

INTERNATIONAL JOURNAL ON INFORMATICS VISUALIZATION

journal homepage: www.joiv.org/index.php/joiv

Jaccard-based Random Distribution with Least and Most Significant Bit Hiding Methods for Highly Patients MRI Protected Privacy

Ali Jaber Tayh Albderi^{a,b,*}, Dhiah Al-Shammary^a, Lamjed Ben Said^b

^b Computing Department, College of Computer Science and Information Technology, University of AL-Qadisiyah, Iraq ^b Smart Lab, University of Tunis, ISG, Tunisia

Corresponding author: *ali.jaber.tayh@gmail.com

Abstract— In this study, the main goal is to improve patient care by making it easier for patient data and pictures to be sent between medical centers without problems. Still, one of the biggest problems with telemedicine is keeping patient information private and ensuring data is safe. This is especially important because even small changes to patient information could have serious consequences, such as wrong evaluations and lower-quality care. This study develops a new model that uses the unique Jaccard distribution of the least significant bit (LSB) and the most significant bit (MSB) to solve this complex problem. The goal of this model is to hide much information about a patient in the background of an MRI cover picture. The careful creation of this model is a crucial part of the current study, as it will ensure a solid way to hide information securely. A more advanced method is also suggested, which involves randomly putting private text in different places on the cover picture. This plan is meant to strengthen security steps and keep private patient information secret. The peak signal-to-noise ratio (PSNR), the structural similarity index measure (SSIM), and the mean square error (MSE) all improved significantly when this method was tested in the real world. With these convincing results, the study shows telemedicine is more effective than traditional methods for keeping patient data safe. This proves that the model and method shown have the potential to greatly improve patient privacy and data accuracy in telemedicine systems, which would improve the general quality of health care.

Keywords—Jaccard; Random distribution; bit hiding method; MRI method.

Manuscript received 8 Jul. 2023; revised 11 Aug. 2023; accepted 22 Oct. 2023. Date of publication 30 Nov. 2023. International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Studies on text transfer in telemedicine highlight the complexities of managing image data due to advancements in digital technology [1]. Thus, high-security hiding information methods were introduced to protect digital data from cybercriminals [2]. A unique and robust algorithm is necessary to optimize the new equipment. A secret text represents a common language and tool among senders and receivers [4]. The transference of patients' diagnostic medical data is not a novel phenomenon in the healthcare sector following the rapid growth in telemedicine applications [5]. Technically, sensitive healthcare data should be protected with optimal security techniques to evade cyberattacks. This study discussed the issues underpinning unauthorized access to medical images to secure sensitive patient information. The Jaccard distribution depends on the worst clustering between the cover and key images. Lastly, both LSB and MSB physically hid the secret bits. An evaluation strategy was presented in this study to test the proposed system's effectiveness. Peak signal-to-noise ratio (PSNR), structural similarity index metric (SSIM), and reduced mean square error (MSE) served as quality metrics for evaluation and efficiency research. 25 MRI images and three MRI image sizes evaluated the proposed system achievement. The recommended model generated improved outcomes compared to other counterparts.

Authors in [6] have discussed the process of transferring medical data in a very confidential manner that has flourished between health institutions to maintain the confidentiality of information for patients and not to reveal the type of information. This article has proposed adopting the hiding data and patient medical information steganography method, one of the methods of steganography information in the cover of images and the process of extracting that data. It includes a combination of encryption and information steganography. Relying on measurements to discover the efficiency of the technology used (PSNR, SSIM, MSE, UQI, and R) [7]. The proposed model has been evaluated based on using the Magnetic resonance imaging (MRI) dataset, the Peak Signal Noise Ratio (PSNR), the Structural Similarity Index (SSIM), the Mean Square Error (MSE), the Universal Quality Index (UQI) and the correlation coefficient (R) values. Original images from Amrita's Indian side face profile database have been used for evaluation. The dataset from Brain-Tumor-Progression) and the dataset utilized. The dataset contains a database of 20 individuals' patients with newly diagnosed who were treated with surgery and routine concurrent chemo-radiation therapy (CRT) followed by adjuvant chemotherapy. The best results for PSNR were between 51.28 dB and 67.79 dB, SSIM between 0.9876 and 0.9969, MSE between 1723.79 and 21001.25, UQI between 0.513 and 0.753, and R was 0.7992 and 0.9639. The proposed model has used few images, and this paper aims to hide the same size patient data medical image in the same size cover medical image; therefore, the model is weak [8].

Authors in [9] have discussed that because of the increase in population as a result of population inflation and the increasing demand for health care, the amount of data required to deal with the healthcare sector has increased, such as medical pictures, patient information, and various diagnoses of diseases. This article has proposed that reverse data masking technology was used depending on the inflation of health care. Reversible data hiding (RDH) is a modern technology used recently in the field of information security and medical image security within the cloud. RDH is based on compression without losing data, which creates a space to hide that data and uses the traditional Elias gamma coding process [10]. The proposed model has been evaluated based on PSNR and SSIM analysis—original images of natural images from the USC-SIPI image dataset [11].

The best-achieved results are PSNR about ∞ and SSIM about 1. The proposed model includes medical images, which is good compared to other natural images. In addition, the design is not strong enough to resist attacks [13]. The use of DICOM medical images has increased, particularly in transmitting medical images by telemedicine or e-health services. Furthermore, the confidentiality and security of patient information require additional attention and investigation. This article has proposed an improved algorithm for medical image steganography in which patients' information is hidden in cover medical images.

Furthermore, it has a higher level of features while keeping a higher level of medical image quality and a higher embedding capacity. The proposed model has been evaluated based on PSNR, MSE, RMSE, and SSIM [14]. The best result PSNR about 64.7999, MSE about 0.03519, RMSE about 0.16889, and SSIM about 0.9016. The proposed model has increased the hidden characters inside the images' steganography, leading to the emergence of distortions that may affect the quality of the images and may appear in the results of (PSNR, SSIM, and MSE), although they are not visually determined [15].

The apparent increase in the process of losing or leaking electronic information such as internal records and health information has been discussed, as well as what increases hackers' misuse of this information [16]. This article has an order to protect the information from unauthorized persons (hackers) [17]. This information process was hidden using the method Least Significant Bit (LSB). The method is to hide messages inside the pictures so that they are not visible from view to increase the security of data messages between the sender and the recipient [18]. The proposed model has been evaluated based on PSNR and MSE. Original images from Amrita's Indian side face profile database have been used for evaluation. The proposed model has used LSB data masking process alone, which is not sufficient for strong information masking, as additional methods are supposed to be used to strengthen the data masking within the images [19].

It has been discussed the process of transferring confidential information within systems that needs highsecurity systems. This research has proposed a process of concealing the confidential sharing of information using certain controlled sharing services that are established using a security system subject to the process of creating an automatic key. This research tests the hiding of Arabic texts within the text database. The proposed model is based on secret sharing with steganography. Databases have been used for original Arabic text steganography [20]. The proposed model has used steganography calculations that are very complex and require many simplifications; however, the use of masking Be of high database quality using different media such as text, images, and audio.

II. MATERIALS AND METHODS

This section highlights the recommended model, elaborating on the techniques used to embed and extract secret information.

A. Jaccard Measurements

The Jaccard distance implies the common proximity measurement, which computes the similarity between two points. Jaccard similarity identifies the similarity between two asymmetric binary vectors or two sets [21]. It is deemed challenging to calculate the similarity measurement between two points in many applications. In this study, Jaccard distance identified the worst similitude to ensure the selection of random positions for the hidden bits. The maximum distance between the cover image corresponding to the block of pixels and a randomly generated image key block was computed to address this problem [22]. Technically, each block constitutes eight pixels. This calculation determined the block indices from the image key (i, j). The Jaccard distance formula is expressed in Equation 1:

$$J(A,B) = \frac{|_{A \cap B}|}{|_{A \cup B}|} \tag{1}$$

Notes: J denotes the Jaccard distance, and $A \cap B$ provides the number of members shared between shared and un-shared sets. Besides, AUB provides the total number of members in both sets.

B. Jaccard Distribution

A random secure distribution of secret text was developed following Jaccard similarity to safeguard patient privacy from unauthorized access. The image is categorized into RGB bands. The red band functions as a Jaccard map to identify the secret positions, while the blue band hides the secret text [23]. The red band was checked for secret positions compared to blocks in the key image (i, j). Meanwhile, the critical image matrix was generated by prerandom distribution following a random generation model. This process resulted in the destination block [24]. Finally, indices were extracted and utilized to conceal the secret text in the blue band. Figure 1 illustrates using Jaccard similarity to hide content in a cover picture, while Figure 2 depicts extracting hidden text that represents patients' private data.

Fig. 1 Proposed operating system for hiding

Fig. 2 Proposed operating system for extraction

C. Key Image Generation

The key image was produced with the same size as the original cover image. Euclidean distance was computed for the cover image block in the key image to identify the secret location randomly. Notably, the key image was constructed for the sender and receiver on both sides in an unexpected manner. Secret seeds (seed1 and seed2) were defined on the sender and receiver sides with asymmetric encryption [25]. Concurrently, both senders and receivers have seed1 and seed2. Figure 3 illustrates the key image process for both parties.

Fig. 3 The key image process for both the sender and receiver

D. Least Significant Bit Steganography Technique LSB

As the first hiding technique developed for the suggested model, LSB sequentially embedded information bits into the cover image. Tampering LSB does not reflect a notable difference, as the change occurs on a small scale following its capacity [26]. The hackers would check secret bits from the cover least successively, a common flaw in steganography techniques. Binary masking extracted the LSB from cover bands to obtain the secret bits.

E. Most Significant Bit Steganography Technique MSB

The MSB is a robust security method with low computing complexity and distortion of the gathering signal. This technique embedded patient information into specific places, known as special range numbers of MRI images. This approach must conceal a secret bit in the high significant bit, with the resulting distortion equivalent to LSB. The same technique hid and extracted secret information [27]. The MRI host was then shifted with the following formula:

$$S = Rmin + (M \mod n) \tag{2}$$

Where,

S: The resulting shifted value.

Rmin: Start value of the target special range.

n: Length of the special range.

The current work used Rmin = 127, Rmax = 129, and n = 3. Following Equation 3, the set S of shifted values served as a gathering to conceal the secret bit B:

$$M_n = \begin{cases} M_o + (R_{max} - S) & if B = 1\\ M_o - (S - R_{min}) & if B = 0 \end{cases}$$
(3)

Where,

Mn: New resultant value of the host data.Rmin: Minimum value of the selected special range.Rmax: Maximum value of the selected special range.Mo: Original host signal sample.B: Secret bit.

F. Embedding Model

Steganography used both LSB and MSB with Jaccard distribution. First, the seed1 and seed2 values were predefined to the embedding system. Second, the suggested model split RGB bands into an R map to determine secret locations following the Jaccard distribution convex similarity of block image key (i, j) and B or G to hide secret text in B or G band at x, y indices using LSB or MSB. Equation 2 shifted the cover byte first, while Equation 3 concealed the secret bit [28].

G. H. Information Extraction

The recipient must first possess the values for seed1 and seed2 to extract hidden bits from the cover image. Subsequently, the key image was created using the same approach on the transmitter and receiver sides. Hidden texts were extracted by reversing the hiding technique and determining secret locations following the Jaccard similarity of block image key (i, j) [29]. Lastly, secret texts were extracted from B or G bands at x, y indices with LSB or MSB.

III. RESULTS AND DISCUSSION

A dataset was derived from Sudad Najim Abed for accurate evaluation. Technically, the new model was tested and evaluated on multiple sample images of MRI with LSBand MSB-infused Jaccard models.

Fig. 4 Original Samples Images MRI

A. Evaluation metrics

Several evaluation metrics were used to evaluate the proposed system's efficiency [30]. The quality metric was determined by calculating PSNR, SSIM, and MSE. The evaluation outcomes include comparisons between the new model and other techniques of MRI images upon hiding the information:

1) PSNR: Calculates the imperceptibility of the stego image. A higher PSNR value implies a higher quality of the stego image or imperceptibility of the hidden message. It is also known as the peak square value of the pixels divided by MSE and computed as follows:

$$PSNR = 10.\log_{10} \left(\frac{Max^2}{MSE}\right)$$
(4)

2) MSE: Calculates the volume of the average error between the embedded and the original MRI image. The error decreases with a high MSE value [31] based on Equation 5:

$$MSE = \frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} [I(i,j) - \Gamma(i,j)]$$
(5)

Where,

M, N: The number of values MRI image sample (rows and columns of MRI image sample);

I: The original MRI image sample.

I': The MRI image sample post-steganography;

 $(I{-}\Gamma)$: Difference between MRI image sample pre- and post-steganography.

B. Analysis and Comparisons

Based on the findings from Tables 1 to 6, the new model performed optimally compared to Sudad Najim Abed and Hussein Kadhem Bander [15]. These outcomes were compared against PSNR, MSE, and SSIM measurements for the proposed model and the ones above. The evaluation was performed on both LSB and MSB with Jaccard distribution. The proposed model and two other counterparts tested the sample MRI images for dimensions 125×125 , 250×250 , and 512×512 . The proposed model outperformed its past

counterparts with an average PSNR and MSE of 71.476061 and 0.009760533, respectively. The elicited outcomes in Tables 1 to 3 are illustrated in a band chart (see Figures 5 and 6), which represents the comparison of the proposed model's PSNR and MSE average against those of Sudad Najim Abed and Hussein Kadhem Bander for LSB Jaccard distribution. Meanwhile, the findings in Tables 4 to 6 are illustrated in a band chart (see Figures 7 and 8) that demonstrates comparisons of the proposed model's PSNR and MSE average against those of Sudad Najim Abed and Hussein Kadhem Bander for MSB Jaccard distribution.

COMPARATIVE PERFORMANCE FOR PROPOSED METHOD LSB JACCARD , SUDAD NAJIM ABED AND HUSSEIN KADHEM BANDER METHODS OF STEGANOGRAPHY IMAGES WHEN IMAGES HAVE 125×125 DIMENSION

samples	Sudad method		Hussein metho	d	The proposed method LSB Jaccard			
file name	MSE	PSNR	MSE	PSNR	MSE	PSNR	SSIM	
MRI1	1.809728	45.55467	0.0496037	61.17566	0.008917	68.62846	0.000507	
MRI2	1.71712	45.7828	0.04926247	61.20564	0.009564	68.32421	0.000516	
MRI3	1.7504	45.69943	0.04554437	61.54646	0.009202	68.49209	0.000616	
MRI4	1.773376	45.6428	0.05315119	60.87567	0.008953	68.61118	0.000579	
MRI5	1.812928	45.547	0.05213461	60.95954	0.006087	70.28667	0.00052	
MRI6	1.5344	46.27142	0.05302335	60.88613	0.006187	70.21621	0.000522	
MRI7	1.712512	45.79447	0.05214886	60.95835	0.010389	67.96488	0.000482	
MRI8	1.817792	45.53536	0.04972468	61.16508	0.010205	68.04287	0.000479	
MRI9	1.739776	45.72587	0.04903502	61.22574	0.009963	68.14701	0.000465	
MRI10	1.762048	45.67063	0.04971751	61.16571	0.010453	67.93822	0.000477	
MRI11	1.71872	45.77875			0.010397	67.96193	0.000451	
MRI12	1.734976	45.73787			0.010169	68.05805	0.000434	
MRI13	1.74624	45.70976			0.010197	68.04593	0.000435	
MRI14	1.723712	45.76616			0.010091	68.09159	0.00045	
MRI15	1.777472	45.63278			0.010084	68.09464	0.000452	
MRI16	1.803136	45.57052			0.010283	68.00972	0.000471	
MRI17	1.786496	45.61078			0.010333	67.98875	0.000484	
MRI18	1.69504	45.839			0.010212	68.03985	0.000487	
MRI19	1.805568	45.56467			0.010482	67.92641	0.000472	
MRI20	1.787392	45.60861			0.010354	67.97977	0.000445	
MRI21	1.722432	45.76938			0.010283	68.00977	0.000813	
MRI22	1.75424	45.68991			0.01029	68.00678	0.000909	
MRI23	1.724928	45.76309			0.01046	67.93533	0.000895	
MRI24	1.735168	45.73739			0.010027	68.11927	0.000914	
MRI25	1.733696	45.74107			0.010325	67.9918	0.000924	
Avg	1.74717184	45.7097676	0.050335	61.1164	0.009756	68.27646	0.000568	

TABLE II

COMPARATIVE PERFORMANCE FOR PROPOSED METHOD LSB JACCARD , SUDAD NAJIM ABED AND HUSSEIN KADHEM BANDER METHODS OF STEGANOGRAPHY IMAGES WHEN IMAGES HAVE 250×250 DIMENSION

samples	Sudad method	1	Hussein metho	bd	The proposed n	nethod LSB Jaco	card
file name	MSE	PSNR	MSE	PSNR	MSE	PSNR	SSIM
MRI1	1.97736	45.16994616	0.0466255	61.44457	0.002314667	74.48592	0.000483086
MRI2	1.887008	45.3730662	0.04665039	61.44225	0.002307551	74.49929	0.000489902
MRI3	1.926112	45.28398824	0.04567461	61.53405	0.002247123	74.61453	0.000586822
MRI4	1.896288	45.35176064	0.05345755	60.85071	0.002346669	74.42628	0.000553004
MRI5	2.02944	45.05704145	0.05319807	60.87185	0.000357332	82.60008	0.000496877
MRI6	1.699856	45.82668228	0.05363532	60.8363	0.000357332	82.60008	0.000499058
MRI7	1.870224	45.41186735	0.05375794	60.82638	0.002581351	74.01233	0.000458564
MRI8	1.94848	45.23384408	0.04636779	61.46864	0.002704015	73.81071	0.000455312
MRI9	1.918208	45.30184663	0.04617405	61.48682	0.002590235	73.99741	0.000442444
MRI10	1.942992	45.24609348	0.04643177	61.46265	0.00261157	73.96178	0.000453834
MRI11	1.845664	45.4692772			0.0025369	74.08777	0.000429464
MRI12	1.932288	45.27008504			0.002609781	73.96477	0.000414447
MRI13	1.903264	45.33581328			0.002540448	74.0817	0.000415275
MRI14	1.914032	45.31131167			0.002552896	74.06047	0.000429322
MRI15	1.964704	45.19783232			0.002552896	74.06047	0.000430797
MRI16	1.96752	45.19161205			0.002419565	74.29343	0.000448806

samples	Sudad method	d	Hussein metl	nod	The proposed method LSB Jaccard			
file name	MSE	PSNR	MSE	PSNR	MSE	PSNR	SSIM	
MRI17	1.97448	45.17627622			0.002640011	73.91475	0.000461443	
MRI18	1.868048	45.4169233			0.002549346	74.06651	0.000464157	
MRI19	1.95848	45.2116122			0.002487137	74.17381	0.000451356	
MRI20	1.957088	45.21470007			0.002490694	74.1676	0.000426838	
MRI21	1.9124	45.31501626			0.002497772	74.15527	0.000741253	
MRI22	1.907536	45.32607618			0.002543986	74.07565	0.00081221	
MRI23	1.90424	45.33358677			0.002584877	74.00641	0.000797851	
MRI24	1.903584	45.33508315			0.002503096	74.14603	0.000808852	
MRI25	1.915632	45.30768278			0.002591982	73.99448	0.000819047	
Avg	1.91699712	45.306761	0.049197	61.22242	0.002340769	74.8103012	0.000530801	

TABLE III

 $\label{eq:comparative performance for proposed method LSB jaccard, sudad najim abed and hussein kadhem bander methods of steganography images when images have 512 \times 512 dimension$

samples	Sudad method		Hussein meth	ıod	The propose	d method LSB Ja	accard
file name	MSE	PSNR	MSE	PSNR	MSE	PSNR	SSIM
MRI1	2.036514282	45.04192901	0.1730302	55.74958	0.000517	80.99857	0.000445
MRI2	1.877239227	45.3956074	0.1682519	55.8712	0.000509	81.0668	0.00045
MRI3	1.924274445	45.28813349	0.1527259	56.29168	0.000562	80.63642	0.000532
MRI4	1.911251068	45.3176262	0.1807513	55.55999	0.00051	81.05595	0.000505
MRI5	1.943630219	45.24466718	0.1868587	55.41567	5.68E-05	90.58759	0.000455
MRI6	1.737731934	45.73097579	0.1791579	55.59845	5.68E-05	90.58759	0.000457
MRI7	1.914749146	45.30968476	0.1778001	55.63148	0.000637	80.09191	0.000427
MRI8	1.941310883	45.24985272	0.1729732	55.75101	0.000608	80.29314	0.000424
MRI9	1.932186127	45.27031401	0.1700507	55.82502	0.000589	80.43161	0.000412
MRI10	1.937366486	45.25868578	0.1679534	55.87892	0.000593	80.40045	0.000423
MRI11	1.913192749	45.31321635			0.000627	80.15601	0.000401
MRI12	1.936374664	45.26090969			0.00061	80.28103	0.000388
MRI13	1.896503448	45.35126724			0.000634	80.10929	0.000388
MRI14	1.939590454	45.25370323			0.000608	80.29312	0.0004
MRI15	1.939495087	45.25391677			0.000632	80.12675	0.000402
MRI16	1.905849457	45.32991768			0.000632	80.12675	0.000417
MRI17	1.909034729	45.32266532			0.000629	80.14135	0.000429
MRI18	1.902450562	45.33766981			0.000613	80.25693	0.000432
MRI19	1.916313171	45.30613876			0.000621	80.19726	0.000421
MRI20	1.945339203	45.24085022			0.000625	80.17362	0.000399
MRI21	1.928749084	45.27804628			0.000637	80.09191	0.000656
MRI22	1.894256592	45.35641554			0.000621	80.20322	0.000708
MRI23	1.894332886	45.35624062			0.000596	80.38187	0.000697
MRI24	1.894226074	45.3564855			0.000638	80.0804	0.00071
MRI25	1.894226074	45.3564855			0.000635	80.10064	0.000718
Avg	1.914647522	45.31125619	0.172955	55.7573	0.00056	81.15481	0.000484

TABLE IV

COMPARATIVE PERFORMANCE FOR PROPOSED METHOD MSB JACCARD, SUDAD NAJIM ABED AND HUSSEIN KADHEM BANDER METHODS OF STEGANOGRAPHY IMAGES WHEN IMAGES HAVE 125×125 DIMENSION

samples	Sudad method		Hussein method		The proposed method MSB Jaccard		
file name	MSE	PSNR	MSE	PSNR	MSE	PSNR	SSIM
MRI1	1.21856	47.27233443	0.04478258	61.61971	0.032299	63.03892	0.000507
MRI2	1.20576	47.31819488	0.04467173	61.63047	0.03104	63.21154	0.000516
MRI3	1.213568	47.29016245	0.04405297	61.69105	0.032171	63.05616	0.000616
MRI4	1.220288	47.2661802	0.05481656	60.74169	0.03146	63.15323	0.000579
MRI5	1.1504	47.52231488	0.0545953	60.75925	0.021156	64.87653	0.00052
MRI6	1.13728	47.57212959	0.05402113	60.80517	0.021433	64.81997	0.000522
MRI7	1.2416	47.19098657	0.05485563	60.73859	0.035058	62.68295	0.000482
MRI8	1.249024	47.16509577	0.04404915	61.69143	0.03382	62.839	0.000479
MRI9	1.241344	47.19188211	0.04410266	61.68616	0.033998	62.81624	0.000465
MRI10	1.239232	47.19927741	0.04418293	61.67826	0.034432	62.76118	0.000477
MRI11	1.244416	47.18114774			0.035549	62.62259	0.000451
MRI12	1.231424	47.22672747			0.035165	62.66973	0.000434
MRI13	1.2576	47.13537832			0.034461	62.75756	0.000435
MRI14	1.238848	47.20062337			0.034013	62.81439	0.00045
MRI15	1.233024	47.22108831			0.035207	62.66447	0.000452
MRI16	1.268544	47.09774825			0.034283	62.78004	0.000471
MRI17	1.2576	47.13537832			0.034354	62.77104	0.000484
MRI18	1.199424	47.34107626			0.034176	62.79358	0.000487

samples	Sudad method		Hussein meth	Hussein method		The proposed method MSB Jaccard		
file name	MSE	PSNR	MSE	PSNR	MSE	PSNR	SSIM	
MRI19	1.265088	47.10959625			0.035676	62.60698	0.000472	
MRI20	1.265088	47.10959625			0.033949	62.82259	0.000445	
MRI21	1.213184	47.29153687			0.034916	62.70056	0.000813	
MRI22	1.23008	47.23147004			0.034632	62.73609	0.000909	
MRI23	1.215872	47.28192504			0.033856	62.8344	0.000895	
MRI24	1.225216	47.24867701			0.033942	62.82347	0.000914	
MRI25	1.228352	47.23757524			0.034759	62.72007	0.000924	
Avg	1.22763264	47.24152412	0.048413	61.30418	0.033032	62.97493	0.000568	

TABLE V

 $\label{eq:comparative performance for proposed method msb jaccard, sudad najim abed and hussein kadhem bander methods of steganography images when images have 250×250 dimension$$

samples	Sudad method		Hussein meth	od	The proposed method MSB Jaccard		
file name	MSE	PSNR	MSE	PSNR	MSE	PSNR	SSIM
MRI1	1.326784	46.9028	0.1632809	56.00145	0.008133	69.02808	0.000483
MRI2	1.31504	46.94141	0.1595647	56.10143	0.007828	69.1945	0.00049
MRI3	1.320816	46.92238	0.1532035	56.27811	0.007554	69.34914	0.000587
MRI4	1.320208	46.92438	0.1859117	55.43774	0.007284	69.50734	0.000553
MRI5	1.246896	47.1725	0.1842818	55.47598	0.001458	76.4939	0.000497
MRI6	1.24768	47.16977	0.1789682	55.60305	0.001458	76.4939	0.000499
MRI7	1.37992	46.73226	0.1791608	55.59837	0.008411	68.88248	0.000459
MRI8	1.357824	46.80237	0.1634848	55.99603	0.009001	68.58794	0.000455
MRI9	1.373456	46.75266	0.1590756	56.11477	0.008724	68.72384	0.000442
MRI10	1.370688	46.76142	0.1603907	56.07901	0.008805	68.68333	0.000454
MRI11	1.355392	46.81015			0.008727	68.72208	0.000429
MRI12	1.366736	46.77396			0.008637	68.76741	0.000414
MRI13	1.368528	46.76827			0.008309	68.93511	0.000415
MRI14	1.351408	46.82294			0.008562	68.80513	0.000429
MRI15	1.384176	46.71889			0.008873	68.65012	0.000431
MRI16	1.380256	46.73121			0.008923	68.62583	0.000449
MRI17	1.379664	46.73307			0.008756	68.70794	0.000461
MRI18	1.369408	46.76548			0.008469	68.85229	0.000464
MRI19	1.39896	46.67275			0.008699	68.73627	0.000451
MRI20	1.414512	46.62474			0.008757	68.70708	0.000427
MRI21	1.338048	46.86609			0.008661	68.75491	0.000741
MRI22	1.331008	46.889			0.008651	68.76026	0.000812
MRI23	1.337536	46.86775			0.008718	68.72649	0.000798
MRI24	1.327408	46.90076			0.008953	68.61114	0.000809
MRI25	1.339472	46.86147			0.008651	68.76027	0.000819
Avg	1.34807296	46.8355392	0.168732	55.86859	0.00796	69.44267	0.000531

TABLE VI

 $\label{eq:comparative performance for proposed method msb jaccard, sudad najim abed and hussein kadhem bander methods of steganography images when images have $12 \times 512 dimension$

samples	Sudad method		Hussein method		The proposed method MSB Jaccard		
file name	MSE	PSNR	MSE	PSNR	MSE	PSNR	SSIM
MRI1	1.3358383	46.87326	0.1552551	56.22034	0.001993	75.13576	0.000445
MRI2	1.3401718	46.8592	0.1534092	56.27229	0.001622	76.02998	0.00045
MRI3	1.3202171	46.92435	0.1469943	56.4578	0.001643	75.97362	0.000532
MRI4	1.3250885	46.90835	0.1901397	55.34008	0.001598	76.09515	0.000505
MRI5	1.2719269	47.08618	0.1901526	55.33978	0.000227	84.56699	0.000455
MRI6	1.3478355	46.83443	0.183803	55.48728	0.000227	84.56699	0.000457
MRI7	1.3976898	46.6767	0.181969	55.53083	0.002309	74.49622	0.000427
MRI8	1.3824539	46.7243	0.1523289	56.30298	0.002153	74.80081	0.000424
MRI9	1.3937263	46.68903	0.1522143	56.30625	0.002182	74.74135	0.000412
MRI10	1.3832588	46.72177	0.1529645	56.2849	0.002155	74.79567	0.000423
MRI11	1.395195	46.68445			0.002294	74.525	0.000401
MRI12	1.39077	46.69825			0.002265	74.58073	0.000388
MRI13	1.3732567	46.75329			0.001977	75.17101	0.000388
MRI14	1.3898888	46.701			0.002302	74.51058	0.0004
MRI15	1.3923035	46.69346			0.002187	74.73209	0.000402
MRI16	1.3894615	46.70234			0.002138	74.82998	0.000417
MRI17	1.3910599	46.69735			0.002226	74.65533	0.000429
MRI18	1.3993111	46.67166			0.002319	74.47871	0.000432
MRI19	1.3970375	46.67872			0.002196	74.71446	0.000421
MRI20	1.4143867	46.62512			0.002186	74.73378	0.000399

samples	Sudad method		Hussein met	Hussein method 7		The proposed method MSB Jaccard		
file name	MSE	PSNR	MSE	PSNR	MSE	PSNR	SSIM	
MRI21	1.3439407	46.847			0.002131	74.8455	0.000656	
MRI22	1.3442459	46.84602			0.002058	74.99667	0.000708	
MRI23	1.3408165	46.85711			0.002206	74.69521	0.000697	
MRI24	1.3495331	46.82897			0.002165	74.77608	0.00071	
MRI25	1.3442078	46.84614			0.002133	74.84118	0.000718	
Avg	1.366144864	46.777138	0.165923	55.95425	0.001956	75.69155	0.000484	

Fig. 5 Average for PSNR results for proposed model , Sudad Najim Abed and Hussein kadhem Bander methods for LSB Jaccard ,When size images 125 * 125,250 * 250 and 512 * 512

Fig. 6 Average for PSNR results for proposed model, Sudad Najim Abed and Hussein kadhem Bander for LSB Jaccard, When size images 125 *125,250*250 and 512*512.

Fig. 7 Average for PSNR results for proposed model , Sudad Najim Abed and Hussein kadhem Bander or MSB Jaccard, When size images 125 *125,250*250 and 512*512

Fig. 8 Average for MSE results for proposed model , Sudad Najim Abed and Hussein kadhem Bander for MSB Jaccard, When size images 125 *125,250*250 and 512*512.

IV. CONCLUSION

In conclusion, the model that was provided is a testament to increased patient information security. Its sophisticated use of LSB and MSB Jaccard distribution was accomplished inside an encapsulating cover image. In other words, the model serves as a monument to enhanced patient information security. An exhaustive investigation was carried out by doing painstaking technical analyses and making in-depth comparisons of important parameters such as PSNR, MSE, and SSIM. The evaluation technique utilized a varied main dataset with 25 MRI samples and spanned the pixel dimensions of 125×125 , 250×250 , and 512×512 , respectively.

Clearly, the recently presented model was head and shoulders above its competitors, whose achievements are best demonstrated by the work of Sudad Najim Abed and Hussein Kadhem Bander. Its performance demonstrated unmatched levels of both efficiency and safety at an unprecedented level. The research results, which are about to end, highlight the enormous leaps that have been accomplished in enhancing the security of patient data inside telemedicine frameworks. This approach can potentially transform the landscape of patient information security, creating a future with improved healthcare confidentiality and integrity. This promise has been confirmed by the combination of sophisticated concealing techniques and the substantial improvement of relevant metrics.

REFERENCES

[1] Ahmad, M. A., Elloumi, M., Samak, A. H., Al-Sharafi, A. M., Alqazzaz, A., Kaid, M. A., & Iliopoulos, C. (2022). Hiding patients' medical reports using an enhanced wavelet steganography algorithm in DICOM images. *Alexandria Engineering Journal*, 61(12), 10577– 10592, doi:10.1016/j.aej.2022.03.056.

- [2] Ali, M. A., Hussin, N., Flayyih, H. H., Haddad, H., Al-Ramahi, N. M., Almubaydeen, T. H., Hussein, S. A., & Hasan Abunaila, A. S. (2023). A Multidimensional View of Intellectual Capital and Dynamic Innovative Performance. *Journal of Risk and Financial Management*, 16(3), doi: 10.3390/jrfm16030139.
- [3] Apriyansyah, Unik, M., & Mukhtar, H. (2020). Implementasi Sistem Keamanan Pesan Text Dengan Teknik Steganografi Menggunakan Metode Least Significant Bit (LSB). Jurnal Computer Science and Information Technology, 1(1), 8–12.
- [4] Baharav, T. Z., Kamath, G. M., Tse, D. N., & Shomorony, I. (2020). Spectral Jaccard Similarity: A New Approach to Estimating Pairwise Sequence Alignments. *Patterns*, 1(6), 100081, doi:10.1016/j.patter.2020.100081
- [5] Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S., Phillips, S., Maffitt, D., Pringle, M., Tarbox, L., & Prior, F. (2013). The cancer imaging archive (TCIA): Maintaining and operating a public information repository. *Journal of Digital Imaging*, 26(6), 1045–1057, doi:10.1007/s10278-013-9622-7
- [6] Elhadad, A., Ghareeb, A., & Abbas, S. (2021). A blind and highcapacity data hiding of DICOM medical images based on fuzzification concepts. *Alexandria Engineering Journal*, 60(2), 2471–2482, doi: 10.1016/j.aej.2020.12.050.
- [7] Gutub, A. A. A., & Alaseri, K. A. (2021). Refining Arabic text stegotechniques for shares memorization of counting-based secret sharing. *Journal of King Saud University - Computer and Information Sciences*, 33(9), 1108–1120, doi:10.1016/j.jksuci.2019.06.014.
- [8] Ibaida, A., Khalil, I., & Al-Shammary, D. (2010). Embedding patients confidential data in ECG signal for healthcare information systems. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10, 3891–3894, doi:10.1109/IEMBS.2010.5627671.
- [9] Kadhim, I. J., Premaratne, P., & Vial, P. J. (2020). Improved image steganography based on super-pixel and coefficient-plane-selection. *Signal Processing*, 171, doi:10.1016/j.sigpro.2020.107481.
- [10] Kadhim, I. J., Premaratne, P., Vial, P. J., & Halloran, B. (2019). Comprehensive survey of image steganography: Techniques, Evaluations, and trends in future research. *Neurocomputing*, 335, 299–326, doi:10.1016/j.neucom.2018.06.075.
- [11] Kosub, S. (2019). A note on the triangle inequality for the Jaccard distance. *Pattern Recognition Letters*, 120, 36–38, doi:10.1016/j.patrec.2018.12.007.
- [12] Liao, X., Yin, J., Guo, S., Li, X., & Sangaiah, A. K. (2018). Medical JPEG image steganography based on preserving inter-block dependencies. *Computers and Electrical Engineering*, 67, 320–329, doi:10.1016/j.compeleceng.2017.08.020.
- [13] Lu, M., Qin, Z., Cao, Y., Liu, Z., & Wang, M. (2014). Scalable news recommendation using multi-dimensional similarity and Jaccard-Kmeans clustering. *Journal of Systems and Software*, 95, 242–251, doi:10.1016/j.jss.2014.04.046.
- [14] T. Abd, Y. S. Mezaal, M. S. Shareef, S. K. Khaleel, H. H. Madhi, and S. F. Abdulkareem, "Iraqi e-government and cloud computing development based on unified citizen identification," Period. Eng. Nat. Sci., vol. 7, no. 4, pp. 1776–1793, 2019, doi: 10.21533/pen.v7i4.840.
- [15] U. Matthew, J. Kazaure, and N. Okafor, "Contemporary Development in E-Learning Education, Cloud Computing Technology & Internet of Things," EAI Endorsed Trans. Cloud Syst., vol. 7, no. 20, p. 169173, 2018, doi: 10.4108/eai.31-3-2021.169173.
- [16] A. M. Sayaf et al., "Factors Influencing University Students' Adoption of Digital Learning Technology in Teaching and Learning," Sustainability, vol. 2022, p. 493, 2022, [Online]. doi:10.3390/su14010493.
- [17] I. Nanos, V. Manthou, and E. Androutsou, "Cloud Computing Adoption Decision in E-government," Springer Proc. Bus. Econ., pp. 125–145, 2019, doi: 10.1007/978-3-319-95666-4_9.

- [18] A.Surachman, "Analisis penerimaan sistem informasi perpustakaan (sipus) terpadu versi 3 di lingkungan universitas gadjah mada (UGM)," 2008.
- [19] M. A. Almaiah and A. Al-Khasawneh, "Investigating the main determinants of mobile cloud computing adoption in university campus," Educ. Inf. Technol., vol. 25, no. 4, pp. 3087–3107, 2020, doi: 10.1007/s10639-020-10120-8.
- [20] K. K. Hiran and A. Henten, "An integrated TOE–DoI framework for cloud computing adoption in the higher education sector: case study of Sub-Saharan Africa, Ethiopia," Int. J. Syst. Assur. Eng. Manag., vol. 11, no. 2, pp. 441–449, 2020, doi: 10.1007/s13198-019-00872-z.
- [21] H. R. Kawulur, I. Subekti, M. M. Ibrahim, U. N. Manado, F. Condition, and S. C. Computing, "Perceived Usefulness, Perceived Ease of Use, Facilitating Condition, Social Influence, and Personal Innovativeness of Accounting Students Cloud Computing Adoption," vol. 05, no. 02, pp. 141–151, 2022.
- [22] S. Kumar, A. H. Al-badi, S. Madhumohan, and M. H. Al-kharusi, "Computers in Human Behavior Predicting motivators of cloud computing adoption : A developing country perspective," Comput. Human Behav., vol. 62, pp. 61–69, 2016, doi: 10.1016/j.chb.2016.03.073.
- [23] M. Kumar, V. Kumar, H. Glaude, C. De Lichy, A. Alok, and R. Gupta, "Protoda: Efficient Transfer Learning for Few-Shot Intent Classification," 2021 IEEE Spok. Lang. Technol. Work. SLT 2021 Proc., pp. 966–972, 2021, doi: 10.1109/SLT48900.2021.9383495.
- [24] Y. Liu, B. Schiele, and Q. Sun, "An Ensemble of Epoch-Wise Empirical Bayes for Few-Shot Learning," Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12361 LNCS, pp. 404–421, 2020, doi: 10.1007/978-3-030-58517-4_24.
- [25] C. Xie, M. Tan, B. Gong, J. Wang, A. L. Yuille, and Q. V. Le, "Adversarial examples improve image recognition," Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 816–825, 2020, doi: 10.1109/CVPR42600.2020.00090
- [26] T. Banerjee, N. R. Thurlapati, V. Pavithra, S. Mahalakshmi, D. Eledath, and V. Ramasubramanian, "Few-shot learning for framewise phoneme recognition: Adaptation of matching networks," Eur. Signal Process. Conf., vol. 2021-Augus, pp. 516–520, 2021, doi: 10.23919/EUSIPCO54536.2021.9616234.
- [27] T. Banerjee, N. R. Thurlapati, V. Pavithra, S. Mahalakshmi, D. Eledath, and V. Ramasubramanian, "Few-shot learning for frame-wise phoneme recognition: Adaptation of matching networks," Eur. Signal Process. Conf., vol. 2021-Augus, pp. 516–520, 2021, doi: 10.23919/EUSIPC054536.2021.9616234.
- [28] R. Panthong and A. Srivihok, "Wrapper Feature Subset Selection for Dimension Reduction Based on Ensemble Learning Algorithm," Procedia Comput. Sci., vol. 72, pp. 162–169, 2015, doi: 10.1016/j.procs.2015.12.117.
- [29] S. Visalakshi and V. Radha, "A literature review of feature selection techniques and applications: Review of feature selection in data mining," 2014 IEEE Int. Conf. Comput. Intell. Comput. Res. IEEE ICCIC 2014, no. 1997, 2015, doi: 10.1109/ICCIC.2014.7238499.
- [30] Y. Wang, Y. Li, Y. Song, X. Rong, and S. Zhang, "Improvement of ID3 algorithm based on simplified information entropy and coordination degree," Algorithms, vol. 10, no. 4, pp. 1–18, 2017, doi: 10.3390/a10040124.
- [31] F. Harahap, A. Y. N. Harahap, E. Ekadiansyah, R. N. Sari, R. Adawiyah, and C. B. Harahap, "Implementation of Naïve Bayes Classification Method for Predicting Purchase," 2018 6th Int. Conf. Cyber IT Serv. Manag. CITSM 2018, no. Citsm, pp. 1–5, 2019, doi: 10.1109/CITSM.2018.8674324.