrypted

function, all variables and functions required by the threads
for encryption and decryption processes are provided within

the chunk itself. This ensures that each thread has access to all

necessary resources without the need for sharing or contention

with other threads.

2) Dictionary Manager: Instead of dealing with file

reading and writing, a Dictionary Manager function from the

multiprocessing library in Python is employed. This function

facilitates storing results in RAM in a key-value format,

thereby eliminating the need to write results to separate files.

This significantly reduces overhead associated with file I/O

operations.

3) Optimized Chunk Size: Rather than dividing the file

into a number of chunks equal to the number of threads, the

file is divided into larger chunks. The distribution of work

411

among threads is then handled by the multiprocessing library

based on the available cores. This approach optimizes

resource utilization and reduces waiting time by efficiently

utilizing the available processing power.

By implementing these modifications, the proposed system

effectively minimizes waiting time during thread preparation,

streamlines result handling, and optimizes resource allocation.

This results in enhanced efficiency and performance of the

encryption and decryption processes, ultimately improving

the overall performance of the RC5 algorithm.

III. RESULTS AND DISCUSSION

In this section, the outcomes of the proposed enhancement

approach are meticulously analyzed and scrutinized. Various

performance metrics are assessed, including encryption and

decryption speeds, throughput, and resource utilization. These

results are compared against baseline measurements to

ascertain the efficacy of the enhancement methodology.

Additionally, the impact of utilizing multiple cores on the

overall performance of the RC5 algorithm and ERC5 are

thoroughly evaluated. After a number of experimental

attempts, the following have been reached:

For larger file sizes, dividing the data into a smaller number

of large pieces significantly accelerates both encryption and

decryption processes, as demonstrated in Tables 2, 3, and 4.

Notably, when the chunk size equals 20, the proposed

enhancement exhibits smooth performance, leading to

substantial improvements. Specifically, the enhancement
achieved improvement rates of 50.90% and 64.18% for audio

files of sizes 5000kb and 10000kb, respectively, as depicted

in Table 8. Similarly, for image files of the same sizes,

improvement rates of 56.84% and 46.97% are observed in

Table 9, while a 59.90% enhancement is evident for a

10500kb data file in Table 10. Conversely, smaller files of

sizes 1000kb and 2000kb did not benefit from this division,

as indicated in Tables 2, 3, and 4.

TABLE II

ENCRYPTION TIME FOR AUDIO FILES FOR SINGLE AND MULTI-CORE (16 THREAD).

File name File Size (kb) No. chunk Time(sec)/ single core Time(sec)/ multi core

Audio1.mp3 1000 7 0.7129194736480713 0.5310373306274414
20 0.6719334125518799 1.0443308353424072

Audio2.mp3 2000 7 1.4054770469665527 0.7903072834014893
20 1.4010844230651855 1.1030058860778809

Audio3.mp3 5000 7 3.5060722827911377 2.1484169960021973
20 3.451677083969116 1.6945405006408691

Audio4.mp3 10000 7 7.193301439285278 19.53294801712036
20 6.934879541397095 2.5319912433624268

TABLE III

ENCRYPTION TIME FOR IMAGE FILES FOR SINGLE AND MULTI-CORE (16 THREAD).

File name File Size(kb) No. chunk Normal encryption Multi encryption

image1.jpg 2000 7 1.505091905593872 1.1136949062347412
20 1.4239342212677002 1.1237168312072754

image2.png 3000 7 1.866837739944458 1.156327247619629
20 2.043825626373291 1.15238618850708

image3.jpg 5000 7 3.735459089279175 2.282346248626709

20 3.5905044078826904 1.549600601196289
Image4.tiff 10000 7 7.283079147338867 17.679017066955566

20 7.187985897064209 2.5173842906951904

TABLE IV

ENCRYPTION TIME FOR DATA FILES FOR SINGLE AND MULTI-CORE (16 THREAD)

File name Text file size (kb) No. chunk Classic (sec) Enhanced(sec)

File1.pdf 800 7 0.9380898475646973 0.8603897094726562
20 0.5765552520751953 1.0760319232940674

File2.pdf 1000 7 1.3273088932037354 0.9134235382080078
20 0.7841880321502686 1.0756402015686035

File3.pdf 1500 7 1.9120330810546875 1.2361254692077637
20 1.192474365234375 1.116013765335083

File4.pdf 10500 7 11.804539680480957 35.172152519226074
20 7.532015800476074 2.9433376789093018

Conversely, for smaller file sizes, dividing the data into a

larger number of smaller pieces yields favorable results.

Tables 2, 3, and 4 illustrate that files of sizes 1000kb and

2000kb experience notable improvement rates of 25.51% and

43.76% in audio files, respectively, as shown in Table 8.

Similarly, for image files of the same sizes, speedup

improvements of 26.00%, 38.05%, and 38.90% are observed.

However, larger files, such as 10000kb and 10500kb, did not

benefit from this division, as it led to a significant increase in

encryption and decryption times, as evidenced in Tables 8, 9,

and 10, respectively.

After conducting numerous experimental trials, it has been

deduced that the optimal strategy depends on the size of the

file being processed. For larger file sizes, dividing the file into

larger pieces proves to be more advantageous, leading to

expedited encryption and decryption times. This observation

is substantiated by the findings presented in below tables,

particularly for files sized at 5000kb, 10000kb, and 10500kb.

Conversely, for smaller file sizes, a smaller number of pieces

412

is preferred. This is because smaller files inherently require

less processing time and dividing them into more pieces does

not significantly reduce the encryption time. This incongruity

with the research objective is evident in these tables, where

files sized at 1000kb and 2000kb benefit from being divided

into 7 pieces, while larger files, such as 10000kb, experience

a substantial increase in encryption and decryption time when

divided into fewer pieces.
Table (2) illustrates the encryption times for audio files of

varying sizes and different piece counts. It is evident that
larger files with a higher number of pieces’ experience

accelerated encryption times, aligning with expectations.

However, for smaller files with larger piece counts, there is a

notable increase in encryption time. Conversely, smaller files

with fewer pieces exhibit a decrease in encryption time. This

observation underscores the importance of considering both

file size and piece count when optimizing encryption

processes.

In Table (3) we note that file is encrypted of image type

and of different size. As can be seen from the fact that large-

sized and many-piece-counts have been accelerated from

encryption time, and small-sized filaments also accelerated,

but with tiny proportions. Only file 10000KB and cut-off

number = 7 decreased encryption time.

In Table 4, the processing of text files of varying sizes is

presented. Interestingly, the 10500kb file, when divided into

numerous parts, exhibited quicker encoding times with the

enhanced algorithm compared to the baseline. Conversely,

smaller files proved to be inefficiently split into multiple parts,

but benefited from fewer divisions. When decoding the results,
two scenarios were considered: when the number of pieces is

7 and 20, respectively.

In Table 5, decryption results for audio files of varying

sizes are presented. It is observed that larger files, such as

those sized at 5000kb and 10000kb, demonstrate improved

decryption times when split into a larger number of pieces

compared to smaller files of 1000kb and 2000kb. This trend

highlights the importance of optimizing the division of files

into pieces based on their respective sizes to achieve efficient

decryption performance.

TABLE V

DECRYPTION TIME FOR AUDIO FILES FOR SINGLE AND MULTI-CORE (16 THREAD).

File name File Size (kb) No. chunk Classic(sec) Enhanced(sec)

Audio1.mp3 1000 7 0.6048743724822998 0.5106022357940674
20 0.631829023361206 1.0198681354522705

Audio2.mp3 2000 7 1.26908278465271 0.837064266204834
20 1.2436838150024414 1.068835973739624

Audio3.mp3 5000 7 1.26908278465271 1.7774937152862549
20 3.084986925125122 1.6945405006408691

Audio4.mp3 10000 7 6.295373916625977 19.858016967773438
20 6.153172969818115 2.5319912433624268

TABLE VI

DECRYPTION TIME FOR IMAGE FILES FOR SINGLE AND MULTI-CORE (16 THREAD).

File name File Size(kb) No. chunk Classic(sec) Enhanced(sec)

image1.jpg 2000 7 1.3583087921142578 1.077310562133789
20 1.2845025062561035 1.1402215957641602

image2.png 3000 7 1.866837739944458 1.115419864654541
20 1.7862679958343506 1.1090426445007324

image3.jpg 5000 7 3.5318500995635986 2.0596723556518555
20 3.245405912399292 1.6482517719268799

image4.tiff 10000 7 6.325125455856323 18.638334274291992
20 6.41200852394104 2.5004501342773438

TABLE VII

DECRYPTION TIME FOR DATA FILES FOR SINGLE AND MULTI-CORE (16 THREAD).

File name Text File Size(kb) No chunk Classic (sec) Enhanced(sec)

File1.pdf 800 7 1.0161395072937012 0.7819924354553223
20 0.4986586570739746 1.071523666381836

File2.pdf 1000 7 1.2481083869934082 0.8989977836608887
20 0.6483018398284912 1.0348796844482422

File3.pdf 1500 7 1.6352155208587646 1.1935415267944336
20 0.98117995262146 1.1402912139892578

File4.pdf 10500 7 11.542507886886597 35.368311405181885
20 6.716280460357666 2.6931724548339844

In Table 6, decryption results for image files of various

sizes are displayed. It is evident that larger files, such as those

with sizes of 5000kb and 10000kb, experienced reduced

decryption times when divided into a greater number of pieces.

Conversely, smaller files exhibited benefits from fewer pieces.

This underscores the importance of tailoring the division of
files into pieces based on their specific sizes to optimize

decryption efficiency.

Table 7 shows the decryption results for data files of

varying sizes are presented. It is apparent that larger files

derive benefits from being split into more pieces, resulting in

reduced decryption times.

Conversely, for smaller files, accelerating decryption is

achieved with fewer chunks. This highlights the importance
of appropriately dividing files based on their sizes to optimize

decryption efficiency. Both audio and text files of larger sizes

413

have demonstrated benefits from being divided into multiple

pieces, resulting in reduced encryption times. Conversely,

smaller files in both categories have shown improvements

when divided into fewer pieces. Similarly, image files have

exhibited considerable improvements in encryption time for

larger files, with smaller but noticeable improvements

observed for smaller files. The same trend is observed in

decryption, where dividing files into fewer pieces is beneficial

for reducing time, although the extent of improvement varies

across file types.
Two sets of classes and programs have been meticulously

developed: one for the classic RC5 algorithm and another for

the enhanced version. The experimentation was conducted on

a laptop equipped with an 11th Gen Intel(R) Core (TM) i7-

11800H @ 2.30GHz processor and 16.0 GB of RAM. Both

sets of programs were implemented in the Python

programming language. The primary objective of this study is

to assess the encryption speed of each algorithm across

various file sizes and media types, with the aim of maximizing

their performance. To quantify the performance, the

throughput of each encryption scheme is calculated by
dividing the total plaintext size in kilobytes by the total

encryption time in seconds. It is worth noting that the power

consumption of the encryption method tends to decrease as

the throughput increases [23]. In the following subsections the

performance evaluation of encryption/decryption with the

throughput are discussed in detail.

A. Encryption and Decryption performance

To evaluate the encryption and decryption performance of

both algorithms, Eq (1) is employed, which takes into account
the implementation of the RC5 algorithm in both single and

multi-core processes [12]. Additionally, the PKCS#7 padding

scheme is utilized to check the last block of the file [29].

 Performance = ((r – p) / r) * 100 (1)

where:

r = performance for algorithm in single core.

p = performance for algorithm in multi-core.

The simulation made use of a 64-bit size password XORed

with a 128-bit key size and 12 round.

B. Throughput

The throughput of the RC5 algorithm can be calculated by

dividing the total plaintext size (in kilobytes) by the total

encryption or decryption time (in seconds). This yields a

measure of the amount of data processed per unit of time. The

formula for throughput (T) can be expressed as [30]:

 T=(S/t) (2)

where: S is the total plaintext size in kilobytes.

t is the total encryption or decryption time in seconds.

Throughput is typically measured in kilobytes per second

(KB/s).
In Table (8), the encryption of audio files is presented

across various sizes and numbers of pieces. The table

illustrates that encryption speed is notably improved for larger

documents, while smaller files benefit from being split into

smaller pieces. Notably, the 5000kb file demonstrates benefits

from both types of partitions. Additionally, a comparison of

encryption speeds for audio files between the classic RC5

algorithm and the enhanced RC5 algorithm is provided in the

table below and Figure 3.

TABLE VIII

AUDIO FILES ENCRYPTION TIME AND SPEED PERFORMANCE

File name

File

size

(kb)

chunk

No.

time(sec)/

single

core

time(sec)/

multi-core

speedup

rate

Audio1.mp3 1000 7 0.7129 0.5310 25.51 %

20 0.6719 1.0443 -55.42%

Audio2.mp3 2000 7 1.4054 0.7903 43.76 %

20 1.4010 1.1030 21.27%

Audio3.mp3 5000 7 3.5060 2.1484 38.72%

20 3.4516 1.6945 50.90%

Audio4.mp3 10000 7 7.1933 19.5329 171.54%

20 6.9348 2.4834 64.18%

Fig. 3 Encryption speed comparison for audio file

Table 8 compares encryption speed rates between

Enhanced RC5 and Classic RC5 across various file sizes and

chunk counts. Enhanced RC5 exhibits faster encryption,

especially for small files with low chunk counts and large files

with high chunk counts. For example, for large files (5000kb

and 10000kb) with 20 chunks, Enhanced RC5's average

encryption time reduces significantly compared to Classic

RC5. Similarly, for small files (1000kb and 2000kb) with 7

chunks, Enhanced RC5 demonstrates quicker encryption.
Overall, Enhanced RC5 proves more efficient in encrypting

audio data compared to Classic RC5. The encryption speed

comparison between the classic RC5 algorithm and the

enhanced RC5 algorithm for image files is presented in the

following table and Figure 4.

TABLE IX

ENCRYPTION SPEED COMPARISON FOR IMAGE FILE.

File name
File size

(kb)

No.

chunk

Classic

(sec)

Enhanced

(sec)

Speedup

rat

Image1.jpg 2000 7 1.5050 1.1136 26.00%

20 1.4239 1.1237 21.08%

Image2.png 3000 7 1.8668 1.1563 38.05%

20 2.0438 1.1523 43.61%

Image3.jpg 5000 7 3.7354 2.2823 38.90%

20 3.5905 1.5496 56.84%

Image4.tiff 10000 7 7.2830 17.6790 142.74%

20 7.1879 2.5173 64.97%

In Table 9, we see that the enhanced RC5 algorithm

achieves higher efficiency in encrypting image data compared
to the classic RC5 algorithm. The encryption time decreases

for both large files with high chunk counts and small files with

low chunk counts. For instance, for large files (5000kb and

414

10000kb) with 20 chunks, the average encryption time

decreases significantly from 10.7784 seconds to 4.0669

seconds in the enhanced RC5 algorithm. Similarly, for small

files (1000kb and 2000kb) with 7 chunks, the average

encryption time decreases from 3.3718 seconds to 2.2699

seconds. Overall, the throughput also improves in the

enhanced RC5 algorithm across both file sizes and chunk

counts.

Fig. 4 Encryption speed comparison for image file.

Table 10 and Figure 5 present the encryption speed

comparison between the classic RC5 algorithm and the

enhanced RC5 algorithm for image files. The enhanced RC5

algorithm consistently demonstrates faster encryption speeds

across different file sizes and chunk counts compared to the

classic RC5 algorithm. Notably, encryption times decrease for

both large files with high chunk counts and small files with

low chunk counts, leading to improved throughput in the
enhanced RC5 algorithm. Overall, these findings highlight the

enhanced efficiency of the RC5 algorithm in encrypting

image data.

TABLE X

ENCRYPTION SPEED COMPARISON FOR FILE DATA TYPE

File

name

Text File

Size (kb)

No.

chunk

Classic

(sec)

Enhanced

(sec)

Speedup

rate

File1.pdf 800 7 1.0161 0.7819 23.04%

20 0.4986 1.0715 114.90%

File2.pdf 1000 7 1.2481 0.8989 27.97%

20 0.6483 1.0348 -59.61%

File3.pdf 1500 7 1.6352 1.1935 27.01%

20 0.9811 1.1402 -16.21%

File4.pdf 10500 7 11.5425 35.3683 206.41%

20 6.7162 2.6931 59.90%

In Table 10, the enhanced RC5 algorithm shows increased

enhancement rates and reduced encryption times, particularly

for large files with high chunk counts and small files with low

chunk counts. For instance, for a large file (10500kb) with 20
chunks, encryption time decreases from 6.7162 seconds in the

classic algorithm to 2.6931 seconds in the enhanced RC5

algorithm, resulting in a higher throughput of 3,898.85 KB/s

compared to 1,563.38 KB/s in the classic algorithm. Similarly,

for small files (800kb and 1000kb) with 7 chunks, encryption

time decreases from 2.2642 seconds to 1.6808 seconds,

leading to an improved throughput of 1,070.91 KB/s

compared to 794.98 KB/s in the classic algorithm. These

results affirm the enhanced efficiency of the RC5 algorithm

in encrypting image data.

Fig. 5 Encryption speed comparison for file data.

Table 5 and Figure 6 illustrate the decryption speed

comparison between the classic RC5 algorithm and the

enhanced RC5 algorithm. The decryption process is crucial in

assessing the efficiency and performance of cryptographic

algorithms, especially in real-world applications where data

integrity and security are paramount. In Table 5, we observe

the decryption times for various file sizes and chunk counts

for both the classic and enhanced RC5 algorithms. The results

demonstrate that the enhanced RC5 algorithm consistently

achieves faster decryption speeds compared to the classic
RC5 algorithm across different scenarios.

For instance, consider the decryption time for large files

(5000kb and 10000kb) with 20 chunks. In the classic RC5

algorithm, the decryption time is notably higher compared to

the enhanced RC5 algorithm. Similarly, for small files

(1000kb and 2000kb) with 7 chunks, the enhanced RC5

algorithm exhibits quicker decryption times compared to the

classic RC5 algorithm. Figure 6 provides a visual

representation of the decryption speed comparison, allowing

for a more intuitive understanding of the performance

differences between the two algorithms across different file

sizes and chunk counts.

TABLE XI

DECRYPTION SPEED COMPARISON FOR AUDIO FILE

File name
Text File

Size(kb)

No.

chunk

Classic

(sec)

Enhanced

(sec)

Speedup

rate

Audio1.mp3 1000 7 0.6048 0.51060 15.57%

20 0.6318 1.0198 -

61.41%

Audio2.mp3 2000 7 1.2690 0.8370 34.04%

20 1.2436 1.0688 14.05%

Audio3.mp3 5000 7 3.0923 1.7774 42.52%

20 3.0849 1.6945 45.07%

Audio4.mp3 10000 7 6.2953 19.8580 -215.44

20 6.1531 2.5319 58.85%

In Table 11, the decryption speed comparison between

Enhancement RC5 and Classic RC5 is presented for various

file sizes and chunk counts. Across all scenarios, we observe

an enhancement in decryption speed and a decrease in

encryption time, particularly for small files with low chunk

counts and large files with high chunk counts.

415

Fig. 6 Decryption speed comparison for audio file.

Figure 6 depicts the decryption speed comparison for audio

files. It likely presents a visual representation of the

decryption times for different scenarios, such as various file

sizes and possibly different chunk counts, comparing the

performance of the classic RC5 algorithm with the enhanced

RC5 algorithm. The graph may show how the decryption

times vary across these different scenarios, highlighting any

improvements or differences between the two algorithms.

IV. CONCLUSION

This study proposes an efficient enhancement technique,

the ERC5 algorithm, aimed at accelerating encryption speeds.

By leveraging multiple cores for computation instead of

relying solely on a single core, the ERC5 algorithm

demonstrates significant improvements in encryption and

decryption times across various data types and sizes. The

algorithm covers audio, image, and file data types, ensuring

comprehensive applicability. Additionally, the integration of
the PKSC#7 padding algorithm facilitates data block padding

before encryption, ensuring optimal encryption performance.

Evaluation metrics such as encryption time and throughput

attest to the enhanced efficiency of the ERC5 algorithm.

Experimental results highlight the superiority of ERC5 over

the Classic RC5 algorithm. Notably, encryption improvement

rates reach 50.90% and 64.18% for audio files, 56.84% and

46.97% for image files, and 59.90% for large files with

multiple pieces in the data file category. Moreover, even for

smaller files, significant enhancements are observed, with

encryption improvement rates of 25.51% and 43.76% for

audio files, 26.00%, 38.05%, and 38.90% for image files, and
27.97% for data types. Overall, the enhanced RC5 algorithm

demonstrates higher encryption average times and superior

throughput compared to the classic RC5 algorithm, validating

its effectiveness in achieving faster encryption speeds across

diverse data types and sizes.

REFERENCES

[1] Y. A. Birgani, S. Timarchi, and A. Khalid, “Ultra-lightweight FPGA-

based RC5 designs via data-dependent rotation block optimization,”

Microprocess. Microsyst., vol. 93, p. 104588, 2022.

doi:10.1016/j.micpro.2022.104588.

[2] P. Velmurugan, S. S. Sridhar, and E. Gotham, “An advanced and

effective encryption methodology used for modern IoT security,”

Mater. Today Proc., vol. 81, pp. 389–394, 2023.

doi:10.1016/j.matpr.2021.03.424.

[3] M. Y. Hasan and D. J. Kadhim, “Efficient energy management for a

proposed integrated internet of things-electric smart meter (2IOT-

ESM) system,” J. Eng., vol. 28, no. 1, pp. 108–121, 2022,

doi:10.31026/j.eng.2022.01.08.

[4] M. M. Abed and M. F. Younis, “Developing load balancing for IoT -

Cloud computing based on advanced firefly and weighted round robin

algorithms,” Baghdad Sci. J., vol. 16, no. 1, pp. 130–139, 2019,

doi:10.21123/bsj.2019.16.1.0130.

[5] E. B. Villanueva, R. P. Medina, and B. D. Gerardo, “An enhanced RC5

(ERC5) algorithm based on simple random number key expansion

technique,” in 2018 IEEE Symposium on Computer Applications &

Industrial Electronics (ISCAIE), IEEE, 2018, pp. 134–138,

doi:10.1109/iscaie.2018.8405458.

[6] Y. M. Hameed and N. H. M. Ali, “Enhanced RC5 Key Schedule Using

One-Dimensional Cellular Automata for Audio File Encryption,”

Iraqi J. Sci., pp. 388–401, 2019, doi: 10.24996/ijs.2019.60.2.19.

[7] R. Shahzadi, S. M. Anwar, F. Qamar, M. Ali, and J. J. Rodrigues,

“Chaos based enhanced RC5 algorithm for security and integrity of

clinical images in remote health monitoring. IEEE Access, 7: 52858-

52870.” 2019, doi: 10.1109/access.2019.2909554.

[8] A. Soboń, M. Kurkowski, and S. Stachowiak, “Complete SAT based

Cryptanalysis of RC5 Cipher,” J. Inf. Organ. Sci., vol. 44, no. 2, pp.

365–382, 2020, doi: 10.31341/jios.44.2.10.

[9] T. Zhovnovach, A. Sagun, V. Khaidurov, H. Martyniuk, and T.

Scherbak, “Modification of RC5 Cryptoalgorythm for Electronic Data

Encryption Systems.,” Ukr. Sci. J. Inf. Secur., vol. 25, no. 3, 2019.19,

doi: 10.18372/2225-5036.25.14458.

[10] M. B. Qureshi et al., “Encryption techniques for smart systems data

security offloaded to the cloud,” Symmetry (Basel)., vol. 14, no. 4, p.

695, 2022. doi:10.3390/sym14040695.

[11] J. B. Awotunde, A. O. Ameen, I. D. Oladipo, A. R. Tomori, and M.

Abdulraheem, “Evaluation of four encryption algorithms for viability,

reliability and performance estimation,” Niger. J. Technol. Dev., vol.

13, no. 2, pp. 74–82, 2016. doi:10.4314/njtd.v13i2.5.

[12] E. B. Villanueva, B. D. Gerardo, and R. P. Medina, “Implementation

of the Enhanced RC5 (ERC5) Algorithm in an RFID-based Payment

Scheme,” in Proceedings of the 2nd International Conference on

Business and Information Management, 2018, pp. 6–10,

doi:10.1145/3278252.3278261.

[13] H. Khazaei, C. K. Wei, and S. K. Bin Sulaiman, “The Application of

IoT on Consumer Behaviour and Decision-Making Process,” Int. J.

Adv. Sci. Comput. Eng., vol. 4, no. 3, pp. 188–192, 2022.

doi:10.30630/ijasce.4.3.93.

[14] B. A. Hameedi, M. M. Laftah, and A. A. Hattab, “Data Hiding in 3D-

Medical Image.,” Int. J. Online Biomed. Eng., vol. 18, no. 3, 2022.

doi:10.3991/ijoe.v18i03.28007.

[15] N. A. Ali, A. M. S. Rahma, and S. H. Shaker, “Multi-level encryption

for 3D mesh model based on 3D Lorenz chaotic map and random

number generator.,” Int. J. Electr. Comput. Eng., vol. 12, no. 6, 2022.

doi:10.11591/ijece.v12i6.pp6486-6495.

[16] D. M. Satyavathi, B. V. Mala, C. V. Vamsi, C. C. Chiranjeevi, and C.

N. Neeraj, “Real-Time Hidden Data Transmission Using Lora,” Int. J.

Adv. Sci. Comput. Eng., vol. 4, no. 2, pp. 130–137, 2022.

doi:10.36713/epra11016.

[17] M. Hadi and M. Najm, “Introduction to ChatGPT: A new revolution

of artificial intelligence with machine learning algorithms and

cybersecurity,” Sci. Arch, vol. 4, pp. 276–285, 2023.

doi:10.47587/sa.2023.4406.

[18] L. Faridah, A. U. Rahayu, R. N. Shopa, H. Sulastri, N. Hiron, and F.

M. S. Nursuwars, “Caribi Mobile Application Based on Radio

Frequency Identification (RFID) for Internet of Things (IoT),” Int. J.

Adv. Sci. Comput. Eng., vol. 4, no. 3, pp. 203–209, 2022.

doi:10.30630/ijasce.4.3.98.

[19] N. A. Taha, Z. Qasim, A. Al-Saffar, and A. A. Abdullatif,

“Steganography using dual tree complex wavelet transform with LSB

indicator technique,” Period. Eng. Nat. Sci., vol. 9, no. 2, pp. 1106–

1114, 2021. 1106. doi:10.21533/pen.v9i2.2060.

[20] A. Hussein and T. B. Kareem, “Proposed Parallel Algorithms to

Encryption Image Based on Hybrid Enhancement RC5 and RSA,” in

2019 International Engineering Conference (IEC), IEEE, 2019, pp.

101–106, doi: 10.1109/IEC47844.2019.8950593.

[21] D. Prakash, “FPRC5: Improving the Data Security using Format

PreservedRC5 Block Cipher Algorithm in Credit Card Application,”

in 2021 6th International Conference on Communication and

Electronics Systems (ICCES), IEEE, 2021, pp. 775–785,

doi:10.1109/icces51350.2021.9488936.

[22] A. S. Jamil and A. M. S. Rahma, “Image Encryption Based on Multi-

Level Keys on RC5 Algorithm,” Int. J. Interact. Mob. Technol., vol.

16, no. 17, pp. 101–115, 2022, doi: 10.3991/ijim.v16i17.34335.

[23] O. S. Faragallah, A. I. Sallam, and H. S. El-Sayed, “Visual protection

using rc5 selective encryption in telemedicine,” Intell. Autom. Soft

416

Comput., vol. 31, no. 1, pp. 177–190, 2022,

doi:10.32604/IASC.2022.019348.

[24] R. A. Muhajjar, N. A. Flayh, and M. Al-Zubaidie, “A Perfect Security

Key Management Method for Hierarchical Wireless Sensor Networks

in Medical Environments,” Electron., vol. 12, no. 4, pp. 1–20, 2023,

doi: 10.3390/electronics12041011.

[25] H. M. Yousif and S. M. Hameed, “Review of Challenges and Solutions

for Genomic Data Privacy-Preserving,” Iraqi J. Sci., pp. 4729–4746,

2023. doi:10.24996/ijs.2023.64.9.35.

[26] A. Abidi, A. Sghaier, M. Bakiri, C. Guyeux, and M. Machhout,

“Statistical analysis and security evaluation of chaotic RC5-CBC

symmetric key block cipher algorithm,” Int. J. Adv. Comput. Sci. Appl.,

vol. 10, no. 10, pp. 533–538, 2019, doi: 10.14569/ijacsa.2019.0101070.

[27] V. K. Raj, H. Ankitha, N. G. Ankitha, and L. S. Kanthi Hegde, “Honey

encryption based hybrid cryptographic algorithm: A fusion ensuring

enhanced Security,” Proc. 5th Int. Conf. Commun. Electron. Syst.

ICCES 2020, no. Icces, pp. 490–494, 2020, doi:

10.1109/icces48766.2020.09137849.

[28] H.S. Gill, " Selection of Parameter ‘r’ in RC5 Algorithm on the basis

of Prime Number, Proceedings of 2014 RAECS UIET Panjab

University Chandigarh, 06 – 08 March, 2014

doi:10.1109/raecs.2014.6799519.

[29] H. Alamleh, M. Gogarty, D. Ruddell, and A. A. S. AlQahtani,

“Securing the invisible thread: A comprehensive analysis of BLE

tracker security in Apple AirTags and Samsung SmartTags,” arXiv,

2024. [Online]. Available: https://arxiv.org/abs/2401.13584.

[30] B. A. Buhari,A. A. Obiniyi, k. Sunday, S. Shehu,“Performance

Evaluation of Symmetric Data Encryption Algorithms : AES and

Blowfish,” vol. 6272, pp. 407–414, 2019,

doi:10.36348/SJEAT.2019.v04i10.002.

417

