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Abstract—The Extended Kalman Filter (EKF) stands as a prominent choice within navigation systems, particularly in scenarios 

involving the integration of a Reduced Inertial Sensor System (RISS) with the Global Positioning System (GPS). However, despite its 

widespread adoption, the EKF grapples with many challenges, including the propensity to underestimate filter uncertainties, contend 

with unreliable GPS signals, and confront errors stemming from linearization processes. These issues invariably contribute to a decline 

in overall system performance. Considering these challenges, this paper endeavors to introduce a groundbreaking integration algorithm 

to mitigate the inherent shortcomings of the EKF. The proposed algorithm employs innovative strategies to address these challenges 

comprehensively. Firstly, it incorporates a dynamic self-tuning mechanism meticulously designed to improve filter configuration in 

real-time, ensuring adaptability to varying operating conditions. The algorithm also integrates a meticulously engineered GPS Integrity 

algorithm to filter out mistaken readings and bolster the reliability of the navigation solution. Furthermore, the algorithm adopts the 

Unscented Kalman Filter (UKF), renowned for handling non-linearities directly, thereby cutting the need for the cumbersome 

linearization procedures inherent in the EKF. Comparative evaluations against the traditional EKF method prove the effectiveness of 

the proposed approach. Significant performance enhancements are evident using two datasets from a VTI SCC1300-D04 IMU unit 

compared to high-precision Novatel SPAN ground truth data. These improvements are quantified through RMSE analysis, showing 

substantial strides in navigation accuracy. Overall, the results underscore the transformative potential of the proposed integration 

algorithm in advancing navigation system capabilities.   
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I. INTRODUCTION

Inertial Navigation Systems (INS) track a vehicle's position, 

velocity, and orientation using accelerometers and gyroscopes 

(Inertial Measurement Units or IMUs) [1]. While correct for 

short periods, INS drift accumulates over time due to sensor 

errors and limitations in processing algorithms [2]. This 

problem is better with GPS or other aid sources. Specifically, 
accelerometer bias leads to position and velocity errors, 

gyroscopes cause errors in angles, and all errors grow with 

time [3]. Compared to traditional INS, RISS prioritizes cost, 

size, weight, and power consumption using fewer, lower-cost 

sensors [4]. This more straightforward design makes RISS 

less complex and more affordable. While sacrificing some 

short-term accuracy, RISS utilizes algorithms to estimate 

navigation states and finds applications in robotics, UAVs, 

smartphones, and even self-driving cars. While MEMS-based 

RISS offers good short-term accuracy, its long-term 

performance suffers due to sensor drift [5]. GPS, on the other 

hand, excels in long-term navigation but has limitations in 

accuracy and can be susceptible to signal outages. Combining 

RISS and GPS leverages their strengths for initial accuracy 

and long-term correction, leading to a more robust navigation 

system [6].  

However, integrating these systems with the Extended 
Kalman Filter (EKF), a common technique for handling noisy 

and non-linear data [7], presents challenges. The EKF's 

dependence on linearization can affect accuracy, and precise 

tuning of filter parameters is crucial. Additionally, poor GPS 

data quality directly impacts EKF performance. These 

limitations can lead to system divergence, where filter 

estimates deviate significantly from the true state, ultimately 

hindering overall system performance [8]. The limitations of 

linearization in the EKF pave the way for the Unscented 

Kalman Filter (UKF) [9], [10]. UKF employs a deterministic 

sampling approach, working directly with the non-linear 
system. It selects a minimal set of sigma points representing 
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the system state, propagates them through the non-linearity, 

and accurately calculates the true mean and covariance (up to 

3rd order) without linearization. While Table I highlights the 

advantages of UKF over EKF for RISS integration, UKF also 

has drawbacks. It can underestimate filter uncertainty and 

requires complex, time-consuming tuning procedures.  

TABLE I 
EXTENDED KALMAN FILTER VS UNSCENTED KALMAN FILTER FOR RISS 

Feature Extended Kalman 

Filter 

Unscented Kalman 

Filter 

Navigation 

State 

Predict the error in the 

navigation state. 

Predict the complete 

navigation state. 
RISS non-
linearity 

Apply first-order 
approximation of the 
Taylor series 
expansion to linearize 
the RISS, resulting in 
a degradation of 
system accuracy. 

Addressing the 
nonlinearity of the 
RISS system to 
enhance system 
accuracy. 

Computation Simple. Complex. 
Tuning Require tuning for 

error covariance 
matrices, impacting 
the system’s 
performance. 

The system's 
performance is 
affected by the need 
to tune error 
covariance matrices 
and the additional 
parameters used to 
select the sigma 

points. 
Convergence Linearization may 

result in divergence in 
the RISS system. 

Sigma points 
facilitate convergence 
in the RISS system. 

 

Additionally, misleading GPS signals can still integrate 

mistaken data into the system. EKF-based integration of RISS 

and GPS for navigation systems faces challenges like 

linearization errors, filter tuning complexity, and sensitivity 

to unreliable GPS data. To address these shortcomings, a 

novel algorithm has been developed. This new approach 
tackles the issue of filter tuning by introducing a method 

specifically designed for RISS/GPS integration within the 

EKF framework. Additionally, it incorporates an algorithm to 

evaluate the quality of incoming GPS data and identify 

periods of GPS outages. This enhanced capability allows the 

system to distinguish between reliable and unreliable GPS 

measurements, improving overall robustness and filter 

performance.  

Improving a Kalman filter ensures the best performance 

when estimating a system’ s state. The error covariance 

matrices within the system consist of the Q matrix, 

determining the error covariance of the driving information 

source (in this context, the RISS), the R matrix, determining 
the error covariance of the aiding information source (the 

GPS), and the P matrix, determining the error covariance of 

the system states [11]. The effectiveness of EKF-based 

RISS/GPS systems dramatically depends on the initial values 

of these error covariance matrices, influencing the accuracy 

of estimated states and the filter’s convergence time [12]. 

The tuning process can be conducted manually or using 

algorithmic methods.  

However, the tuning step is complex and time-consuming. 

Efforts to address the challenge of tuning Kalman Filters and 

their derivatives have been diverse. These initiatives aimed to 

estimate the initial values of covariance matrices like P, R, 

and Q, or dynamically adjust these values during operation to 

adapt to input characteristic changes. Powell [13] introduced 

an automated method to fine-tune the Extended Kalman Filter 

(EKF) using the Downhill Simplex Algorithm. The primary 

objective is to improve the EKF’s precision in estimating the 

state of a dynamic system by adjusting key parameters, 

mainly covariance matrices.  

Employing the Downhill Simplex Algorithm as a 

numerical optimization tool, the method minimizes a 

performance index based on state estimate errors. This 
automated tuning strategy seeks optimal values for filter 

parameters, enhancing data processing efficiency and state 

estimate accuracy. Powell’s study likely demonstrates the 

practical applicability of the proposed technique through 

applications to numerical examples, showcasing its 

effectiveness in optimizing the EKF across various scenarios 

of increasing complexity. The fine-tuning of the error 

covariance matrix is traditionally carried out offline before 

filter execution.  

Conversely, an adaptive filter dynamically adjusts its 

tuning parameters in real-time to enhance filter performance 

and minimize convergence time. 1976 Kenneth and Byron [14] 

proposed an adaptive filter for linear systems, utilizing 
empirical estimators. These estimators can concurrently 

estimate both the covariance matrix and bias associated with 

system model errors that adapt to unknown noise statistics. 

They assumed that the system noise exhibited slow variations 

while remaining stationary over N time steps to achieve an 

explicit maximum-likelihood estimator. In 2013, Matisko and 

Havlena introduced a novel tuning method for linear Kalman 

Filters (KF) [15]. Their approach utilized Bayesian principles 

and numerical techniques from the Monte Carlo group to 

estimate noise covariance matrices.  

Through extensive simulations across diverse systems and 
settings, they demonstrated the effectiveness and consistency 

of the algorithms, particularly as the amount of data increased. 

The adaptive methodology Lee (2004) proposed is then 

applied to nonlinear systems. Lee [16] delves into an adaptive 

approach to Sigma Point Filtering for estimating state and 

parameter values. The method’s adaptability involves 

dynamically adjusting filter parameters during runtime to 

improve the accuracy of state and parameter estimation. Lee 

introduces the adaptive unscented Kalman filter (AUKF) and 

the adaptive divided difference filter (ADDF).  

The performance of both the AUKF and the ADDF 

surpasses that of standard nonlinear filters (EKF and UKF) in 
terms of rapid convergence and accurate estimation. In 2003, 

Bolognani et al. [17] investigated the tuning of the EKF in 

sensorless Permanent Magnet Synchronous Motor (PMSM) 

drives. The primary focus was optimizing the EKF for 

sensorless control applications in PMSM drives by adjusting 

the filter parameters to enhance overall performance. 

Bolognani introduced a streamlined approach to matrix 

selection, departing from the traditional trial-and-error 

method. When coupled with a potential novel self-tuning 

procedure, these matrices aimed to bring the EKF drive closer 

to a readily available product. Experimental tests conducted 
on functional prototypes affirmed the effectiveness of the 

proposed procedures. Loebis et al. [18] explored the adaptive 
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tuning of a Kalman filter using fuzzy logic for an intelligent 

Autonomous Underwater Vehicle (AUV) navigation system.  

The study aims to adjust Kalman filter parameters 

dynamically through fuzzy logic, enhancing the navigation 

system's intelligence and adaptability. This adaptive approach, 

utilizing fuzzy logic for real-time adjustments, improved 

AUV navigation across different conditions. Implementation 

of real experimental data from AUV trials with the 

Hammerhead AUV showed promising results in improving 

the estimation of individual Kalman filter types and 
enhancing the overall accuracy of the integrated INS/GPS. 

This paper is organized as follows: Section II details the 

traditional approach of RISS/GPS integration using the 

Extended Kalman Filter (EKF) and introduces our novel 

technique. Section III presents the results of simulations and 

experimental tests to evaluate the new approach. Finally, 

Section IV concludes the paper with critical takeaways and 

future directions. 

II. MATERIALS AND METHOD   

Inertial sensors, especially those used in lower-cost RISS 

systems, are prone to errors accumulating over time (drift), 

which degrade long-term accuracy. To compensate, RISS 
often relies on external sources like GPS [19], [20], [21]. 

Kalman filters are ideal for state estimation in linear systems 

with Gaussian noise, but their performance depends heavily 

on system linearity. In navigation systems, this is a challenge. 

The Extended Kalman Filter (EKF) tackles this by linearizing 

the system around an operating point using a first-order 

Taylor series expansion (approximation). This approximation 

has limitations and can impact filter performance Fig. 1.  

 
Fig. 1  RISS/GPS Integration using Extended Kalman Filter  

 

The RISS configuration here differs from traditional INS 

by employing an odometer for speed, calculating pitch and 

roll from accelerometers instead of gyroscopes, and using a 

single gyroscope for azimuth. These navigation states are then 

fused with GPS data within the EKF to refine navigation 
accuracy. The EKF's outputs are then fed back to improve 

overall system performance.  

A. RISS Mechanization 

RISS Mechanization [22], [23] is the process of deducing 

navigation states (position, velocity, and attitude) from 

inertial sensor measurements acquired in the body frame. This 

recursive process depends on the initial conditions, or the 

previous output combined with new measurements. RISS 
functions by computing navigation states within the local-

level frame. As sensor measurements are acquired in the body 

frame, a key element of RISS involves deriving the rotation 

matrix from the body frame to the local-level frame. These 

navigation states are essential for understanding the 

platform’s movement and orientation in the local-level frame. 

RISS utilizes information from three accelerometers, one 

vertical gyroscope, and an odometer to calculate and update 

these navigation states. Integrating these states enables 

precise tracking of the platform’s position, velocity, and 

attitude, rendering RISS a dependable navigation solution for 

scenarios requiring reduced sensor requirements and specific 

advantages. The RISS mechanization [24] takes a unique 
approach to navigation. 

Unlike traditional systems, it directly calculates pitch and 

roll angles from accelerometers, cutting the need for 

integration and minimizing drift. Gyroscope data is used only 

for azimuth determination, reducing reliance on integration 

for other parameters.  Local-level frame velocity is derived by 

transforming platform speed measured by the odometer. 

Finally, these velocities are integrated to compute the system's 

position. This approach leverages the strengths of both 

accelerometers and odometers, potentially improving overall 

accuracy and drift resistance. The dynamic mechanization 
equations of RISS, as presented in Equation 1, are employed 

in integrating RISS/GPS, yielding the attitude, velocity, and 

position in the local level frame. The RISS system is impacted 

by sensor noise, which leads to output drift. GPS is integrated 

with RISS to improve performance. 
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 (1) 

where �, �, ℎ : are the curvilinear position (latitude, 

longitude, and altitude). �	, �
, ��� : are the velocities in east, north, and up 

direction. 
, �, � : are the attitude (pitch, roll, and azimuth). BC  : represents the meridian radius of curvature 

of the Earth. BD  : represents the normal radius of ellipsoid of 

the Earth. �() : represents the speed measured by the 

odometer. EF , EG , E<  : represent the acceleration measurements 
obtained from three orthogonal 

accelerometers. ;< : stands for the rotational velocity measured 
by the vertical gyroscope. ;	sin !�# : depicts the station component of Earth 

rotation. �	tan !�#BD + ℎ  : depicts the non-station component of Earth 

rotation. 

B. Extended Kalman Filter 

A common practice is to combine GPS data (position and 

velocity) with RISS calculations using a closed loop, loosely 
coupled Kalman Filter (KF) [25], [26]. This filter prioritizes 

reliable data to minimize the impact of noise in navigation 

estimates. However, unaided RISS operation suffers from 

accumulating errors (drift) over time. To address this, error 

models are crucial for understanding and predicting these 

errors. Since errors in dynamic systems are constantly 

changing, they require non-linear equations for description. 

This led to the development of the EKF, which builds upon 

the KF by linearizing the system to derive simpler linear 

equations that effectively manage errors and improve 

navigation accuracy. Linearization occurs through applying a 

Taylor series expansion while disregarding higher-order 
terms. The outcomes produced by the Extended Kalman Filter 

include position errors (latitude (K�#, longitude (K�#, and 

altitude (Kℎ )), velocity errors (east velocity (K�	 ), north 

velocity (K�
 ), and up velocity ( K��� )), azimuth (K� ), 

stochastic gyroscope error (K;< ), and errors related to the 

acceleration derived from the odometer (KLM). The simplified 

position error can be derived as: 

 NK�OK�OKℎO P = Q 0 ����� 0�!�"��#$%& !'# 0 00 0 1T N K�	K�
K���P (2) 

The velocity error model is: 

N K�O 	K�O 
K�O ��P
= U /() cos!�# cos!
# sin!�# cos!
# 0−/() sin!�# cos!
# cos!�# cos!
# 00 sin!
# 0V N K�KLMK;<P 

(3) 

The azimuth error model as: 

 K�O = cos!
# cos!�# K;<  (4) 

The error model for gyro drift and odometer drift is a 

stochastic model, and it is advisable to employ the first-order 

stochastic Gauss-Markov model as follows: 

 KLMO = −γKLM + 42γY()Z [  (5) 

 K;O < = −βK;< + ]2βY^7Z [ (6) 

where γ represents the inverse of the autocorrelation time for 

odometer-derived noise,  Y()Z  denotes the variance of 

odometer-derived noise, β  stands for the inverse of the 

autocorrelation time for gyroscope noise and Y^7Z  represents 

the variance of gyroscope noise.  

The variance and the inverse of the correlation times can be 

derived from the raw measurements. EKF operates in two key 

stages: prediction and update. The prediction step, detailed in 

equations 7 and 8, focuses on calculating the anticipated error 

state and its corresponding uncertainty (covariance matrix) 

based on the system’s previous state and the time elapsed. This 
essentially forecasts how errors might evolve before 

incorporating new sensor measurements. 

 _̀a� = �_̀a��  (7) 

 ba� = �ba���c + d (8) 

where: _̀a� The prior state vector includes error components 

associated with position, velocity, azimuth, gyro 

drift, and odometer. � the state transition matrix encompasses the error 

models outlined in equations 2-6. ba� Before incorporating new sensor measurements, the 

prior state error covariance matrix quantifies the 

uncertainty associated with the predicted error state 

vector. d is the process noise covariance matrix that 

quantifies the error in the RISS system. 
 

Following the prediction step, the EKF enters the correction 

stage outlined in equations 9, 10, and 11. Here, it calculates the 

Kalman gain, which acts like a control knob, determining how 

much weight to assign to the new sensor measurements. Based 

on this gain and the latest sensor data, the EKF updates both 

the error state vector (refined error estimates) and the error 

covariance matrix (adjusted uncertainty levels), effectively 

incorporating fresh information while accounting for potential 
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measurement noise. This continuous process of prediction and 

correction allows the EKF to learn and adapt, leading to 

increasingly accurate navigation estimates. 

 ea = ba�fc!fba�fc + B#�� (9) 

 _̀a = _̀a� + eagha − f_̀a�i (10) 

 ba = !j − eaf#ba� (11) 

where e represents the Kalman gain. B represents the uncertainty in GPS readings. f represents the measurement model matrix. _̀a The posterior state vector represents the updated error 

state vector incorporating the latest GPS information. ba  A posteriori state error covariance matrix represents 

the updated uncertainty in the error state vector after 

incorporating the latest GPS measurements. h signifies the vector of measurements received 

from the GPS at a specific time step. 

The EKF, as described earlier, has some limitations. One 

issue is its reliance on the state transition matrix (A). This 

matrix is derived through a Taylor series expansion, 

essentially creating a linear approximation of the system’s 

behavior. While convenient, this approach disregards higher-

order terms, introducing potential inaccuracies in the error 

estimation of the state vector. Another challenge is the 
propagation of errors through the system. The EKF’s 

linearization can lead to significant deviations in the mean and 

covariance of the system state over time. In extreme cases, 

this may even cause the filter to diverge completely and lose 

track of the true state.  

Furthermore, the EKF depends on two key covariance 

matrices: measurement noise covariance (R) and process 

noise covariance (Q). These matrices quantify the 

uncertainties associated with sensor measurements and the 

system’s dynamics. Though, they are often estimated based 

on limited initial knowledge, and their accuracy can 

significantly impact the filter’s performance. Inaccuracies in 

these matrices can lead to imprecise filter state estimates and 

even filter divergence [27], [28]. The EKF leverages GPS 

measurements to refine navigation data and mitigate drift. Yet, 
GPS has limitations. Signal quality can be compromised 

underwater, indoors, or under dense foliage. Additionally, 

reflections from buildings or water can cause multipath 

interference, reducing accuracy. Other electronic devices and 

radio signals can also interfere. Satellites can be unavailable 

due to maintenance or maneuvers, and consumer-grade GPS 

offers lower accuracy than military systems.  

Finally, GPS is susceptible to intentional jamming or 

spoofing, raising security concerns. This paper introduces a 

new integration method to address these limitations and 

achieve a robust, high-performance navigation system. Our 
novel integration method, which tackles the shortcomings of 

EKF integration, is illustrated in Fig. 2. Firstly, a self-tuning 

algorithm streamlines filter parameter optimization.  

Secondly, it incorporates a method to verify GPS signal 

integrity before integration using a GPS integrity algorithm, 

eliminating issues caused by misleading data.  Lastly, 

employing the UKF algorithm during integration overcomes 

the linearization challenges inherent in the EKF, leading to a 

more robust and accurate navigation system.  

 
Fig. 2  New RISS/GPS Integration Technique 

 

A. Self-Tuning Algorithm 

The self-tuning algorithm refines filter parameters using a 

three-pronged approach. It leverages: 1) a true reference 
navigation state from a high-precision reference unit, 2) RISS 

navigation states derived from the odometer, vertical 

gyroscope, and accelerometer data (as detailed in equations 1), 

and 3) the navigation states obtained after RISS and GPS 

integration. The Q matrix captures the uncertainties associated 

with errors in the RISS system itself, arising from limitations 

in the sensors (odometer, gyroscope, accelerometers) used for 

navigation. These initial uncertainties are derived from the 
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difference between the ground truth reference state Sref and 

the raw, uncorrected navigation state data SRISS provided by 

the RISS system, as shown in equation 12. Essentially, the Q 

matrix reflects our initial confidence in the RISS data by 

quantifying the potential discrepancies between the system’s 

raw measurements and the actual solution. 

 d!k, l# = m/nogpq	2 − p�rssi, kE k = l0, L�ℎt�ukvtw (12) 

This initial error assumes the error characteristics in each 

state (like position and velocity errors) are independent and 

don’t influence each other. Only the diagonal elements of Q 

(representing individual state uncertainties) have values to 

reflect this, while off-diagonal elements are set to zero. The Q 

matrix remains constant during operation. This is because the 

error characteristics of the RISS system (odometer, gyroscope, 

accelerometers) are assumed to be relatively stable 

throughout the operation. The P0 matrix, representing the 
initial uncertainty in the filter’s output, is based on the error 

in the navigation state after RISS/GPS integration. This error 

is calculated as the average difference between the ground 

truth reference state Sref and the integrated navigation state 

SRISS/GPS as shown in equation 13. 

 bx!k, l# = y/no 1pq	2 − pz{||}~| 8 , kE k = l0, L�ℎt�ukvt� (13) 

Much like the Q matrix, this initial error assumes 

independence among each state’s uncertainty, ensuring they 

don’t affect one another. Consequently, only the diagonal 
elements of P0 contain values, with off-diagonal elements set 

to zero. However, as experiments indicate, initializing P0 with 

zeros or minimal values can impede the filter’s convergence. 

Fortunately, the P0 matrix only requires a one-time setup and 

subsequently updates automatically through the filter’s 

equations as new data is received. The R Matrix serves as a 

representation of error covariance within the GPS 

measurements. Typically, GPS modules furnish information 

regarding error variance or standard deviation for both position 

and velocity. These received variance values can be directly 

incorporated into the R matrix, reflecting the confidence level 

in the GPS readings and accounting for potential influences 
from outages and interference conditions. As each epoch 

unfolds, new values are received and seamlessly integrated 

into the R matrix.  

Following the initial establishment of the error covariance 

matrices (P0 and Q), a procedure known as error covariance 

fine-tuning is executed. In this process, these matrices undergo 

manual adjustments within an iterative loop. The effectiveness 

of this fine-tuning is commonly assessed through system 

convergence time, state error covariance matrix behavior, and 

final estimated state accuracy. Through iterative modifications 

to P0 and Q based on these criteria, the error covariance fine-
tuning process seeks to enhance the filter’s performance, 

striving for optimal accuracy in navigation estimates. 

B. Predication Step 

Based on the UKF, the novel algorithm demonstrates 

superior performance for nonlinear systems compared to the 

EKF. The UKF employs a sampling approach, representing the 

system through Gaussian random variables. It initiates by 

selecting n points from the previous distribution of the random 

variable, termed sigma points. These points are then 

propagated through a nonlinear function instead of a linearized 

one, thereby mitigating errors associated with system 

linearization. This technique, considering the spread of the 

random variable, proves more accurate than the Taylor series 

linearization [29], [30]. Like the EKF, the UKF comprises two 

primary steps: the prediction step and the correction step, 

preceded by an additional step for sigma point determination. 

Fig. 2 depicts the prediction step, initiating with the selection 
of sigma points using equations 14, 15, and 16. 

 _x,a�� = _a  ,      EL� k = 0  (14) 

 _�,a�� = _a + g�4bFFi� ,      EL� k = 1, … . . , 0  (15) 

 _�,a�� = _a − g�4bFFi� ,      EL� k = 0 + 1, … . . ,20 (16) 

where _ : signifies the state vector means, encompassing 
position, velocity, azimuth and sensors error 
information at a specific time step bFF : represents the uncertainty associated with the 
state vector. g�4bFFi� : The ith row of the matrix holds the square root 
information for the corresponding row of the original 
matrix, calculated via Cholesky factorization 0 : represents the number of elements in the state 
vector. 

 bFF representing the initial uncertainty in the system’s state 

is defined by equation 13. The weights for each sigma point 

in the UKF are determined based on the prior mean and 

covariance, calculated using equations 17, 18, and 19 [31]. 

 [x� = �
�� (17) 

 [x� = �
�� !1 − �Z + �# (18) 

 [�� = [�� = �Z!
��#  (19) 

where � : controls the spread of sigma points in the filter, 

allowing for tighter clustering around the mean (smaller 

values) or a more comprehensive exploration of the state 

space (larger values). Its range typically falls between 10

−4 and 1. � : acts as a scaling factor, adjusting the spread of sigma 

points based on prior knowledge of the distribution of a 

variable. A common value of 2 for Gaussian 
distributions ensures efficient sigma point selection. 

 

Equations 20 and 21 define � and � 

 � = �Z!0 + �# − 0  (20) 

 � = √0 + �  (21) 

The filter's scaling parameter k, typically set to zero, 

controls the influence of higher-order terms (beyond mean and 

covariance) during non-linear transformations. The filter 

propagates sigma points through the non-linear navigation 

system model illustrated in equation 1 to obtain transformed 

points and then computes the prior mean and covariance using 
equations 22 and 23. 
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 _̀a�� = ∑ [��Z
��x _�,a�� (22) 

 bFF,a�� = d + ∑ [���_�,a�� − _̀a����_�,a�� − _̀a���cZ
��x  (23) 

The Q matrix captures the initial uncertainties in the RISS 

navigation system due to sensor errors, calculated as in 

equation 12. 

C. GPS Integrity Algorithm 

The proposed technique tackles the issue of misleading GPS 

signals caused by blockage and interference. To ensure reliable 

navigation, it incorporates a GPS integrity algorithm. This 
algorithm operates in a waiting loop for new GPS 

measurements and then validates their reliability before 

incorporating them into the filter’s correction step. As defined 

in equation 24, validation considers two factors: 1) the change 

between consecutive GPS readings, which should be limited 

due to the car’s motion, and 2) the discrepancy between 

predicted navigation states and current GPS data, which should 

be small due to well-calibrated sensors. If either difference 

surpasses a threshold, the GPS measurement is deemed 

unreliable and discarded, preventing such errors from affecting 

the filter’s performance.  �Bjpp�q	)���	),a�� − �bp�	���q	�	
��,a���> �f�rss         L� ��bp�	���q	�	
��,a�� −  �bp�	���q	�	
��,a�> �f��s   (24) 

where THRISS and THGPS are manual tuning to achieve the 

highest possible performance. 

D. Correction Step 

The technique then incorporates the measurement update by 

passing the transformed sigma points through the observer 

function h, resulting in the Y sigma points. 

 ��,a�� = ℎg_�,a��i  (25) 

 

Following that, the mean and covariance of the observer sigma 

points are calculated. 

 �̀a�� = ∑ [����,a��Z
��x  (26) 

 bGG,a�� = B + ∑ [�����,a�� − �̀a������,a�� − �̀a���cZ
��x  (27) 

The algorithm then computes the cross-covariance between 

the predicted sigma points and the observer sigma points. 

 bFG,a�� = ∑ [���_�,a�� − _̀a������,a�� − �̀a���cZ
��x  (28) 

The Kalman gain is subsequently calculated as follows: 

 ea�� = �53�33  (29) 

Finally, the algorithm updates the state estimate by computing 

the posterior mean and covariance. 

 _�,a�� = _̀a�� + ea���ha�� − �̀a���  (30) 

 b��,a�� = bFF,a�� − ea��bGG,a��!ea��#c (31) 

Zk+1 represents the GPS measurements, and the new technique 

significantly improves performance compared to the EKF, as 

demonstrated in the experimental results section. 

III. RESULTS AND DISCUSSION 

The experiment simulation leveraged two datasets collected at 

20 Hz from a VTI SCC1300-D04 MEMS-based IMU unit.  

Vehicle speed data was acquired via a CarChip data logger 
connected to the car’s OBD-II interface, with GPS updates 

received every second. The navigation states estimated using 

these sensor measurements were compared against a reference 

trajectory provided by a high-end Novatel SPAN unit. This 

comparison assessed the new algorithm's performance against 

the traditional EKF. Fig. 3 depicts the navigation trajectories 

obtained from the Novatel SPAN unit (ground truth), standalone 

RISS (uncorrected), RISS/GPS integration with EKF, and finally, 

RISS/GPS integration using the proposed algorithm.  

 

Fig. 3  Trajectory1 RISS/EKF/New-Algorithm Results 
 

Fig. 4 depicts deviations from each system's true position, 

highlighting the new technique's superior performance over 

the EKF. Fig. 5 and Fig. 6 evaluate the velocity performance 

of both systems: Fig. 5 compares their estimated velocities to 

the reference system, while Fig. 6 depicts the corresponding 

velocity errors.  

1944



 
Fig. 4  Trajectory1 RISS/EKF/New-Algorithm Position Errors 

 
Fig. 5  Trajectory1 RISS/EKF/New-Algorithm Velocity Results 

 

 

Fig. 6  Trajectory1 RISS/EKF/New-Algorithm Velocity Errors 
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Fig. 7  Trajectory1 RISS/EKF/New-Algorithm Azimuth Results 

 

 
Fig. 8  Trajectory1 RISS/EKF/New-Algorithm Azimuth Errors 

 
Fig. 9  Trajectory2 RISS/EKF/New-Algorithm Results 
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Fig. 7 and Fig. 8 showcase the azimuth accuracy of the 

systems, with Fig. 7 presenting the estimated azimuth and Fig. 

8 illustrating the corresponding azimuth errors. Fig. 9 visually 

showcases the enhanced performance of the proposed 

technique with another dataset, comparing trajectories of the 

standalone RISS, RISS/GPS integration with EKF, and 

RISS/GPS integration with the new algorithm against a 

reference path. The new method distinctly generates a 

smoother and more accurate trajectory. Additionally, Table 

III quantifies this improvement by presenting the RMSE for 
position, velocity, and azimuth, underscoring the notable 

reduction in errors achieved by the proposed technique 

compared to EKF-based integration. 

Table II summarizes the maximum Root Mean Square Error 

(RMSE) values for various navigation states, highlighting the 

performance improvement achieved by the new technique 

compared to the EKF integration method.  

TABLE II 
TRAJECTORY1 EKF/NEW-ALGORITHM RMSE COMPARISON 

RMSE EKF New-Algorithm 

Azimuth 5.0632° 1.4119° 
East Velocity 1.2182 m/s  0.6299 m/s 

North Velocity 1.6721 m/s  0.7553 m/s 
Up Velocity 0.3549 m/s  0.3532 m/s 
Latitude 82.9741 m  36.2292 m 
Longitude 74.8394 m  48.747 m 
Longitude 32.8003 m  7.7789 m 

TABLE III 
TRAJECTORY2 EKF/NEW-ALGORITHM RMSE COMPARISON 

RMSE EKF New-Algorithm 

Azimuth 103.3814° 45.8807° 
East Velocity 2.9956 m/s  1.7161 m/s 
North Velocity 5.276 m/s  1.9267 m/s 
Up Velocity 0.2626 m/s  0.1981 m/s 
Latitude 270.9458 m  69.8641 m 
Longitude 98.6208 m  42.8605 m 
Longitude 17.825 m  4.7636 m 

IV. CONCLUSION 

This paper proposes a new integration method for 

RISS/GPS systems that surpasses the performance of the 

traditional EKF-based RISS/GPS approach. This 

improvement stems from three key advancements: 1) a self-

tuning algorithm that optimizes convergence time, prevents 

potential divergence issues, and ultimately enhances overall 

accuracy. 2) A GPS integrity algorithm that ensures the 

correction step utilizes only reliable GPS measurements 
determined by user-defined thresholds for optimal 

performance. 3) The UKF implementation effectively handles 

the non-linearities inherent in the navigation system model, 

unlike the EKF’s linearization approach using a first-order 

Taylor series expansion. To evaluate this new algorithm, we 

compared it against the EKF method using two datasets 

collected from a VTI SCC1300-D04 IMU unit. A high-

precision Novatel SPAN unit provided the reference ground 

truth for comparison. The results presented in the paper 

conclusively demonstrate that the proposed algorithm 

significantly improves navigation performance compared to 
the EKF for both datasets. 
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