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Abstract— This review article looks at the developing field of artificial intelligence and machine learning in maritime and marine 

environment management. The marine industry is increasingly interested in applying advanced AI and ML technologies to solve 

sustainability, efficiency, and regulatory compliance issues. This paper examines maritime and marine AI and ML applications using a 

deep literature review and case study analysis. Modeling ship fuel consumption, which impacts the environment and operating expenses, 

is a top responsibility. The study demonstrates that ML approaches such as Random Forest and Tweedie models can estimate ship fuel 

use. Statistical analysis demonstrates that the Random Forest model beats the Tweedie model regarding accuracy and consistency. For 

the training and testing datasets, the Random Forest model has high R2 values of 0.9997 and 0.9926, indicating a solid match. Low Root 

Mean Square Error (RMSE) and average absolute relative deviation (AARD) suggest that the model accurately reflects fuel use 

variability. While still performing well, the Tweedie model has lower R2 values and higher RMSE and AARD values, suggesting reduced 

accuracy and precision in fuel consumption prediction. These findings provide light on the potential applications of artificial intelligence 

and machine learning in maritime and marine environment management. Advanced analytics enables decision-makers to analyze fuel 

consumption patterns better, increase operational efficiency, and decrease environmental impact, thus improving maritime 

sustainability. 
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I. INTRODUCTION

As reported, over 80% of the world's goods commerce is 
carried out by sea, and the maritime field plays a vital role in 
shipping goods in the world [1], [2]. Thus, it is acknowledged 
as the cornerstone of the manufacturing supply chain and 
international trade. A nation's economic structure also heavily 
depends on the maritime transport sector, which imports and 
exports resources and generates employment [3]–[5]. The 
principal hubs in the marine transportation network are 
seaports, sometimes called ports, which are connected by 
shipping lanes. Comparably, ports in the modern conception 
of the global supply chain have developed from traditional 

hubs for loading, unloading, and storing goods to significant 
nodes that coordinate the whole supply chain   [6], [7]. As 
demonstrated by the emergence of the container idea, which 
unifies international trade and fosters linkages between 
diverse modes of transportation, this expansion has 
dramatically raised port demand in the past few decades [8], 
[9]. Additionally, the majority of the major ports across the 
world are physically constrained by cities that encircle them. 
Ports must thus increase their internal and external efficiency 
to reduce overall logistics costs [10], [11]. 

The maritime and logistics industries are essential to the 
functioning of the global economy since they serve as the 
basis for international trade and commerce [12], [13]. These 
industries encompass various activities associated with 
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transporting goods, raw materials, and passengers across 
oceans, seas, and land. In their most fundamental form, these 
industries are intricately intertwined, with sea transportation 
playing a significant role in enabling the flow of products 
inside and between nations [14]–[17]. It is essential to have a 
sound understanding of the intricacies and dynamics of these 
industries to comprehend their role in the construction of the 
modern world [18], [19]. The marine sector, often called the 
maritime industry, encompasses all aspects of marine 
transportation, including shipping, shipbuilding, port 
operations, and maritime services [20]–[23]. Shipping, in 
particular, is an essential component of this business since it 
involves the movement of goods and products using vessels 
such as ships and boats [24], [25]. The term encompasses 
various vessels, ranging from container ships and bulk 
carriers to tankers and specialized boats like ferries and cruise 
liners, among other vessels. The maritime industry is 
supported by a network of companies that work together to 
ensure the effective movement of goods across global supply 
networks. These include shipping companies, shipbuilders, 
port authorities, and marine service providers [7], [26].  

The maritime industry is distinguished by its global reach, 
which enables goods to be carried to virtually any area on the 
earth [27], [28]. This is one of the sector's distinctive 
characteristics. International trade is made possible by this 
extensive network of maritime trade routes, which 
significantly contributes to the economy's expansion and 
development. In addition, sea transportation is typically the 
most cost-effective and energy-efficient method of 
transporting large quantities of goods across long distances, 
which is why it is a crucial mode of transportation for 
international trade [29]–[31].  In the same vein, the logistics 
business is essential to ensure that the flow of goods from 
suppliers to consumers is uninterrupted. The logistics process 
includes several components: transportation, warehousing, 
inventory management, and distribution chain optimization. 
Logistics companies accomplish the efficient movement of 
goods along the supply chain by utilizing a wide range of 
modes of transportation, such as ships, trucks, trains, and 
airplanes [32]–[34]. As a result of the proliferation of e-
commerce and globalization, there has been a growth in the 
need for sophisticated logistics solutions, which has led to an 
increase in the industry's level of innovation and technical 
advancement [35], [36].  

In modern supply chain management, one of the most 
critical components is the integration of operations involving 
the maritime and logistics sectors [37], [38]. Ports are 
essential nodes in the global logistics network, serving as hubs 
that facilitate the movement of goods between different 
modes of transportation, including ships, trucks, and trains, 
among others [39], [40]. Efficient port operations are essential 
for reducing the time it takes for goods to travel, saving 
money, and enhancing the overall efficiency of supply chain 
activities [41][42]. To further emphasize the need for faultless 
coordination among maritime carriers, logistics providers, 
and other stakeholders, optimizing shipping routes and 
solving any potential logistical challenges is essential. In 
recent years, the maritime and logistics industries have 
emphasized the need for sustainability measures [43][44]. 
Other factors have prompted players in the sector to adopt 
more sustainable practices, including environmental concerns, 

legal requirements, and altering customer preferences. 
Changes in business practices and the promotion of 
innovation in environmentally responsible transportation 
systems are being brought about due to efforts to minimize 
carbon emissions, promote clean energy solutions, and lessen 
environmental impact. The maritime and logistics sectors are 
actively researching strategies to decrease their environmental 
impact and contribute to a more sustainable future. These 
efforts include the construction of environmentally friendly 
boats as well as the execution of green logistics initiatives.  

The maritime and logistics sectors play crucial roles in 
facilitating global trade and commerce, connecting economies, 
and promoting economic growth [45]. These industries are 
well-positioned to tackle the problems and opportunities of a 
world becoming increasingly interconnected because of their 
extensive communication networks, cutting-edge technology, 
and commitment to environmental preservation. Through an 
understanding of the complexities and dynamics of maritime 
and logistics operations, stakeholders can successfully 
navigate the ever-evolving landscape of international 
commerce and make significant contributions to the 
development of a global supply chain ecosystem that is more 
efficient, resilient, and sustainable. Sustainability in marine 
transportation plays a crucial role in influencing the 
environment, economy, and society on a large scale. Marine 
shipping is a vital component of global transportation, which 
is pivotal in enabling international trade and commerce [46]–
[48]. Nevertheless, the impact of maritime operations on the 
environment, such as greenhouse gas emissions, oil spills, and 
marine pollution, presents notable obstacles to sustainability 
[49]–[51]. One of the main drivers for focusing on 
sustainability in marine transportation is the environmental 
consequences of shipping activities. Maritime vessels play a 
significant role in air and water pollution by releasing harmful 
pollutants like sulfur oxides (SOx), nitrogen oxides (NOx), 
and particulate matter (PM) [52]–[55]. These emissions hurt 
air quality, climate change, and ocean acidification, putting 
marine ecosystems and biodiversity at risk. Moreover, the 
discharge of ballast water and the release of dangerous 
chemicals present risks to marine habitats and coastal 
communities [56], [57]. Moreover, the financial viability of 
marine transportation is intricately connected to 
environmental factors. Environmental damage and pollution 
cleanup expenses can be significant, resulting in financial 
setbacks for shipping companies and port operators. 
Furthermore, adhering to international conventions like the 
International Maritime Organization's (IMO) MARPOL 
Convention and the Ballast Water Management Convention 
involves extra costs for vessel owners and operators. 
Embracing sustainable practices in marine transportation can 
help lower these expenses and improve the long-term 
sustainability of the shipping sector. In addition to 
environmental and economic considerations, sustainability in 
marine transportation also carries social implications [58]. 
Coastal communities and vulnerable populations bear the 
brunt of the adverse effects of marine pollution and habitat 
degradation. Furthermore, using fossil fuels for maritime 
propulsion leads to energy insecurity and geopolitical 
tensions. The maritime industry can advance social equity, 
boost public health, and strengthen global energy security by 
adopting cleaner and more sustainable fuels and technologies. 
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Machine learning is crucial in tackling sustainability issues 
in marine transport, providing creative solutions to boost 
efficiency, cut emissions, and lessen environmental harm. 
Utilizing machine learning algorithms to examine extensive 

data from maritime activities, such as vessel performance 
metrics, weather patterns, and environmental conditions, can 
enhance different facets of shipping operations [59]–[62].  

 

 

Fig. 1  An overview of ML techniques [63] 

 
One important use of machine learning in promoting marine 

transport sustainability is through predictive maintenance. The 
classification of main Ml techniques is depicted in Fig. 1. By 
analyzing historical data on vessel maintenance records and 
equipment performance, machine learning models can forecast 
potential failures and suggest proactive maintenance strategies 
[64]–[67]. This can help decrease downtime and lower the 

chances of mechanical breakdowns while at sea. In addition, 
machine learning algorithms can be used to optimize vessel 
routing and speed profiles by utilizing real-time data on fuel  
[68]–[71], weather forecasts, and traffic patterns [72]–[76], 
leading to a decrease in fuel consumption, greenhouse gas 
emissions, and operating costs. A typical application spectrum 
is depicted in Fig. 2. 

 

Fig. 2  Application of AI & ML in marine transport [77] 
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Furthermore, machine learning methods can enhance 
decision-making in port operations and logistics management, 
increasing efficiency and decreasing congestion. Through 
data analysis related to port activities, cargo flows, and supply 
chain dynamics, machine learning models can enhance berth 
scheduling, container handling operations, and inventory 
management [78]–[80]. This optimization can reduce 
turnaround times, decrease emissions, and enhance port 
performance. Machine learning can transform sustainable 
practices in marine transport through data-driven decision-
making, resource allocation optimization, and operational 
efficiency enhancement in the maritime sector [81]–[83]. 
With the rapid advancement of technology, incorporating 
machine learning into maritime operations is essential for 
creating a more sustainable and resilient marine transportation 
system [84], [85]. 

A. Literature review  

Autonomous shipping and navigation constitute a new 
frontier in the maritime sector, with the potential to change 
vessel operations and navigation procedures [86], [87]. ML is 
critical in enabling the development and deployment of 
autonomous systems, allowing ships to operate with 
minimum human interaction while maintaining safety, 
efficiency, and compliance with maritime rules [88]. ML 
algorithms help autonomous boats see and understand their 
environment correctly. ML models can recognize and 
categorize items in the area of a vessel by analyzing sensor 
data from radar, lidar, cameras, and other onboard sensors, 
such as other ships, navigational hazards, and maritime 
infrastructure [89]. This real-time situational awareness 
enables autonomous ships to make intelligent judgments 
about navigation, collision avoidance, and route planning, 
lowering the likelihood of accidents and boosting overall 
maritime safety. Furthermore, machine learning-based 
predictive analytics improve ships' autonomous navigation 
capabilities by anticipating environmental variables, sea 
states, and vessel behavior. Autonomous warships can predict 
changes in weather patterns, sea prevailing currents, and 
traffic patterns using historical data and machine learning 
algorithms, allowing for proactive modifications to 
navigation routes and speed profiles to improve fuel 
efficiency and trip performance. 

1) Autonomous navigation and shipping  

In autonomous shipping and navigation, machine learning 
extends beyond the realm of real-time vision and decision-
making to encompass a wide range of essential assignments 
and capabilities. When designing better control systems that 
enable autonomous vessels to negotiate challenging marine 
scenarios with precision and efficiency, machine learning is 
one area in which it excels [90]–[92]. It is possible to optimize 
control approaches for autonomous ships by utilizing machine 
learning algorithms that consider vessel dynamics, 
environmental factors, and operational limits [93], [94]. 
Machine learning models have the potential to modify 
steering, propulsion, and maneuvering motions by analyzing 
data on ship performance, propulsion systems, and 
environmental factors. This would allow for optimizing 

energy efficiency, reducing fuel consumption, and reducing 
emissions while the ship is in transit. The International 
Maritime Organization (IMO) defines four degrees of 
autonomy (DoA) for maritime autonomous surface ships 
(MASS), as given in Table I. MASSs can have varying levels 
of autonomy throughout a single journey [95]. 

TABLE I 
THE LEVEL OF AUTONOMY ALLOWED FOR MASS [95] 

Degree of 

autonomy 
Description 

DoA 1 Ship with automated procedures and decision 
support, wherein seafarers are on board to operate 
and control shipboard systems and functions. 

DoA 2 A remote-controlled ship with seamen on board. 
The vessel is managed and controlled from another 
place while sailors remain on board. 

DoA 3 A ship that is managed remotely and does not have 
any sailors aboard. The ship is operated remotely. 
There are no seafarers aboard. 

DoA 4 A fully autonomous ship is one whose operating 
system can make decisions and take actions. 

 
In addition, machine learning techniques substantially 

contribute to the resilience and robustness of autonomous 
navigation systems. Reinforcement learning and adaptive 
control are two approaches that autonomous boats may 
employ to learn from their experiences and dynamically 
adjust their navigation strategies in response to unanticipated 
events such as malfunctioning equipment, adverse weather 
conditions, or collisions with other vessels. Autonomous 
ships can navigate in a manner that is safe and effective in the 
face of dynamic and unexpected maritime conditions if they 
can adapt and alter in real-time. In addition, the application of 
machine learning techniques assists in optimizing collision 
avoidance strategies for autonomous aircraft. Machine 
learning algorithms can foresee likely collision situations by 
analyzing data on vessel trajectories, traffic patterns, and 
collision risk variables [96], [97]. These algorithms may 
prescribe evasive tactics to avoid accidents and ensure safe 
passage. This proactive collision avoidance technique 
increases the safety and reliability of autonomous shipping 
operations, reducing the risk of maritime accidents and 
decreasing the potential for adverse effects on the 
environment and the economy. One such arrangement of 
autonomous navigation is depicted in Fig. 3.  

A wide range of capabilities, such as perception, decision-
making, control, and collision avoidance, are acquired 
through machine learning in the context of autonomous 
shipping and navigation. By employing the power of machine 
learning to analyze data, gain knowledge from experience, 
and adjust to changing circumstances, autonomous boats have 
the potential to revolutionize the maritime industry [87], [99]. 
This would usher in a new era of shipping operations that are 
safer, more efficient, and more environmentally friendly. It is 
anticipated that the introduction of machine learning into 
autonomous navigation systems will play a significant role in 
shaping the future of maritime transportation and opening up 
new options for innovation and growth as technology 
continues to improve.  
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Fig. 3  Hardware arrangement for variable stability control system [98] 

 

2) Predictive maintenance and condition monitoring  

Predictive maintenance and condition monitoring, which 
employ machine learning, are regarded as revolutionary in the 
marine industry. These methods are anticipated to 
significantly improve vessel dependability, operational 
efficiency, and cost-effectiveness [100], [101]. Machine 
learning empowers ship operators to detect and rectify 
potential equipment malfunctions proactively. This reduces 
vessel downtime, decreases maintenance expenses, and 
enhances vessel performance. To achieve machine learning, 
sophisticated analytics, and predictive algorithms are 
implemented. One of the foremost benefits of predictive 
maintenance, powered by machine learning, is its ability to 
analyze vast quantities of data gathered from onboard sensors, 
equipment reports, and historical maintenance records. By 
conducting this analysis, it becomes possible to detect 
patterns, trends, and anomalies that serve as indicators of 
impending failures. By employing machine learning 
algorithms, subtle alterations in equipment behavior and 
performance metrics, including vibration levels, temperature 
fluctuations, and fluid pressures, can be identified. It is 
possible to identify underlying issues or deterioration using 
these measurements. In addition, machine learning-based 
predictive maintenance models can provide actionable and 
precise insights regarding the state and functionality of critical 
apparatus and systems situated aboard vessels [102], [103]. 
Proactive scheduling of maintenance operations, efficient 
management of spare parts inventories, and resource 
allocation are all achievable for ship operators who can 
forecast equipment failure probabilities and estimate the 
equipment's remaining useful life [104]. This enables them to 
optimize asset utilization while minimizing unforeseen 
periods of inactivity. Furthermore, machine learning 
methodologies enable condition monitoring systems to 
identify and acquire knowledge from data streams in real-time, 
thereby facilitating the continuous enhancement and 
improvement of forecast models [105], [106]. Machine 
learning algorithms can enhance the precision and 
dependability of predictive maintenance forecasts by 
integrating feedback loops and supplementary data sources, 

including personnel feedback, environmental conditions, and 
operational parameters. Such outcomes may result in 
enhanced risk mitigation strategies and improved decision-
making [107], [108].  

Predictive maintenance prompted by machine learning 
enhances equipment dependability and operational efficiency 
and has significant environmental consequences for the 
marine sector, ensuring its continued sustainability. By 
minimizing the risk of equipment malfunctions, vessel 
operators can reduce the likelihood of ecological problems, 
accidents, and pollution. Preserving maritime ecosystems and 
enhancing safety standards will be the outcomes of this 
initiative.  

3) Optimization of cargo handling  

Machine learning (ML) to optimize cargo handling has 
considerable prospects for enhancing marine logistics 
efficiency, productivity, and safety. ML algorithms may 
enhance cargo handling procedures at ports and terminals by 
analyzing data from various sources, such as cargo manifests, 
vessel schedules, port infrastructure, and historical 
performance indicators [109]. One important ML use in cargo 
handling optimization is the automated scheduling and 
prioritizing of loading and unloading processes [110]. 
Machine learning models may develop optimum loading and 
unloading strategies that decrease turnaround times and 
congestion and increase throughput by assessing real-time 
data on vessel arrivals, cargo quantities, berth availability, and 
equipment capacity.  

ML approaches also offer predictive analytics and 
forecasting, improving the precision of cargo handling 
activities. By examining past data and trends, ML algorithms 
can forecast changes in cargo demand, vessel arrivals, and 
port usage, allowing operators to allocate resources, modify 
workforce levels, and improve workflow operations in 
response to shifting demand patterns. Furthermore, ML-based 
optimization algorithms can increase equipment use and 
resource allocation in cargo handling operations. ML models 
may improve crane scheduling, container stacking, and yard 
management procedures by assessing equipment performance 
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data and operating factors. This will result in more effective 
resource use and shorter idle times for handling equipment.  

B. Objectives  

The prime objective is to investigate the value addition 
owing to the application of modern artificial intelligence 
technology to sustainable business models in the shipping 
industry. To examine how businesses utilize and may deploy 
AI-based solutions to add value to their operations by 
boosting economic and environmental sustainability, the 
present work will combine a literature review with a case 
study research methodology. This will be achieved by 
combining the two research methods. Further, it will 
investigate whether or not the marine industry can implement 
solutions based on artificial intelligence. The purpose of the 
study is to review the literature on the efficient exploitation of 
AI techniques to enhance financial savings and lessen adverse 
environmental effects. 

II. MATERIAL AND METHOD  

A. Review Approach  

As we search for publications relevant to our review on "AI 
and ML for maritime and marine environment management," 
we realize the importance of using boolean operators to refine 
our search criteria. We aim to refine our search results by 
utilizing boolean operators to ensure they are both practical 
and relevant, closely aligned with our review article's subject 
matter and goals.  

When attempting to condense the extensive material on the 
topic, we used boolean operators in our search strategy. 
Utilizing boolean operators helps filter out irrelevant 
information and focus on papers exploring overlapping fields. 
This is crucial as research in artificial intelligence, machine 
learning, and maritime and marine environment management 
grows. By merging terms like "artificial intelligence," 
"machine learning," "maritime," "marine," and "environment 
management," we aim to engage a broad audience while 
staying relevant to our analysis.  

Moreover, incorporating precise terms related to the central 
theme of our review, such as "sustainability," "environmental 
monitoring," "pollution control," and "marine biodiversity," 
assists in narrowing down our search and guaranteeing that 
we cover literature that deals with the crucial issues and 
obstacles in the management of maritime and marine 
environments. These terms provide a comprehensive 
understanding of our search, allowing us to explore the 
application of artificial intelligence and machine learning in 
addressing sustainability issues, monitoring environmental 
conditions, and mitigating human impact on marine 
ecosystems. Using Boolean operators, the authors could 
adjust the search queries to filter out irrelevant papers for our 
review topic. These papers might cover issues related to 
healthcare or finance. With this specialized method, we can 
quickly find top-notch literature. This literature offers 
valuable insights and contributions to artificial intelligence 
and machine learning applications in managing maritime and 
marine environments. 

Ultimately, integrating Boolean operators into our search 
approach is crucial for narrowing down our search parameters, 
guaranteeing the relevance of our search outcomes, and 

efficiently pinpointing literature on the convergence of 
artificial intelligence, machine learning, and maritime and 
marine environment management. By utilizing this method, 
the objective was to conduct a thorough and insightful 
analysis that would significantly enhance the current 
knowledge on this topic.  

B. Data Collection in Marine Transportation 

The maritime sector may undergo significant 
transformations due to artificial intelligence (AI) and 
automatic identification systems (AIS). The Automatic 
Identification System (AIS) mandates that boats send real-
time data about their speed, position, and other parameters to 
improve marine traffic safety. This is because the law 
demands bigger ships to comply with this requirement [111]. 
It is possible to handle and analyze vast volumes of AIS data 
using AI algorithms and machine learning techniques, which 
can lead to the discovery of significant insights and patterns. 
Effective decision-making, situational awareness, and control 
of vessel traffic are all made possible due to this. Improving 
route planning, strengthening communication and 
coordination between ships and authorities, and 
revolutionizing how ships operate are potential benefits that 
might result from combining artificial intelligence with AIS 
in the shipping sector. 

1) Density-Based Spatial Clustering of Applications with 

Noise 

The Density-Based Spatial Clustering of Applications with 
Noise (DBSCAN) approach is reliable for gathering data from 
marine settings. It is particularly well-suited to marine 
environments' complex and ever-changing nature [112]. This 
clustering approach can successfully capture the underlying 
patterns and structures in marine datasets by identifying 
geographical groupings of data points based on density. Even 
in the face of noisy data, which is common in maritime 
settings due to sensor faults and ambient variation, DBSCAN 
can give robust clustering because of its ability to differentiate 
between core points, dense regions, and noise points, sparse 
regions. In addition, because DBSCAN can identify clusters 
of varying shapes and sizes, it is an excellent tool for marine 
data, which may contain spatial patterns with irregular shapes 
or fluctuate substantially in size. Because of the scalability of 
the DBSCAN parameters, it is possible to modify them based 
on the characteristics of the marine dataset [113]. This allows 
for effectively capturing clusters with varied densities and 
geographical dispersion. In addition, the processing 
efficiency of DBSCAN makes it possible to do real-time 
analysis of streaming marine data, which is beneficial for 
applications such as environmental monitoring, habitat 
mapping, and offshore resource exploration. In general, 
DBSCAN is a powerful and versatile approach for gathering 
data from the ocean. It enables the identification of spatial 
patterns and the formulation of well-informed decisions in the 
context of oceanographic research, preservation operations, 
and the management of marine resources.  

2) Integration of AI and AIS  

The integration of artificial intelligence with automatic 
identification systems (AIS) is a rapidly expanding area of 
study and innovation in the maritime industry [114], [115]. 
Because of the sheer volume and complexity of the data 
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obtained via AIS, it is challenging to extract valuable insights 
from the data. At this point, the application of artificial 
intelligence becomes relevant. Integrating artificial 
intelligence with artificial intelligence systems (AIS) requires 
using complex algorithms and machine learning strategies to 
analyze, assess, and extract usable information from AIS data. 
Artificial intelligence can determine the vast data that 
automatic identification systems (AIS) provides, including 
vessel positions, speeds, directions, and other contextual 
information. This allows AI to recognize patterns, trends, and 
anomalies that human operators could miss. When it comes to 
enhancing efficiency, safety, and sustainability in maritime 
operations, the utilization of Artificial Intelligence (AI) and 
Automatic Identification System (AIS) technologies for data 
collection in this sector represents a significant step forward 
[116]. Ships are provided real-time position and navigational 
information via the Automatic Identification System (AIS), 
primarily developed to avoid collisions and monitor vessels. 
Many opportunities for improving many aspects of sea 
transportation are made available when artificial intelligence 
(AI) technologies are combined with automatic identification 
system (AIS) data collection.  

The optimization of routes and the performance of 
predictive analytics are two major applications of the 
combination of AI and AIS. These artificial intelligence 
systems can forecast appropriate vessel routes by using 
historical data from the Automatic Identification System (AIS) 
and environmental elements such as weather, sea currents, 
and traffic patterns. Furthermore, artificial intelligence can 
dynamically adjust real-time routes in reaction to changing 
conditions, increasing safety and efficiency. Furthermore, 
artificial intelligence-powered predictive maintenance 
systems may use Automatic Identification System (AIS) data 
to monitor the status and functioning of onboard machinery 
and equipment. By examining data supplied by the Automatic 
Identification System (AIS) on vessels' speed, direction, and 
engine health, artificial intelligence systems can uncover 
anomalies that may suggest potential issues or the need for 
repair. Reduced downtime, increased reliability, and a longer 
lifespan for essential pieces of equipment are all outcomes of 
this preventative maintenance strategy.  

Moreover, artificial intelligence can enhance 
environmental monitoring and compliance in the maritime 
transportation sector. Artificial intelligence systems can use 
AIS data with satellite photos and sensor data to identify 
environmental hazards such as oil spills, maritime pollution, 
and illegal fishing. Being able to enforce norms efficiently, 
limit ecological damage, and maintain naval habitats are all 
made possible by this talent. Additionally, decision support 
systems powered by artificial intelligence may leverage AIS 
data to improve port operations and logistical management 
efficiency. By analyzing vessel traffic patterns and congestion 
levels, artificial intelligence algorithms can potentially 
enhance berth scheduling, cargo handling, and the utilization 
of port infrastructure. This might lead to reduced wait times 
and improved throughput efficiency outcomes. Within the 
maritime sector, integrating artificial intelligence with 
automatic identification systems (AIS) for data collection in 
sea transportation has tremendous potential to improve 
efficiency, safety, and sustainability. Stakeholders may use 
AI-driven insights from AIS data to optimize route planning, 

improve maintenance practices, monitor environmental 
effects, and improve port operations. This will ultimately 
result in a marine transportation system that is more efficient, 
resilient, and environmentally sustainable. 

C. Machine Learning in Marine Logistics 

In the field of international freight transportation 
management (IFTM), machine learning (ML) is a promising 
avenue because of its ability to harness the power of data that 
is becoming more accessible to researchers and practitioners 
in the field of freight transportation. When we talk about 
international freight transportation, we refer to the actual 
transfer of goods from one country to another, whether via 
ship, air, rail, truck, pipeline, or multimodal systems. During 
an international freight transit, there may be a significant 
number of participants involved. These participants may 
simultaneously include one or more shippers, carriers, 
forwarders, third-party logistics providers, and the customs 
authorities of two or more nations [117]. When compared to 
the movement of domestic goods, international freight 
transportation is distinguished by more significant volumes 
(for example, transported by containerships with a capacity of 
more than 10,000 TEU) and greater distances (for example, 
intercontinental), the utilization of large vehicles (for 
example, ocean-going ships) and infrastructure (for example, 
seaports), and the presence of border-crossing checks. These 
factors contribute to the high complexity of managing 
international freight transport. Because of the complexity, 
assessing the relationships between the different inputs, 
outputs, and decisions involved in international freight 
transportation networks is more complicated. The research 
difficulties associated with managing international freight 
transportation are more difficult to address. These problems 
range from the forecasting of demand to the planning of 
operations, as well as the maintenance of assets and the 
prediction of timely delivery [118], [119].  

Machine learning (ML) has the potential to significantly 
transform maritime logistics by improving efficiency, safety, 
and sustainability across a variety of supply chain 
components. This technology has the potential to 
revolutionize naval logistics. Following are some of the ways 
that machine learning might help enhance maritime logistics: 

1) Predictive Maintenance  

 Machine learning algorithms can analyze vast amounts 
of sensor data from onboard machinery and equipment 
to recognize trends that could foreshadow future 
malfunctions or performance deterioration [120], [121].  

 Using predictive maintenance models, maritime 
operators efficiently schedule maintenance work in 
advance, minimizing downtime and preventing costly 
repairs [121], [122].  

 Machine learning can also improve spare parts 
management by predicting the possibility that 
particular components will need to be replaced. This 
helps ensure that essential components are readily 
available whenever required [120], [121].  

2) Route Optimization 

 Machine learning models can use historical data on 
shipping routes, weather, sea currents, and traffic trends 
to optimize vessel routing and scheduling [123].  
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 Using the information gathered in real-time by sensors 
and satellite photographs, dynamic changes to routes 
can be made to avoid severe weather or roads already 
in use [124].  

 Route optimization reduces fuel use and travel time and 
enhances safety by avoiding regions prone to piracy or 
other dangers [124], [125].  

3) Port Operations Optimization 

 Machine learning-powered analytics can enhance port 
operations by enabling the prediction of vessel arrivals, 
the estimation of berthing times, and the streamlining 
of cargo processing procedures.  

 Machine learning models can potentially enhance berth 
allocation, crane scheduling, and container handling by 
analyzing data obtained from IoT devices such as RFID 
tags and sensors. 

 Predictive analytics can increase total port throughput 
and decrease vessel wait times. This can help port 
authorities anticipate congestion and facilitate more 
efficient resource management.  

4) Cargo Forecasting and Demand Prediction 

 To estimate the demand for particular types of cargo 
and places, machine learning algorithms can use 
historical shipping data, economic considerations, and 
market trends.  

 Improved cargo allocation, elimination of empty 
container transfers, and reduction of stockouts are all 
possible outcomes for marine businesses that can 
accurately foresee variations in demand. 

 To provide more accurate demand forecasting, more 
advanced machine learning algorithms, such as deep 
learning, may be utilized to analyze unstructured data 
sources such as satellite images, social media, and news 
articles.  

5) Environmental Impact Reduction 

 Machine learning approaches can assist maritime firms 
in reducing their harmful environmental impact by 
optimizing fuel usage, emissions, and waste handling 
processes.  

 Machine learning algorithms can analyze data on vessel 
performance, engine efficiency, and fuel usage patterns 
to identify potential fuel savings and emissions 
reductions.  

 Machine learning-powered optimization algorithms 
can recommend environmentally friendly route options, 
alternative propulsion systems, and sustainable 
behaviors to reduce harmful environmental effects 
while preserving operating efficiency. 

6) Enhanced Safety and Risk Aversion  

 With the help of machine learning algorithms, marine 
data may be analyzed to determine potential safety 
dangers, security threats, and operational risks.  

 By incorporating information from various sources, 
including the Automatic Identification System (AIS), 
weather forecasts, and nautical charts, machine 
learning models can provide real-time risk assessments 
and make recommendations regarding necessary 
preventative measures.  

 Anomaly detection that is enabled by machine learning 
may recognize deviations from typical operating 
conditions, such as unusual vessel behavior or 
equipment faults. This allows prompt action to avert 
accidents or environmental incidents from occurring. 

 Finally, the incorporation of machine learning into 
maritime logistics operations has the potential to 
dramatically improve efficiency, safety, and 
sustainability compared to traditional methods. 
Suppose marine firms can leverage the potential of data 
analytics and predictive modeling. In that case, they 
may be able to optimize their operations, reduce their 
costs, and better manage risks in the increasingly 
complex and competitive global shipping industry. 

D. Machine Learning  

1) Tweedie Regression  

In machine learning (ML), the term "Tweedie regression" 
refers to using regression techniques to model data with a 
Tweedy distribution characteristic. In machine learning, 
Tweedie regression is a technique that has proven to be wildly 
successful in dealing with data that contains excess zeros, 
skewness, and heteroscedasticity. These characteristics are 
frequently encountered in a wide range of engineering 
applications. In machine learning, Tweedie regression is an 
attempt to develop a predictive model that can forecast the 
conditional mean of the response variable based on the 
predictor variables. This model must consider the specific 
properties of the Tweedie distribution, such as the connection 
between the mean and the variance and the presence of excess 
zeros. In the field of machine learning, Tweedie regression is 
often performed through the utilization of algorithms and 
techniques that are comparable to those utilized in standard 
regression modeling. These methodologies and algorithms 
include linear regression, generalized linear models (GLMs), 
or Tweedie regression-specific algorithms mainly built for 
this purpose. The mathematical expression for Tweedie 
regression is as follows:  

Let Y be the response variable, and X be a matrix of 
predictor variables.  

Two parameters define the Tweedie distribution. The 
mean-variance power parameter, p, ranges from 1 to 2.  

The dispersion parameter, ϕ, is a positive constant. In 
Tweedie regression, using a logarithmic function, the 
response variable's conditional mean (μ) is linked to the 
predictor variables (X). Therefore, we have: 

 ���� = �� (1) 

herein, ��. � denotes the link function while a beta represents 
the vector of coefficient regression.  

The link between conditional valiance 	
  of output 
variable and its mean µ employing the Tweedie variance 
function as: 

 �� ��� =  ∅. ������� (2) 

Combining the formulae for the dependent mean and 
variance yields: 

 ���� = ��� . ���� (3) 

 ����� = ∅. ��������� (4) 
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The likelihood function for Tweedie regression is then built 
using the probability density function (pdf) for the Tweedie 
distribution, which can be represented as: 

���; �, ∅, �� =  �
∅.�.��� 

 ,�� 
�! . exp �%.&'� 

∅�����! . �%
&!

'� 
 

  (5) 

The parameters β and ϕ are calculated by maximizing the 
likelihood function using numerical optimization techniques 
like maximum likelihood estimation (MLE). After estimating 
the parameters, use statistical inference on regression 
coefficients to evaluate predictor variables and generate 
predictions for future data. 

The ML method to Tweedie regression consists of the 
following steps:  

 Data Preprocessing: Prepare the dataset by addressing 
missing values, encoding categorical variables, and 
scaling features as needed.  

 Model Selection: Select a regression algorithm or 
approach suited for Tweedie regression. This might 
include GLMs with Tweedie distributions, as the 
Tweedie GLM in R or the TweedieRegressor in 
Python's scikit-learn module.  

 Model Training: Apply the selected model to the 
training data, calculating the parameters that best 
represent the connection between the predictor 
variables and the response variable.  

 Model Evaluation: Assess the trained model's 
performance using appropriate metrics, such as mean 
squared error (MSE), mean absolute error (MAE), or 
others relevant to the application. 

 Model Interpretation: Analyze the model coefficients to 
determine the relevance of predictor factors in 
forecasting the response variable.  

 Prediction: Using the trained model, make predictions 
on incoming data by estimating the conditional mean of 
the outcome variable according to the predictor 
variables. 

Tweedie regression in machine learning is often performed 
using algorithms and approaches comparable to those used in 
standard regression modelling, such as linear regression, 
generalized linear models (GLMs), or customized algorithms 
created expressly for Tweedie regression. 

2) Random Forest  

The Random Forest Regressor (RFR) is a sophisticated 
machine-learning method commonly used for regression 
problems. It is flexible, durable, and has high prediction 
accuracy. It is part of the ensemble learning family, which 
involves training many decision trees individually and then 
aggregating their predictions to create final predictions.  
Let's denote our training dataset as  

( = {�*_1, �_1 �, �*_2, �_2 �, … … … …〖�*〗_/, �_�/�� (6) 

Herein *0  represents the feature vector for the data point 123 
and �0  represents the corresponding target variable. 
Regression involves a continuous numerical number 
The Random Forest Regressor works by building numerous 
decision trees, each trained on a random part of the training 
data and employing a random subset of characteristics at each 
node split. The randomization included into the training 

process helps to decorrelate individual trees and decrease 
overfitting, resulting in more robust and generalizable models. 
The forecasts of separate decision trees are then combined to 
form the final prediction. In regression, this aggregation often 
includes taking the average of each tree's predictions: 

� 4 =  �
5  . ∑ �0708�   (7) 

Where � 4  is the anticipated target variable and N is the 
number of decision trees in the random forest. 
One of the most significant advantages of Random Forest 
Regressor is its capacity to handle big datasets with high-
dimensional feature spaces without requiring considerable 
preprocessing or feature selection. Furthermore, it is less 
sensitive to outliers and noise than other regression methods, 
making it suited for a variety of real-world applications. 

The hyperparameters of the Random Forest Regressor, 
such as the number of trees (n_estimators), the maximum 
depth of each tree (max_depth), and the number of features 
considered for each split (max_features), can be tuned to 
optimize model performance using techniques such as grid 
search or randomized search. Overall, Random Forest 
Regressor is a useful and effective tool for regression 
problems, providing a good combination of predictive 
effectiveness and computational economy. 

3) ML-based models evaluation criteria  

Statistical tests were used to validate the Tweedie 
Regression and RFR models, including coefficient of 
determination (r2), reduced chi-square (χ2), root mean square 
error (RMSE), and average absolute relative deviation 
(AARD). The typically utilized parameters were computed. 

χ2 =  ∑ :;<= ,>� ; ?<,>@A>B'
7�5   (8) 

CDE� =  �
7 . F ∑ :*�GH,0 −  *H;�,0@
 708� JK.L

  (9) 

MMC( =  �
7 . ∑ N:;<= ,>� ; ?<,>@

;<= ,>
N 708�   (10) 

E. A case study  

A case study was conducted to show the applicability of 
ML in this domain. It is a typical case in which the fuel 
consumption of a test logistic ship was conducted. Using both 
Diesel Oil (DO) and Low-Fuel Oil (LFO) in the same trip, 
often known as fuel swapping or mixing, serves several 
operational and regulatory objectives for ships. This strategy 
enables boats to comply with environmental rules, especially 
in locations or routes where emissions control areas (ECAs) 
require the use of low-sulfur fuels such as LFO to fulfill 
severe sulfur oxide (SOx) emissions limits. By switching to 
DO while entering certain designated zones and utilizing LFO 
for the remainder of the journey, ships may assure regulatory 
compliance while minimizing fuel expenditures, as LFO is 
often less expensive than DO due to its reduced sulfur content. 
Furthermore, converting between fuel types is beneficial for 
vessels equipped with engines that can run on several fuels, 
providing flexibility in fuel choices based on considerations 
such as availability, cost, and emissions standards. 
Furthermore, using fuel switching tactics, ships can minimize 
SOx, nitrogen oxides (NOx), and particulate matter emissions, 
contributing to environmental sustainability, especially in 
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vulnerable coastal areas or heavily inhabited regions. 
Combining DO and LFO on the same voyage allows ship 
operators to manage the complicated world of regulatory 
compliance, financial efficiency, and environmental 
responsibility while maximizing fuel use and reducing 
emissions. In the present study, a novel approach to using 
their ratio in the form of L/D was investigated for modeling.  
The comprehensive dataset from the ship register for 100 trips 
was employed in this study.   

III. RESULTS AND DISCUSSION  

As mentioned in the previous section, data regarding the 
distance travelled and time taken in each trip were collected 
from the ship's register, and the fuel switching ratio between 
diesel and low-sulfur fuel was calculated from fuel 

consumption data. This data was employed to develop a 
machine learning model.  

A. Data analysis and correlation heatmap  

The data was employed to plot the correlation heatmap as 
depicted in Fig. 4a.  The correlation values are listed in Table 
II. It was observed that there is some redundancy in feature 
selection since the correlation values are almost similar in the 
case of low sulfur oil (LSO) fuel and D/L ratio. At the same 
time, the correlation values of diesel were not significant. 
Hence, the feature selection was conducted using 
correlational data, the diesel and LSO were removed, and only 
the D/L ratio was kept in the next stage.  A new correlation 
heatmap diagram was plotted to keep the worthiest features in 
model development. The updated correlation heatmap is 
shown in Fig. 4b, and updated correlation coefficient values 
are listed in Table III.   

TABLE II 
CORRELATION VALUES 

 Distance, nm Travel duration, Hours Diesel, Gallons Low Sulfur Fuel, Gallons L/D ratio 

Distance, nm 1 0.9667 -0.1879 0.8858 0.2239 
Travel duration, Hours 0.966779 1 -0.1768 0.909847 0.2877 
Diesel, Gallons -0.18785 -0.1768 1 0.0445 -0.3914 
Low Sulfur Fuel, Gallons 0.885867 0.9098 0.0446 1 0.0862 
D/L ratio 0.223862 0.28774 -0.3914 0.0862 1 

 

 
(a) 

 
(b) 

Fig. 4  Correlation heatmap for (a) all features; (b) most important features. 
 

TABLE III 
CORRELATION VALUES BETWEEN THE MOST IMPORTANT FEATURES 

 Distance, 

nm 

Travel duration, 

Hours 

L/D 

ratio 

Distance, nm 1 0.9668 0.2239 
Travel duration, 
Hours 

0.9668 1 0.2877 

D/L ratio 0.2239 0.2877 1 

B. Model Development and Testing  

The third part of the research focused on creating predictive 
models specially tailored to anticipate the Low Sulfur Oil 
(L/D) to Diesel Oil (DO) ratio. This challenge was handled 
using two sophisticated ML techniques: Random Forest 
Regressor (RFR) and Tweedie Regressor. These approaches 
were chosen because of their resilience and capacity to handle 
complicated, nonlinear data patterns, making them perfect for 
modeling the intricate interaction between marine fuels. The 

dataset used for this purpose is carefully partitioned 
employing a random split, with 70% put aside for model 
training and the remaining 30% retained for testing. This split 
technique guaranteed that the models were trained on a 
sizable amount of data, helping them to understand the 
underlying patterns and correlations efficiently. Meanwhile, 
the test set allowed for objectively evaluating the models' 
performance on previously unstudied data, essential to 
determining their generalizability and predictability.  

Once trained, the models were applied to the whole test 
dataset to predict the L/D ratio. This stage was essential 
because it allowed the researchers to assess the models' ability 
to make accurate predictions across an extensive range of data 
points, imitating real-world settings where the ratio of low-
sulfur oil to diesel oil varies dramatically. Using these 
powerful machine learning algorithms, the study aims to 
develop a dependable tool for estimating fuel ratios, which is 
critical for managing fuel usage and conforming to 
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environmental standards in marine operations. It can be 
observed that the RF-based model performed superior to the 

Tweedie-based model both in the case of training as well as 
testing, as depicted in Fig. 5. 

 

 
(a) 

 
(b) 

Fig. 5  Model prediction results during model (a) Training; (b) Testing 

 

C. Statistical Evaluation  

The statistical assessment findings in the table compare the 
performance metrics of two distinct models, Random Forest 
and Tweedie, in forecasting ship fuel consumption. These 
models were assessed using training and testing datasets and 
outcomes listed in Table IV. The Random Forest model's 
coefficient of determination (R2) for the training dataset is 
0.9997, suggesting that the model fits the data almost 
perfectly. Similarly, the R2 score for the testing dataset is 
strong but somewhat lower at 0.9926, indicating that the 
model generalizes well to new data. 

The Random Forest model has a root mean square error 
(RMSE) of 0.2955 on the training dataset, indicating that the 
model's predictions differ by just 0.2955 units from the actual 
values in the training data. However, the RMSE rises to 
1.3487 on the testing dataset, demonstrating significantly 
larger prediction errors on unknown data than on the training 
data. The Random Forest model's average absolute relative 
deviation (AARD) is astonishingly low, at 0.0029 for the 
training dataset and somewhat higher at 0.0326 for the testing 
dataset. This measure represents the average relative 
difference between the model's predictions and the actual 
values, with smaller values indicating higher predictive 
accuracy.  

Moving on to the Tweedie model, the R2 value for the 
training dataset is 0.9989, indicating that the model fits the 
data well but somewhat less so than the Random Forest 
model. Similarly, the testing dataset has an R2 value of 
0.9793, showing high generalization performance. The 
Tweedie model has an RMSE of 0.604 on the training dataset 
and 2.2575 on the testing dataset. This rise in RMSE between 
training and testing datasets implies that the Tweedie model 
somewhat overfits the training data, resulting in more 
significant prediction errors on unknown data. Finally, the 
Tweedie model has an AARD of 0.0151 for the training 
dataset and 0.0488 for the testing dataset. These numbers 
represent the model's average relative deviation from 
fundamental values, with larger values indicating worse 
predictive accuracy than the Random Forest model. In 
summary, both models perform well on the training dataset, 

with the Random Forest model marginally outperforming R2 
and AARD. However, the Random Forest model outperforms 
the Tweedie model on the testing dataset, as indicated by 
lower RMSE and AARD values.  

TABLE IV 
STATISTICAL EVALUATION OF DEVELOPED MODELS 

  
Training Testing 

Random forest R2 0.9997 0.9926 
RMSE 0.2955 1.3487 
AARD 0.0029 0.0326 

Tweedie R2 0.9989 0.9793 
RMSE 0.604 2.2575 
AARD 0.0151 0.0488 

D. Comparison with Taylor’s diagram  

The comparison with Taylor's diagram visually depicts the 
statistical assessment findings produced from the Random 
Forest and Tweedie models for predicting ship fuel 
consumption. As depicted in Fig. 6, Taylor's diagram provides 
insights into the link between the standard deviation ratio and 
the correlation coefficient, which aids in determining the 
models' prediction performance and dependability. Beginning 
with the Random Forest model, the Taylor diagram shows a 
significant connection between anticipated and actual fuel 
consumption figures, as indicated by the data points near 
alignment around the reference circle. The comparatively low 
standard deviation ratio and strong correlation coefficient 
show that the model correctly captures the variability in the 
data and makes consistent predictions. This is consistent with 
the high R2 and low RMSE values reported from the statistical 
assessment, demonstrating a solid fit of the Random Forest 
model to training and testing datasets.  

On the other hand, the Tweedie model's Taylor diagram 
shows a somewhat more excellent dispersion of data points 
than the Random Forest model, indicating that the predictions 
are slightly more variable. While the correlation between 
anticipated and actual values remains outstanding, the 
increased standard deviation ratio suggests that the model's 
predictions are significantly less precise. This is consistent 
with the statistical evaluation's lower R2 and higher RMSE 
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values, showing that the model fits the training dataset well 
but performs somewhat worse on the testing dataset.  

Overall, Taylor’s diagram enhances the statistical 
evaluation findings by giving a graphical picture of the 

models' prediction performance. It emphasizes the Random 
Forest model's higher accuracy and dependability in 
estimating ship fuel usage over the Tweedie model, validating 
the statistical assessment results. 

 
(a) 

 
(b) 

Fig. 6  Taylor’s diagram for model comparison during model (a) Training; (b) Testing 

 

E. Challenges, Opportunities, and Future Directions 

1) Regulatory considerations and safety concerns 

To successfully incorporate machine learning (ML) 
technology into maritime transportation operations, it is 
necessary to consider regulatory and safety problems 
seriously. To ensure that marine boats continue to operate in 
a safe and compliant manner, it is essential to address the legal 
frameworks and safety concerns associated with using 
machine learning algorithms. These algorithms are 
increasingly utilized for predictive maintenance, route 
optimization, and autonomous vessel navigation. Here is a 
rundown of the factors to consider: 

International, regional, and national maritime bodies 
oversee the complex regulatory system that controls marine 
transportation. This framework is responsible for ensuring 
compliance with regulations. Machine learning applications 
must adhere to the most recent norms, regulations, and 
recommendations to guarantee legal compliance and 
operational safety. This includes laws that regulate vessel 
design, equipment requirements, personnel qualifications, 
navigation rules, environmental protection, and other topics. 
To ensure that machine learning algorithms are in compliance 
with regulations and certified for use in maritime applications, 
maritime stakeholders and machine learning developers must 
collaborate.  

Data privacy and security: The algorithms that power 
machine learning heavily depend on the vast amounts of data 
gathered from sensors, cameras, and other sources located 
onboard boats. Guaranteeing the privacy and security of data 
is essential to preserve sensitive information and prevent 
unauthorized access or utilization. Compliance with data 
protection regulations, such as the General Data Protection 
Regulation (GDPR), is paramount. This requires the 
implementation of robust data encryption, access limitations, 

data anonymization techniques, and secure data transit 
protocols.  

Safety assurance is the highest priority in the marine 
transportation industry. Machine learning applications must 
go through stringent safety assessments and validation 
processes to ensure that they do not put the safety of the 
vessel, its crew, passengers, or the environment in jeopardy 
under any circumstances. Among these are testing machine 
learning algorithms in various operational settings, modeling 
real-world scenarios, and evaluating their reliability, 
precision, and resistance to errors or anomalies. Safety-
critical systems must comply with stringent safety 
regulations, such as those outlined in the criteria established 
by the International Maritime Organization (IMO) for the 
operation of autonomous ships.  

Man-Machine Interaction: Automation and autonomy 
allowed by machine learning bring new dynamics to the 
interaction between humans and machines onboard ships. 
Crew members need to be adequately educated to grasp 
machine learning systems, examine the outputs of those 
systems, and intervene as required. To facilitate smooth 
communication and collaboration between people and 
machine learning algorithms, efficient human-machine 
interfaces (HMIs) must be created. This will enable crew 
members to monitor, regulate, and override automated 
activities as necessary. 

 Some ethical considerations include that machine learning 
algorithms might unintentionally propagate biases, 
discrimination, or unfair practices if they are not created and 
controlled appropriately. Ethical considerations need to be 
taken into account while developing and using machine 
learning technologies in the maritime transportation sector to 
guarantee fairness, transparency, and accountability. To 
accomplish this, algorithmic biases must be eliminated, 
diversity and inclusion in data collection guaranteed, and 
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mechanisms for algorithmic responsibility and explanation 
established.  

In conclusion, addressing issues regarding safety and 
regulations is essential for the appropriate application of 
machine learning in maritime transportation. To build robust 
frameworks, standards, and best practices that support the 
safe, efficient, and ethical use of machine learning 
technologies in naval operations, machine learning 
developers, stakeholders in the marine sector, regulatory 
organizations, and safety authorities must collaborate.  

2) Integration challenges with existing infrastructure 

Machine learning in marine transport has significant 
integration challenges with the present infrastructure that 
must be addressed to realize AI's promise fully. Data 
Integration: Integrating machine learning algorithms with 
data infrastructure is complex. Marine transportation 
operations generate vast amounts of data from sensors, IoT 
devices, marine databases, and legacy systems [126], [127]. 
Combining this data into a framework machine learning 
algorithms can understand is difficult. Siloed, unstructured, or 
incompatible data requires extensive preparation and 
purification [128], [129].  

Legacy Systems Compatibility: Marine transport 
companies use legacy systems and software. These 
technologies may not work with modern machine learning 
systems, making AI integration challenging. Retrofitting 
obsolete systems with machine learning while retaining 
compatibility and data integrity is tough. Machine learning 
models in marine transport applications often require real-
time data processing to improve decision-making [127], 
[130]. However, existing infrastructure may struggle to 
handle real-time data streams' volume, velocity, and variety. 
Implementing scalable, low-latency data processing pipelines 
for real-time data intake, preprocessing, and model inference 
is crucial yet complex.  

Integrating machine learning algorithms with existing 
infrastructure poses cybersecurity risks, especially in the 
maritime sector, where vessels are increasingly connected to 
digital networks. Protecting sensitive data, networks, and 
communication channels against malware, ransomware, and 
unauthorized access is crucial. Maintaining data privacy, 
confidentiality, and integrity while maintaining operational 
continuity is difficult.  

The marine sector must follow strict safety, security, and 
environmental regulations. Implementing machine learning 
technology in infrastructure must comply with IMO, SOLAS, 
and classification society regulations. Legal and compliance 
knowledge is needed to use AI technology successfully and 
comply with regulations. Integrating machine learning 
systems into maritime operations requires consideration of 
human-machine interaction. Crew, shore-based workers, and 
stakeholders must use AI-powered tools, dashboards, and 
interfaces. User acceptance, training, and change 
management help integrate and use machine learning 
technologies. The marine industry, technology vendors, 
regulatory agencies, and cybersecurity experts must work 
together to solve these integration issues. Developing robust 
data integration techniques, upgrading aging systems, 
enhancing cybersecurity, and fostering an inventive and 

digital transformation culture are essential to successfully 
using machine learning in marine transportation.   

3) Future trends and recommendations for sustainable AI 

adoption 

Future trends and recommendations for sustainable AI 
adoption in marine transport machine learning relate to 
efficiency, environmental impact, and safety. AI in Vessel 
Operations: As AI technologies advance, vessel operations 
will incorporate more AI-driven solutions. Machine learning 
algorithms optimize route planning, speed management, and 
fuel usage, lowering emissions and operational costs. 
Weather, traffic density, and fuel efficiency may be used to 
recommend routes, making sea travel more sustainable. Real-
time vessel performance monitoring and machinery and 
equipment anomaly detection by AI-powered predictive 
maintenance solutions can change fleet management. 
Machine learning models may anticipate problems and plan 
maintenance using past data and sensor readings, lowering 
downtime, operational efficiency, accidents, and 
environmental issues.  

Advanced navigation aids, collision avoidance systems, 
and risk assessment tools from AI-based systems can improve 
sea transport safety. Deep learning algorithms trained on 
massive maritime data can increase ship captains' situational 
awareness and offer early warning warnings for possible 
risks, minimizing accidents and improving crew, passenger, 
and cargo safety. Sustainable AI adoption uses machine 
learning for environmental monitoring and regulatory 
compliance. AI algorithms can evaluate satellite pictures, 
sensor data, and oceanographic data to assess ecological 
consequences, monitor pollution, and comply with IMO's 
MARPOL emissions restrictions. AI technology can assist 
marine operations in reducing their environmental impact and 
shift to cleaner, more sustainable shipping practices by 
promoting proactive ecological stewardship.  

Continued research and development are needed to 
maximize AI's potential in marine transport. Collaboration 
between academics, industry players, and government 
agencies can advance maritime-specific AI technology. This 
involves developing specialized machine learning models, 
data-driven decision support tools, and autonomous shipping 
solutions to improve marine supply chain efficiency, safety, 
and sustainability. Finally, sustainable AI adoption in 
machine learning for marine transport offers viable solutions 
to maritime sector difficulties while encouraging 
environmental responsibility and operational excellence. By 
adopting AI-driven technologies and data-driven decision-
making best practices, stakeholders may improve marine 
operations' efficiency, safety, and sustainability. 

IV. CONCLUSIONS  

This article explores the rapidly growing topic of Artificial 
Intelligence (AI) and Machine Learning (ML) applications in 
maritime and marine environmental management. As the 
marine sector faces more complex difficulties in terms of 
sustainability, efficiency, and regulatory compliance, there is 
a rising interest in using sophisticated AI and machine 
learning approaches to solve these concerns successfully.  
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 This article, based on a comprehensive literature review 
and case study analysis, provides insights into the many 
uses of AI and ML in maritime and marine settings.  

 Particular emphasis is placed on modeling ship fuel 
consumption, an essential component of vessel 
operation with significant consequences for 
environmental impact and operating expenses.  

 The study shows that ML approaches, such as Random 
Forest and Tweedie models, effectively forecast ship 
fuel usage trends.  

 The statistical examination of the created models 
reveals notable performance measures, with the 
Random Forest model outperforming the Tweedie 
model in accuracy and consistency. 

 Specifically, the Random Forest model gets excellent 
R2 values of 0.9997 and 0.9926 for the training and 
testing datasets, respectively, demonstrating a good 
match with the data.  

 Furthermore, the model has low RMSE and AARD, 
indicating its ability to capture fuel consumption 
fluctuations properly.  

 In comparison, while still performing well, the Tweedie 
model has somewhat lower R2 values and higher RMSE 
and AARD values, indicating a lower level of accuracy 
and precision in forecasting fuel consumption patterns.  

These findings provide important insights into applying AI 
and machine learning techniques in maritime and marine 
environmental management. By leveraging sophisticated 
analytics, decision-makers may get more visibility into fuel 
consumption patterns, maximize operational efficiency, and 
reduce environmental impact, eventually furthering the 
marine industry's sustainability goal.  
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