
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Programming Language Selection for the Development of Deep

Learning Library

Oktavia Citra Resmi Rachmawati a,*, Aliridho Barakbah a, Tita Karlita a
a Department of Informatics and Computer Engineering, Electronic Engineering Polytechnic Institute of Surabaya, Surabaya, Indonesia

Corresponding author: *oktaviacitra@pasca.student.pens.ac.id

Abstract—Recently, deep learning has become very successful in various applications, leading to an increasing need for software tools

to keep up with the rapid pace of innovation in deep learning research. As a result, we suggested the development of a software library

related to deep learning that would be useful for researchers and practitioners in academia and industry for their research endeavors.

The programming language is the core of deep learning library development, so this paper describes the selection stage to find the most

suitable programming language for developing a deep learning library based on two criteria, including coverage on many projects and

the ability to handle high-dimensional array processing. We addressed the comparison of programming languages with two approaches.

First, we looked for the most demanding programming languages for AI Jobs by conducting a data-driven approach against the data

gathered from several Job-Hunting Platforms. Then, we found the findings that imply Python, C++, and Java as the top three. After

that, we compared the three most widely used programming languages by calculating interval time to three different programs that

contain an array of exploitation processes. Based on the result of the experiments that were executed in the computer terminal, Java

outperformed Python and C++ in two of the three experiments conducted with 5,4047 milliseconds faster than C++ and 231,1639

milliseconds faster than Python to run quick sort algorithm for arrays that contain 100.000 integer values.

Keywords— Programming language; data-driven approach; software development life cycle; software library; deep learning.

Manuscript received 12 Dec. 2023; revised 8 Jan. 2024; accepted 10 Feb. 2024. Date of publication 31 Mar. 2024.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Deep learning is extensively utilized to extract information

from vast data in various fields, such as natural language

comprehension, healthcare, autonomous vehicles, and others

[1]. Its popularity is mainly due to its exceptional performance,

which is made possible by large datasets and robust

computing infrastructure [1]. To maintain the swift progress

of deep learning exploration, reliable software tools are

crucial to allow deep learning researchers to concentrate on

their studies while eliminating the need to create neural
network functions from scratch. Numerous commonly used

frameworks, such as PyTorch [2] and Tensorflow [3],

generate a fixed dataflow diagram that represents the

computation and can be employed repeatedly to process

groups of data [4].

The existing deep learning libraries have been too complex

for some machine learning projects, making it difficult to

modify the formula in code function. Thus, this will result

from the lack of required usefulness to researchers' desire to

change the contents of some functions with the specific

formulas to improve the model's performance.

Thus, we propose to create a software library that fulfills
the requirements of intelligent tools. This library would

provide advantages to researchers and professionals in both

academic and industrial settings, allowing them to implement

deep learning algorithms practically into their codes by

modifying the formula they want. Therefore, this can occur

when a project requires specialized functionalities not readily

available in existing software libraries. A specialized software

library dedicated to the execution of deep learning algorithms

will serve as a submodule within the Analytical Library

Intelligent-computing (ALI), complementing the other

modules for machine learning algorithms such as Hierarchical
K-Means [5], Automatic Clustering [6], K Nearest Neighbors

[7], and Neural Networks [8].

However, it is essential to carefully consider the potential

costs and benefits of developing a new software library [9].

The choice of the programming language used to develop a

toolkit can affect its efficiency and functionality, particularly

if modifications to its internal components are expected.

434

JOIV : Int. J. Inform. Visualization, 8(1) - March 2024 434-441

Additionally, the programming language employed can affect

the range of languages suitable for development [10]. Instead

of, many toolkits provide alternative mechanisms or bindings

that enable access from different programming languages.

This study addresses the considerations for choosing a

programming language to develop a software library for deep

learning algorithms. Besides finding insights into the most

used programming languages by AI practitioners in the

industry, we also investigate the speed comparison of

programming language selection in processing and computing
data. This paper contributes to data visualization as the most

used programming language to build AI systems in the

industry to identify the tech stack trends and the popular

requirements of job shares. Also, this paper contributes to the

comparison analysis of the top 3 most used programming

languages in AI fields based on speed time execution by a few

structured experiments conducted in the same device.

Therefore, this study ensures that a new software library

related to deep learning can be produced with a reasonable

resource and identifies potential risks that may arise during

development. Ultimately, this paper explains a critical step in
the software product development process to create a shared

understanding of the programming language selection

background.

In the remainder of this paper, the following section

describes the material and method implemented in this study.

Section 3 discusses the fundamental findings based on the

experiments. Finally, Section 4 concludes the paper.

II. MATERIAL AND METHOD

In this section, we present the methodology used in this

study as a qualitative technique with several stages, including

study literature, data-driven approach, experiments by SDLC,

and paper documentation.

Fig. 1 Research Methodology

Then, we describe the definition of each existing phase in

the following:

A. Study Literature

In academic research, a literature review is an organized

and transparent process that aims to identify, assess, and

combine the existing corpus of scholarly work and other

relevant sources conducted by researchers, scholars, and

professionals [11]. The process is intended to be systematic

and reproducible to ensure validity and reliability [11]. Thus,

we reviewed the relevant literature from the perspective of a

deep learning library released and distributed openly via

internet resources to compare programming language
utilization with the aim of state-of-the-art for this paper.

TSFEDL [12] is a deep learning library based on Python

programming language that seamlessly integrates the

algorithms into advanced machine learning pipelines that

gather 22 state-of-the-art methods combining convolutional

and recurrent layers. The implementation is dependent on

both the Keras functional API and PyTorch-Lightning.

TSFEDL offers high-performance neural networks that can be

easily extended and customized, demonstrating its value to

users. The outcomes of the analysis substantiate that the

models included in the library can be effectively deployed

across diverse tasks, broadening the potential applications of

this model type. Consequently, this Python module represents

a practical and user-friendly option for practitioners. We can

install the TSFEDL library through PyPi by issuing the

command "pip install TSFEDL". Additionally, we can obtain

it by cloning the library's repository from GitHub and
executing the command "python setup.py install" from the

root directory. Upon completion of the installation process,

we can utilize the package under the name "TSFEDL."

Notably, the library code complies with the PEP8 style

standard for Python.

Anomalib [13] is a deep learning library based on Python

programming language that offers a collection of instruments

that enable users to compare a range of anomaly detection

models swiftly and reliably on arbitrary datasets such as

training, benchmarking, deploying, and developing anomaly

detection models. Anomalib comprises a range of cutting-
edge algorithms for detecting and localizing anomalies

alongside a collection of modular elements that we can utilize

to develop customized algorithms. Additionally, Anomalib

employs several utility and helper modules to simplify the

entire training and inference pipeline, such as Callbacks,

Metrics, and Logging. Meanwhile, Anomalib also provides

pre-processing tools that involve applying transformations to

input images before training and optionally dividing the

images into tiles, either overlapping or non-overlapping.

TSFEDL and Anomalib haven’t yet described the decisive

reason for Python programming language utilization in their
developed library. Otherwise, we clarify the details of the

programming language selection that can be a good fit with

our aims to create a software library for deep learning.

Furthermore, we created Table I below, which contains the

research position to simplify comparative analysis between

software libraries for deep learning that have published

scientific papers to share their objectives.

TABLE I

RESEARCH POSITION

Name
Programming

Language
Functionality

TSFEDL Python a wide variety of customizable
CNN-RNN models

Anomalib Python a complete collection of deep
learning-based anomaly
detection

Analytical
Library
Intelligent

computing

Java The primary module is to
solve machine learning tasks
optimally without

supercomputing.

B. Data-Driven Approach

Software engineers have employed data-driven approaches,

such as software analytics, to address software engineering

issues [14]. Meanwhile, data-driven decision-making is the

concept that refers to using analytics to obtain information,

patterns, and insights to make decisions that are better

informed and supported by factual data [15]. Thus, we utilized

a data-driven decision-making approach to determine the

popular programming language for developing AI systems.

435

Fig. 2 Data-Driven Approach

To conduct this phase of our study, we implemented all
stages of a data-driven approach, and we just adopted a few

steps that depend on our needs and resources. Because of that,

we perform four activities sequentially, including data

collection, data visualization, data analysis, and decision-

making process.

C. Experiments

Software Development Life Cycle (SDLC) is a systematic

approach that aims to produce software structured and
efficiently, encompassing all stages of software development,

including planning, coding, testing, and deployment [16]. In

this study, we perform several experiments related to the

performance of code execution by each programming

language. These include creating flowcharts as code design,

implementing them into the code lines, conducting unit tests

for every function, and analyzing the result in the table format.

To plan our experiments, we composed a list of the

investigations that will be tested in some programming

languages selected to gain information about comparing

speed execution.

TABLE II

LIST OF EXPERIMENT

ID Name Big O Notation

1 Array Mutation �
2 Dot Product

Calculation
��

3 Quick Sort Algorithm � log���

D. Documentation

For researchers, writing a scientific paper is the most

straightforward way to contribute to advancing the interested

field [17]. Thus, we wrote this paper to disseminate our

research findings to fellow researchers to invite feedback that

motivates future works. Meanwhile, it can be the

documentation that provides valuable information and

encourages knowledge sharing, empowering readers to

understand how processes work.

III. RESULTS AND DISCUSSION

In this section, we undertake two main phases with several

crucial activities, including a data-driven approach and

performing the experiments using SDLC. The difference

between those main phases is situated in the implementation.

In this study, a data-driven approach constitutes a flow that

performs step-by-step sequentially. Instead, the SDLC

experiments are the cycles that execute the stage repeatedly in

distinct iterations.

A. Data-Driven Approach:

In the context of the current era of big data, a novel

methodology for managing data, which comprises a sequence

of five distinct stages, has been developed. The fundamental

stages involved in data processing include data collection,

cleansing, storage, analysis, and subsequent exploration [18].

But, in this paper, we discovered knowledge with four distinct

stages: data collection, data visualization, data analysis, and

decision-making process.

The first stage of data-driven approach implementation is

Data Collection, which constitutes a systematic and organized

technique for gathering information from service providers

and other external data sources with the objective of

observations or measurements in a study that can be

qualitative or quantitative to assess outcomes or derive

actionable insights for further steps [19].
We manually gathered data on jobs in the Artificial

Intelligence (AI) field from famous job portal platforms, such

as LinkedIn, Glints, and others. Then, we gain employment

information in as many as 129 data rows with locations in a

few countries. Furthermore, we seek insights into the

programming languages that have become many companies’

needs for building AI model systems.

Fig. 3 Data Collection

We placed the data in Microsoft Excel format due to
Efficiently carry out data manipulation, analysis, and

visualization tasks without investing significant time in

acquiring expertise in intricate programming languages.

Furthermore, we publicly uploaded the data to the Kaggle site

to provide data transparency in this study.

Then, we perform data visualization after collecting data

on the internet and putting those into the spreadsheet. Data

visualization is analyzing data and exhibiting it visually,

graphically, or pictorially, intended to assist individuals in

comprehending the meaning of data by providing a clear and

straightforward summary of a substantial volume of data to
communicate information effectively and lucidly [20].

To represent insight into data that have been collected, we

visualize it in column chart format due to column chart is

frequently utilized to compare multiple items that fall within

a specific range of values and are considered optimal when a

comparison is required between individual sub-items in the

context of a particular data category [21].

Fig. 4 Data Visualization

436

After performing data visualization, we conduct data

analysis. We systematically apply statistical techniques to

glean helpful information by inspecting, cleansing,

transforming, and modeling raw data into valuable data to

discover useful information, conclude relevant knowledge,

and support decision-making.

TABLE III

COMPARISON OF PROGRAMMING LANGUAGES REQUIRED

Programming Language Amount

Python 127
C++ 63
Java 50
R 37
C 23
Scala 21

The activity involves the determination process and

includes the last stage of a data-driven approach implemented

in this study. Decision-making is the comprehensive process

of determining the best option to achieve organizational

objectives by evaluating situations or problems, weighing

evidence, and examining alternatives among several possible

so it can generate thoughtful decisions by organizing relevant

information [22].

Table III shows that Python is the most demanded

programming language for AI jobs in various countries. But

we can’t be allowed to create conclusions based on results
generated from this process. Thus, we decided to conduct

comparison experiments involving Python, C++, and Java as

the top 3 programming in demand.

The following is an explanation us regarding the three

programming languages that we chose as experimental

objects:

Python is a programming language that is interpreted and

considered high-level, which is utilized extensively for web

development, data analysis, scientific computing, and

artificial intelligence applications [23]. It was first released in

1991 and is famous for its simplicity, readability, and ease of

use, becoming one of the most widely used programming
languages. Python has a sizable standard library and a broad

range of third-party packages, making it appropriate for

various tasks. It emphasizes code readability and is frequently

employed as a first language for novices to learn to program.

The language is open source, with many developers

contributing to its growth and development.

Java is an independent, popular, high-level, and object-

oriented programming language platform. Sun Microsystems

created it and was first released in 1995. We can use Java for

various applications, including web development, mobile app

development, and desktop applications. The language
emphasizes the "write once, run anywhere" principle, which

means that we can run Java code on any platform with a Java

Virtual Machine (JVM) installed without recompilation. Java

is known for its sizeable standard library, third-party packages,

and security features, making it a favored language for many

developers [24].

C++ is a general-purpose, high-level programming

language developed in the 1980s as an extension of the C

programming language. It is an object-oriented language

extensively used for system software, device drivers, game

development, and more. C++ is renowned for its power,

flexibility, and efficiency, allowing developers to write low-

level code while providing high-level abstractions. C++ is a

compiled language, meaning the source code is translated into

machine code that a computer can execute. C++ includes a

large standard library and an extensive ecosystem of third-

party packages, making it adaptable to various applications.

Its performance, portability, and compatibility with C code

make it popular among developers [25].

TABLE IV

COMPARISON OF PARADIGM PROGRAMMING LANGUAGE

Paradigm Programming Language

Java Python C++

Generic Yes No Yes
Object-oriented Yes Yes Yes
Functional Yes Yes Yes
Imperative Yes Yes Yes
Reflective Yes Yes No
Concurrent Yes No No

Structured No Yes No
Procedural No Yes Yes
Modular No No Yes

A programming paradigm is a methodology or approach to

computer programming that entails a collection of principles,

concepts, and techniques to design and develop software [26].

It involves a particular way of thinking about how to write
code and solve problems using specific methodologies and

techniques. Various programming paradigms exist, such as

procedural, object-oriented, functional, and logical. The

selection of a programming paradigm is influenced by factors

such as the project's requirements, the problem domain, and

the personal preferences of the developer or development

team.

Table IV above clarifies that three programming languages,

Java, Python, and C++, have various characteristics that will

be the future goals and contributions to software product

development. The existence of substantial programming

languages aims to complement each other.

B. Experiments Using SDLC Concept

To enforce a few experiments purely involving three

programming languages, we compile and run the program

files in MacOS Terminal without implicating Integrated

Development Environment (IDE) applications because

different programming languages need other IDE for

execution processes, so the results will be invalid because it

can’t say “apple to apple.”
The MacOS Terminal is a command-line interface with the

macOS operating system [27]. It enables users to interact with

the computer's file system and execute various commands and

utilities through a text-based interface. The Terminal

facilitates multiple tasks such as navigating directories,

creating and modifying files, installing software, and

managing system settings. Advanced users and developers

who prefer working with command-line interfaces rather than

graphical user interfaces find the Terminal a potent tool.

We describe the device we utilize in these experiments due

to the transparency of the experimental result if there is

dissimilarity in the execution time length on other devices.

437

TABLE V

DEVICE INFORMATION

Device Information Value

Manufacture Apple
Handset Model MacBook Pro (15-inch, 2019)

Operating System MacOS Monterey 12.5
Processor 2,4 GHz 8-Core Intel Core i9
RAM 16 GB 2400 MHz DDR4
Storage SSD 256 GB

Identical to the data-driven approach that not all steps are

commonly used, we implemented them in this study; we also

utilize several stages according to our needs. There are four

main stages of SDLC that we perform in these experiments.

Fig. 5 Experiment Process

The Design Phase in SDLC is a pivotal stage that defines

the software system's technical, functional, and architectural

requirements. Ultimately, the design phase produces a

detailed plan for software developers to follow while coding

the system. We created a flowchart for every experiment done.

A flowchart is a diagram representing a step-by-step process

using different symbols and containing a short description to

present the flow of algorithms [28]. Hence, visualize complex

processes or make explicit the structure of tasks.

After the design phase, we conduct the coding or

implementation phase in SDLC is a stage in the software
system's design that converts into a fully functioning program

that utilizes the chosen programming languages and

development tools to write the code that will make the

software operational. Then, there is the testing phase in SDLC,

a crucial stage where the software system undergoes a

rigorous assessment to determine its quality, functionality,

and performance. It involves executing a series of tests

designed to identify any defects or issues in the software.

In this stage, we use Unit Tests to check small pieces of

code to deliver information and validate that each unit of the

software works as intended and meets the requirements. Then,
inspecting performance makes the building flow more

vulnerable to environmental issues. To conduct the tests of the

three experiments that we have decided on before, we prepare

the Terminal and command line that we can use to compile

and run the program files from different programming

languages.

In the context of programming, "compile and run" refers to

transforming human-readable source code into machine-

readable code that we can execute on a computer. This process

begins with compilation, translating the source code into a

format the computer's processor can understand. This

resulting code is often stored in a binary or executable file.

Once this compilation process is complete, the computer can

execute the program and perform the actions specified in the

source code. Some popular programming languages requiring

compilation before execution include C, C++, and Java.

TABLE VI

DIFFERENT COMMAND LINES FOR PROGRAMMING LANGUAGES

Programming

Language

Command Line

Compile Run

C++ g++ -std=c++17 -g

<file name> -o <output

name>

./<output name>

Java javac <file name> java <file name>

Python - python <file name>

Fig. 6 Flowchart of Array Mutation Experiment

Python is categorized as an interpreted language since the
interpreter executes its source code without requiring a

compilation process. During runtime, the interpreter reads and

executes the code line by line instead of converting it into

machine code, as with compiled languages [29]. This

approach provides a more dynamic and interactive

programming experience as developers can promptly view the

output of their code without waiting for a compilation phase.

Nonetheless, it might lead to relatively lower performance as

the code has to be interpreted each time it is executed.

The last stage in every iteration of implementing SDLC for

the comparison programming languages experiments is The
Analysis Phase, which constitutes a critical stage where the

software system's requirements are examined thoroughly and

evaluated to ensure that the specific features and

functionalities are fully understood and defined before

moving forward to the next iteration.

In this stage, we need data understanding that involves

accessing the experimental result to find benchmarks and set

performance goals to gain general insights that will

438

potentially be helpful for further steps in the form of a table

or graphic.

We explain the process of the experiments that are

executed using SDLC in the following:

1) Array Mutation

The process of array mutation involves altering the values

of an array that already exists. Arrays are data structures that

store elements of the same data type [30]. We can modify their

values by changing one or more elements or performing

operations on multiple array elements simultaneously.

The ability to mutate arrays is a fundamental aspect of

many programming languages and a necessary part of

building complex applications and algorithms. Nevertheless,

it is imperative to ensure that array mutation executes

accurately and efficiently, as errors or inefficiencies in this
process can result in program failures or suboptimal

performance.

TABLE VII

COMPARISON OF PROGRAMMING LANGUAGE EXECUTE ARRAY MUTATION

Programming Language Time Execution

(milliseconds)

C++ 2.830,52

Java 1.878,73
Python 63.614,47

Table VII above demonstrates that Java has the fastest

performance for processing array mutation with the length of

array 1.000.000.000 compared to other programming
languages. Java can be the most rapid programming language

in this experiment because Java compilers can optimize array

access and iteration to reduce the number of instructions,

leading to better performance.

2) Dot Product Calculation

The dot product is a mathematical operation used in
convolution functions, which involves the computation of the

sum of the outcomes of the corresponding elements of two

matrices. The dot product is executed precisely between a

kernel matrix, also known as a filter, and a portion of the input

matrix referred to as the receptive field. The dot product is

performed by element-wise multiplication of the two matrices,

followed by the sum of the resulting products [31]. This

process is an essential part of the convolution process,

commonly utilized in deep learning and image processing

applications to extract crucial features from input data. The

dot product enables the kernel matrix to be applied to the input
matrix in a sliding window manner, allowing the convolution

operation to be executed at various locations of the input

matrix.

TABLE VIII

COMPARISON OF PROGRAMMING LANGUAGE EXECUTE DOT PRODUCT

Programming Language
Time Execution

(milliseconds)

C++ 0,27856
Java 0,38393

Python 16,756

Table VIII above demonstrates that C++ has the fastest

performance for processing the function of dot product
calculation with the length of array 100.000 compared to other

programming languages. C++ can be the most rapid

programming language in this experiment due to its ability to

write highly optimized code through low-level memory

manipulation and control.

Fig. 7 Flowchart of Dot Product Calculation Experiment

3) Quick Sort Algorithm

Quick sort is a sorting algorithm widely used in computer
science that follows a divide-and-conquer strategy. The

algorithm selects a pivot element from the array, divides the

remaining elements into two sub-arrays based on whether

they are more significant than or less than the pivot, and

recursively applies the same process to each sub-array.

Typically, the last element of the array is selected as the pivot.

The algorithm rearranges the array such that all elements less

than the pivot are placed before it, and all elements more

outstanding than the pivot are set after it, a process called

partitioning. The quick sort algorithm continues recursively

partitioning the sub-arrays until the sub-arrays contain only
one element [32].

Fig. 8 Flowchart of Quick Sort Experiment

439

The time complexity of quick sorting is O(nlogn) on

average, which makes it one of the fastest sorting algorithms

in most cases. However, in the worst-case scenario, where the

pivot is the largest or smallest element, it is much slower than

the average case. To avoid the worst-case scenario, we can

use various techniques, such as selecting a random pivot or

using a median-of-three method.

TABLE IX

COMPARISON OF PROGRAMMING LANGUAGE EXECUTE QUICK SORT

Programming Language
Time Execution

(milliseconds)

C++ 17,6858
Java 12,2811
Python 243,445

Table VIII above demonstrates that Java has the fastest

performance for processing the quick sort algorithm with the

length of array 100.000 compared to other programming

languages. Java can be the most rapid programming language

in this experiment because Java arrays are stored in

contiguous blocks of memory, enabling efficient traversal of

array elements using a short loop. The Java Virtual Machine
(JVM) optimizes the loop for better performance. Moreover,

using primitive data types in arrays makes it possible to

process large datasets more quickly [33].

C. Discussions

From a data-driven approach to finding the most

demanding programming language, we can synthesize that

Java is widely used in various machine learning projects.

Therefore, engineers who have some experience with Java are

needed in many job opportunities. Furthermore, the
experiments that adjust to the basics of deep learning intend

to compare the most capable programming language,

indicating that Java has the fast-executing code capability to

compute the high number array.

TABLE X

COMPARISON OF PROGRAMMING LANGUAGE POSITION IN THIS STUDY

Aspects Python Java C++

The most
demanding
programming for

the requirement of
job opportunities

1st position 3rd position 2nd position

The most fast-
executing for array
mutation
experiment

3rd position 1st position 2nd position

The most fast-
executing for dot-
product calculation

experiment

3rd position 2nd position 1st position

The most fast-
executing for quick
sort experiment

3rd position 1st position 2nd position

Java came first in two aspects compared to Python and C++,

which only came first in one aspect. Besides that, Java is a

programming language that has been used since the early

development of Android. Thus, we selected Java to develop a

deep learning library that can be embedded in mobile

applications.

IV. CONCLUSIONS

Deep Learning applications typically involve

multidimensional data arrays as inputs and multidimensional

parameter arrays, known as kernels, that are adjusted by the

training algorithm. Thus, the performance of array processing

is a crucial part of considering the software library
development for Deep Learning. Meanwhile, the existing

programming languages have different treatments to execute

the array that has been initialized. From the experiments

conducted, we can conclude that Java is superior in processing

arrays compared with Python and C++. Java is a programming

language still in demand in several countries for jobs in

artificial intelligence departments. We will use Java

programming language to build a deep learning library from

scratch for further research.

ACKNOWLEDGMENT

We appreciate the reviewers for their insightful feedback

to improve the quality of this paper. We want to thank the

Electronic Engineering Polytechnic Institute of Surabaya for

facilitating and supporting us in researching and developing a

product that we believe can significantly contribute to our

campus and country.

REFERENCES

[1] S. E. Whang, Y. Roh, H. Song, and J.-G. Lee, “Data Collection and

Quality Challenges in Deep Learning: A Data-Centric AI Perspective,”

The VLDB Journal, vol. 32, pp. 791–813, 2023.

[2] E. Stevens, L. Antiga, and T. Viehnam, Deep Learning with PyTorch.

Manning, 2020.

[3] A. Kapoor, A. Gulli, and S. Pal, Deep Learning with TensorFlow and

Keras. Packt Publishing, 2022.

[4] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance

Deep Learning Library,” in NIPS’19: Proceedings of the 33rd

International Conference on Neural Information Processing Systems,

Vancouver, 2019, pp. 8024–8035.

[5] N. Ramadijanti, A. Barakbah, and F. A. Husna, “Automatic Breast

Tumor Segmentation using Hierarchical K-means on Mammogram,”

2018 International Electronics Symposium on Knowledge Creation

and Intelligent Computing (IES-KCIC), Oct. 2018,

doi:10.1109/kcic.2018.8628467.

[6] A. R. Barakbah, T. Harsono, and A. Sudarsono, “Automatic Cluster-

oriented Seismicity Prediction Analysis of Earthquake Data

Distribution in Indonesia,” International Journal on Advanced Science,

Engineering and Information Technology, vol. 9, no. 2, pp. 587–593,

Apr. 2019, doi: 10.18517/ijaseit.9.2.7269.

[7] M. Subhan, A. Sudarsono, and A. R. Barakbah, “Classification of

Radical Web Content in Indonesia using Web Content Mining and k-

Nearest Neighbor Algorithm,” EMITTER International Journal of

Engineering Technology, vol. 5, no. 2, pp. 328–348, Jan. 2018,

doi:10.24003/emitter.v5i2.214.

[8] M. N. Shodiq, D. H. Kusuma, M. G. Rifqi, A. R. Barakbah, and T.

Harsono, “Neural Network for Earthquake Prediction Based on

Automatic Clustering in Indonesia,” JOIV : International Journal on

Informatics Visualization, vol. 2, no. 1, pp. 37–43, Feb. 2018,

doi:10.30630/joiv.2.1.106.

[9] R. Cordingly et al., “Implications of Programming Language Selection

for Serverless Data Processing Pipelines,” 2020 IEEE Intl Conf on

Dependable, Autonomic and Secure Computing, Intl Conf on

Pervasive Intelligence and Computing, Intl Conf on Cloud and Big

Data Computing, Intl Conf on Cyber Science and Technology

Congress (DASC/PiCom/CBDCom/CyberSciTech), Aug. 2020,

doi:10.1109/dasc-picom-cbdcom-cyberscitech49142.2020.00120.

[10] S. A. Abdulkareem and A. J. Abboud, “Evaluating Python, C++,

JavaScript and Java Programming Languages Based on Software

Complexity Calculator (Halstead Metrics),” IOP Conference Series:

Materials Science and Engineering, vol. 1076, no. 1, p. 012046, Feb.

2021, doi: 10.1088/1757-899x/1076/1/012046.

440

[11] H. Snyder, “Literature review as a research methodology: An overview

and guidelines,” Journal of Business Research, vol. 104, pp. 333–339,

Nov. 2019, doi: 10.1016/j.jbusres.2019.07.039.

[12] I. Aguilera-Martos et al., “TSFEDL : A python library for time series

spatio-temporal feature extraction and prediction using deep learning,”

Neurocomputing, vol. 517, pp. 223–228, Jan. 2023,

doi:10.1016/j.neucom.2022.10.062.

[13] S. Akcay, D. Ameln, A. Vaidya, B. Lakshmanan, N. Ahuja, and U.

Genc, “Anomalib: A Deep Learning Library for Anomaly Detection,”

2022 IEEE International Conference on Image Processing (ICIP), Oct.

2022, doi: 10.1109/icip46576.2022.9897283.

[14] F. Cunha, T. Rique, M. Perkusich, K. Gorgônio, H. Almeida, and A.

Perkusich, “A Data-driven Framework to Support Team Formation in

Software Projects,” Anais do II Workshop Brasileiro de Engenharia de

Software Inteligente (ISE 2022), Oct. 2022,

doi:10.5753/ise.2022.227029.

[15] N. Elgendy, A. Elragal, and T. Päivärinta, “DECAS: a modern data-

driven decision theory for big data and analytics,” Journal of Decision

Systems, vol. 31, no. 4, pp. 337–373, Mar. 2021,

doi:10.1080/12460125.2021.1894674.

[16] S. Shafiq, A. Mashkoor, C. Mayr-Dorn, and A. Egyed, “A Literature

Review of Using Machine Learning in Software Development Life

Cycle Stages,” IEEE Access, vol. 9, pp. 140896–140920, 2021,

doi:10.1109/access.2021.3119746.

[17] X. Bai, M. Wang, I. Lee, Z. Yang, X. Kong, and F. Xia, “Scientific

Paper Recommendation: A Survey,” IEEE Access, vol. 7, pp. 9324–

9339, 2019, doi: 10.1109/access.2018.2890388.

[18] G. Sun, H. Z. Lv, W. D. Jiang, and F. H. Li, “General process of big

data analysis and visualisation,” International Journal of

Computational Science and Engineering, vol. 23, no. 2, p. 177, 2020,

doi: 10.1504/ijcse.2020.110543.

[19] J. Liu et al., “Data Mining and Information Retrieval in the 21st

century: A bibliographic review,” Computer Science Review, vol. 34,

p. 100193, Nov. 2019, doi: 10.1016/j.cosrev.2019.100193.

[20] K. Börner, A. Bueckle, and M. Ginda, “Data visualization literacy:

Definitions, conceptual frameworks, exercises, and assessments,”

Proceedings of the National Academy of Sciences, vol. 116, no. 6, pp.

1857–1864, Feb. 2019, doi: 10.1073/pnas.1807180116.

[21] K. Citra and F. Wahyuni, “Exploring Demographic Variations of

Freshmen to Online Learning Anxiety: A Data Visualization Analysis

Based Approach,” 2021 International Research Symposium On

Advanced Engineering And Vocational Education (IRSAEVE), Sep.

2021, doi: 10.1109/irsaeve52613.2021.9604012.

[22] G. O. Odu, “Weighting methods for multi-criteria decision making

technique,” Journal of Applied Sciences and Environmental

Management, vol. 23, no. 8, p. 1449, Sep. 2019,

doi:10.4314/jasem.v23i8.7.

[23] A. Nagpal and G. Gabrani, “Python for Data Analytics, Scientific and

Technical Applications,” 2019 Amity International Conference on

Artificial Intelligence (AICAI), Feb. 2019,

doi:10.1109/aicai.2019.8701341.

[24] L. Ardito, R. Coppola, G. Malnati, and M. Torchiano, “Effectiveness

of Kotlin vs. Java in android app development tasks,” Information and

Software Technology, vol. 127, p. 106374, Nov. 2020,

doi:10.1016/j.infsof.2020.106374.

[25] A. Gyen and N. Pataki, “Comprehension of Thread Scheduling for the

C++ Programming Language,” 2021 International Conference on Data

and Software Engineering (ICoDSE), Nov. 2021,

doi:10.1109/icodse53690.2021.9648489.

[26] S. Krishnamurthi and K. Fisler, “Programming Paradigms and

Beyond,” The Cambridge Handbook of Computing Education

Research, pp. 377–413, Feb. 2019, doi: 10.1017/9781108654555.014.

[27] A. Adekotujo, A. Odumabo, A. Adedokun, and O. Aiyeniko, “A

Comparative Study of Operating Systems: Case of Windows, UNIX,

Linux, Mac, Android and iOS,” International Journal of Computer

Applications, vol. 176, no. 39, pp. 16–23, Jul. 2020,

doi:10.5120/ijca2020920494.

[28] J. A. Fabro, E. Teixeira Paula, A. F. G. P. Dias, and L. E. Skora,

“Programming Teaching Using Flowcharts in a Simulated

Environment Focused on Introducing Practical OBR,” 2019 Latin

American Robotics Symposium (LARS), 2019 Brazilian Symposium

on Robotics (SBR) and 2019 Workshop on Robotics in Education

(WRE), Oct. 2019, doi: 10.1109/lars-sbr-wre48964.2019.00086.

[29] A. Javed, M. Zaman, M. M. Uddin, and T. Nusrat, “An Analysis on

Python Programming Language Demand and Its Recent Trend in

Bangladesh,” Proceedings of the 2019 8th International Conference on

Computing and Pattern Recognition, Oct. 2019,

doi:10.1145/3373509.3373540.

[30] J. Pivarski, D. Lange, and P. Elmer, “Nested data structures in array

frameworks,” Journal of Physics: Conference Series, vol. 1525, no. 1,

p. 012053, Apr. 2020, doi: 10.1088/1742-6596/1525/1/012053.

[31] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, Dive into Deep

Learning. Cambridge University Press, 2023.

[32] S. K. Gill, V. P. Singh, P. Sharma, and D. Kumar, “A comparative

study of various sorting algorithms,” International Journal of

Advanced Studies of Scientific ResearchInternational Journal of

Advanced Studies of Scientific Research, vol. 4, no. 1, 2019.

[33] Y. Chen, T. Su, and Z. Su, “Deep Differential Testing of JVM

Implementations,” 2019 IEEE/ACM 41st International Conference on

Software Engineering (ICSE), May 2019,

doi:10.1109/icse.2019.00127.

441

