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Abstract— Respiratory dysfunction and failure are common in the intensive care unit (ICU); they are often the primary reasons for 

ICU admission and affect length of stay, mortality, and cost. However, diagnosing respiratory dysfunction requires arterial blood gas 

values to calculate the partial pressure of arterial oxygen (PaO2) to a fraction of inspired oxygen (FiO2) or P/F ratio. These intermittent 

blood gas values may be difficult to obtain in some patients or where financial resources are limited. Its varying etiologies and lack of 

other specific biomarkers make diagnosing difficult without this measurement. Thus, in this study, we investigate commonly available 

parameters in the ICU for the classification of respiratory dysfunction without arterial blood gas values using a Bayesian network, an 

unsupervised structural learning method. Clinical data from selected patients in the Medical Information Mart for Intensive Care 

(MIMIC) III v1.4 database (N > 8900 patients) is used to create and validate these models. Bayesian network generated using the taboo 

order algorithm showed a satisfying performance in the classification of respiratory dysfunction. Results are compared to standard 

diagnosis with P/F ratio. The predictor variables selected could stratify respiratory dysfunction with 80% accuracy and 94% sensitivity. 

Hence, without using arterial blood gas values, these parameters could identify respiratory dysfunction in 90% of cases using Bayesian 

networks.  
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I. INTRODUCTION

Critically ill patients frequently develop organ failure 

requiring support, such as mechanical ventilation or 

hemodialysis [1], [2]. Respiratory failure has been identified 
as the most common organ failure at intensive care unit (ICU) 

admission, with an associated risk of mortality up to 38.5% 

[3-5]. It is often characterized by hypoxemia, typically 

resulting from pneumonia or non-pulmonary sepsis [6], [7].  

Factors associated with increased risk of death in 

respiratory failure include multiple organ failure, oxygenation 

index, lung injury, cirrhosis, ventilator-associated pneumonia, 

and high Acute Physiology and Chronic Health Evaluation 

(APACHE II) score [8]. Many etiologies and the 

heterogeneous presentation of respiratory failure make it 

challenging to diagnose and initiate appropriate treatment. 

For example, respiratory failure can be caused by sepsis, 

pulmonary edema, or virology, as with the recent SARS-

COV-2 virus [9], [10].  

Several biomarkers, such as interleukin-6 (IL-6) and IL-8, 

have been associated with respiratory failure. However, none 

have been identified as specific enough for its diagnosis [11]. 

Normal respiratory function is usually characterized by partial 

pressures of oxygen (>80 mmHg) and carbon dioxide (<45 

mmHg). Acute respiratory distress and failure are defined as 
P/F ratio less than 300 mmHg where P stands for partial 

arterial pressure of oxygen (PaO2), an arterial blood gas value, 

divided by the fraction of inspired oxygen delivered (FiO2) 

[12].  

Patients with respiratory failure may deteriorate rapidly; 

thus, early diagnosis is deemed necessary. In a logistic 

regression model for respiratory failure patients, mortality 

prediction requiring mechanical ventilation, age, vasopressor 

use, platelet count, serum potassium, hemoglobin, highest 

heart rate and temperature, and PaO2 were important variables 
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resulting in area under the receiving operator curve (AUC) of 

0.85 when compared to APACHE III [13]. However, these 

many variables further highlight its diverse etiology and 

difficult diagnosis.  

Thus, machine learning techniques have been applied to 

predict respiratory failure for clinical decision support 

systems. Le et al. developed a gradient-boosted tree model to 

predict the onset of acute respiratory distress syndrome 

(ARDS) with high accuracy and AUC of 0.905 [14]. Yang et 

al. investigated four machine learning algorithms for ARDS 
onset prediction with different subsets of non-invasive 

parameters, where the highest performance had an AUC of 

0.909 with a boosted tree model (XGBoost) using six 

minimum features. This study also compared different models 

using optimum features and showed that performance is not 

always higher with more features [15]. Identifying highly 

correlated risk factors with respiratory failure using 

commonly measured variables in the ICU can deliver faster 

treatment based on past patients’ incidences. Hence, there is 

a need to define the critical and commonly measured clinical 

variables linked to diagnosing respiratory failure using the 
standard P/F ratio, which is not often available in real-time as 

the arterial PaO2 cannot be continuously measured and thus 

cannot be used to obtain the earliest diagnosis.  

Bayesian network (BN) is a preferred machine learning 

method, as the interaction between the variables can be 

viewed explicitly even when the relationships between the 

variables are unclear. Furthermore, graphical representation 

can be easily interpreted without machine learning expertise. 

It also helps with identifying the most significant factors to 

the node of interest.  

The scope of BN approaches in medical diagnosis is fairly 
documented in breast cancer, acute kidney injury (AKI), and 

cardiological events. In breast cancer, BN was employed to 

map specific genes causing cancer metastases [16], while in 

acute kidney injury, BN could identify the variables that are 

directly related to AKI [17]. Meanwhile, BN was employed 

to predict cardiovascular risk using demographics, lifestyle, 

and laboratory data [18], as well as the risk of mortality in 

patients undergoing cardiac surgery [19].  

BN has been widely used in the pulmonary system, and one 

such application is investigating the comorbidity of asthma 

patients. In this study, it was found that asthma, especially in 

female patients, is highly associated with chronic obstructive 
pulmonary disease, respiratory failure, hypertension, 

atherosclerosis, and gastritis [20]. In another application, a 

comparison was made between BN constructed using expert 

knowledge and BN elicited by data employing a large 

database of lung cancer patients. This study used BN to map 

the pre-treatment variables such as age, number of 

comorbidities, cancer stage classification, and type of tumor 

laterality to treatment plans and 1-year mortality. The 

resulting performance showed that the BN learned using data 

achieved an AUROC of 0.81 compared to the BN drawn by 

experts' knowledge with an AUROC of 0. 749. This study 
suggested that surgery has the highest probability of survival 

in these lung cancer patients [21]. BN has also been used to 

distinguish between bacterial colds, virus flu, and pneumonia, 

which share similar symptoms. The probability of diagnosis 

was updated based on observed symptoms such as cough and 

shortness of breath as well as conditions such as going to 

crowded places and having a chest x-ray [22]. 

Similarly, BN also investigated the probability of COVID-

19 [23] and used it to determine whether or not a patient with 

respiratory syndrome is due to COVID-19 [24]. For example, 

a patient's probability of being diagnosed with tuberculosis is 

higher with symptoms such as fever, cough, and shortness of 

breath with a chest x-ray image to rule out influenza, COVID-

19, and pneumonia [24]. Meanwhile, BN was constructed 

using risk factors such as age and obesity with conditions 
including frontline healthcare workers and going to crowded 

places, together with observable symptoms which are cough, 

loss of taste and smell, can distinguish the severity of COVID-

19 patients into none, mild, and severe using BN [23]. This 

shows the large scope of BN applications in risk inference, 

diagnostics, or decision support for medical applications. 

In this study, we aim to identify continuously monitored, 

routine ICU variables and their relationships with respiratory 

dysfunction and failure defined according to P/F ratio to 

develop the basis of a real-time diagnostic directly linked to 

clinically accepted diagnostic definitions.  
The main contributions of this study are as follows:  

 The utilization of routinely collected variables 

continuously monitored at the bedside in the intensive 

care unit does not include laboratory or imaging to 

classify the occurrence of respiratory dysfunction 

according to the respiratory component of the SOFA 

score.  

 The graphical representation shows the presumed 

relationships between the target node and respiratory-

related variables. 

 The resulting network achieves high sensitivity without 
the gold standard, which is invasive arterial blood gas 

values, for the classification of respiratory dysfunction. 

II. MATERIALS AND METHODS 

A. Related Works 

The vast amount and complexity of data in the intensive 

care unit (ICU) make it possible to apply artificial intelligence 

(AI) due to the recent surge in computing power and 

portability. Several AI applications include diagnosis, disease 

progression prediction, and disease phenotype identification. 
Within the ICU, much emphasis has been placed on predicting 

conditions such as hypotension, hypoxia, and respiratory 

distress, which are usually observed prior to shock. 

Concurrent with the recent development of COVID-19, AI, 

and machine learning were utilized to predict respiratory 

decompensation using clinical data and imaging. Respiratory 

distress requiring advanced respiratory support, such as 

mechanical ventilation, increases the risk of mechanical 

ventilation-associated pneumonia and mortality [25].  

In a recent review of acute respiratory failure (ARF) using 

machine learning, the classification and severity of ARF are 
defined based on the mechanical support of oxygenation, 

which can vary from nasal cannula to invasive mechanical 

ventilation. The review highlighted the prediction of ARF 

patients requiring invasive mechanical ventilation (IMV), 

prolonged IMV, and its failure, which resulted in patients’ 

deterioration and mortality. It also highlighted two studies on 

the prediction of acute respiratory distress syndrome (ARDS), 
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which is a severe form of ARF. Generally, the machine 

learning methods used involved logistic regression, neural 

networks, decision trees, and random forest employing 

laboratory data and vital signs as predictors. The most 

common performances reported were on the area under the 

receiver operating curve (AUROCs), sensitivity, specificity, 

positive predictive value (PPV), and negative predictive value 

(NPV) ranging from 0.8 to 0.91 [26].  

ARDS was also predicted using electronic health records 

(EHR) data consisting of laboratory and vital signs with a 
recurrent neural network. In addition to predicting ARDS, this 

model was used to predict other conditions and outcomes, 

such as sepsis, hypoxemia, COVID-19, and mortality. The 

model’s performance was measured using AUROC, which 

was 0.842. This study identified systolic blood pressure, 

respiratory rate, neutrophils, lymphocytes, and peripheral 

oxygen saturation (SpO2) levels of less than 91% as risk 

factors associated with higher mortality rates [27]. 

The risk of ARDS within 24 hours in ICU and COVID-19 

patients was predicted in ICU and COVID-19 patients using 

EHR data, including demographics, comorbidities, and 
laboratory results. An XGBoost machine learning algorithm 

was able to predict the cases of ARDS requiring advanced 

respiratory support in these patient cohorts with an AUROC 

of 0.858 with high sensitivity and specificity. The factors 

contributing to its high performance were age, SpO2, blood 

urea nitrogen (BUN), pH, and respiratory rate [28].   

B. Data Collection 

This retrospective study used patient data from the Medical 

Information Mart for Intensive Care (MIMIC) III v1.4 
database [29]. MIMIC III is known to be an open-access 

database consisting of de-identified ICU patient data from the 

Beth Israel Deaconess Medical Center from 2001 to 2012. 

The use of this database is under the approval of the 

Institutional Review Boards of Beth Israel Deaconess 

Medical Center.  

In total, 8702 patients were selected after meeting the 

following inclusion criteria: age more than 16 years old, at 

least one measurement of partial pressure of arterial oxygen 

(PaO2), P/F ≤ 300 on the first day of ICU admission, and 

requiring mechanical ventilation during ICU stay. Further 
variables extracted from this database are patient 

demographics and typical vital signs. S/F ratio (SpO2/FiO2) 

was computed as a non-invasive measure of oxygenation 

index. All variables are listed in Table 1. Measured arterial 

blood gas, PaO2, was extracted to define the target node of P/F 

ratio ≤ 300, which is the Berlin definition of ARDS [12] but 

is not included in the model as a predictor.  

TABLE I 

DESCRIPTION OF TARGET AND 13 PREDICTOR VARIABLES  

No. Variables Minimum Maximum Mean 

1. Target (PF) 0 1  
2. Age 16 91 63.64 

3. FiO2 20.99 100 55.61 
4. Gender    
5. HR 31 198 88.95 
6. MAP 1 50 12.25 
7. Diastolic BP 21 296 59.88 
8. Mean BP 26 297 79.68 
9. Systolic BP 31 341 119.86 
10. PEEP 0.1 30 7.62 

No. Variables Minimum Maximum Mean 

11. rr 0.17 68 20.67 
12. SF 51 476.19 191.77 
13. SpO2 51 100 97.08 
14. Temp 30.6 42.8 37.1 

*HR, heart rate; MAP, mean arterial saturation; BP, blood pressure; PEEP, 

positive end-expiratory pressure; sf (S/F): SpO2/FiO2; temp, temperature. 

 

In total, 13 predictors in Table 1 after the Target (#2-14), 

including the derived variables, were considered to build BN 

with the target node (No. 1 in Table 1) defined as PaO2/FiO2 

(P/F) ratio (binary; P/F > 300 (0), P/F ≤ 300 (1)). In the ICU, 

the progression of organ failure is usually tracked by the 

Sequential Organ Failure Assessment (SOFA) score. This 

score is computed daily for six main organ systems, including 
respiratory, cardiovascular, renal, hepatic, central nervous 

system, and coagulation, on a scale of 0 to 4, where 0 

represents normal organ function and an increased score 

shows worsening organ function. The respiratory component 

of the SOFA score is assessed using the worst daily P/F ratio 

[30].  

The Berlin definition for ARDS, one of the leading causes 

of respiratory failure among ICU patients, classifies ARDS 

severity based on P/F ratio. A P/F ratio of less than 300 is 

considered mild, P/F < 200 is moderate, and P/F < 100 is 

severe ARDS. Besides the PF ratio, the Berlin definition has 
added conditions of chest radiograph and PEEP > 5 cmH2O 

for ARDS diagnosis [12]. Hence, in this study, P/F < 300 is 

selected as the threshold for the target node. Before model 

creation, the predictors are subjected to data discretization 

into three intervals. This step transforms continuous variables 

into a specified number of states, minimizing interactions 

between the nodes so their continuous probability distribution 

can be established more easily. 

C. Bayesian Networks 

Bayesian network is a directed acyclic graph (DAG) 

consisting of nodes and directed arrows [31-33]. The nodes 

represent the variables, while the arrow represents the 

influence of one node on another. The direction of the arrow 

pointing from one node to another shows the parent–child 

relationship between the nodes [34]. For example, a directed 

arc from node A to node B can be interpreted as node A being 

a parent to node B. The graph is acyclic, so following a path 

from node A will not return to node A where it started. BN is 

developed with a conditional probability given by equation (1) 

where we would like to estimate parameter P(A|B) called the 
posterior probability representing the conditional probability 

of A given B. P(B|A) is the likelihood of B given A, and P(A) 

is referred to as the prior probability of A while P(B) is the 

marginal probability of B, a normalizing constant that can be 

removed and can be simplified as P(A|B) = P(B|A) * P(A). 

 � ��|�� =  ���� × 
��|��

���  (1) 

Figure 1 shows the typical BN. In this network, node C is 

the child node of both node A and node B. Meanwhile, node 

D and node E are both children’s nodes of node C. The 

dependencies of a child node depend on the number and states 

of its parent. Thus, a child node with more than one parent 

requires the joint probability distribution of its parent. Thus, 

the conditional probability of node x, P(x) and the parent node 
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is π while i is the number of parent nodes can be obtained by 

equation (2) 

 ��� =  ∑ ��|�������   (2) 

The joint probability distribution of all nodes is represented 

by chain rules given in equation (3). 

���, �, … , ��
= ��������|�� … ������,�, … , ��
=  � ����������� ����

�

� �
 

(3) 

 
Fig. 1  Typical Bayesian Network 

In the unsupervised learning technique for BN creation, 
where the target node is not specified, the relationships 

between nodes are built based on posterior probability 

distribution across the states of the nodes defined by the data 

discretization technique [35]. Network evaluation was 

performed on 20% of the randomly selected testing dataset, 

where the remaining 80% of data was used to create the 

posterior probabilities and train the network. The trained 

network is subjected to tenfold cross-validation in which the 

training dataset was partitioned into ten segments. During 

cross-validation in the training data, the training was 

performed on nine segments of the data while holding one 
segment as a test, and this cycle was iterated ten times. All 

BNs are built using BayesiaLab version 10.2 (Bayesia S.A.S., 

France).  

The performance of the resulting networks was assessed 

using precision, reliability, sensitivity, and specificity metrics. 

The overall precision is the number of correctly identified 

cases over the total number of cases. The overall precision 

usually communicates the classification power of the 

resulting BN. Meanwhile, reliability is described as correctly 

predicting the number of cases over the number of predictions. 

Sensitivity is described as the number of positively predicted 
cases over the number of actual positive cases, while 

specificity refers to indeed identified negative cases over the 

actual number of non-respiratory failure cases. As shown in 

Table 2, True Positive (TP) is correctly identified cases of 

respiratory failure, whereas False Negative (FN) is the 

number of respiratory failure cases wrongly identified as not 

having respiratory failure. Conversely, True Negative (TN) 

are positive classification of cases without respiratory failure, 

while False Positive (FP) is cases without respiratory failure 

identified as respiratory failure. A higher sensitivity indicates 

the capability of the resulting network to correctly identify 

respiratory failure cases, while a higher specificity suggests 

the potential to distinguish those without respiratory failure 

from actual cases.  

TABLE II 

CONFUSION MATRIX STRUCTURE 

 Actual Class 

Predicted Positive (P/F ≤ 300) Negative (P/F > 300) 

Positive (1) True Positive (TP) False Positive (FP) 
Negative (0) False Negative (FN) True Negative (TN) 

Data discretization of continuous variables is common in 

BN, so interactions between discrete states of 195 variables 

can be built, avoiding complex interactions [35]. Before 

building the network, equal frequency, k-means, and equal 

distance data discretization methods were employed [35]. 

Multiple datasets were developed from different 

discretization methods, as each technique yields different 

states of the variables. Equal frequency divides the number of 

observations into equal numbers across each interval, while 

equal distance separates the highest number of occurrences 

with similar traits, often resulting in a higher probability 

distribution of one interval than the other. Meanwhile, k-
means seeks to achieve a normal probability distribution with 

a centralized one interval comprised of majority distribution, 

and the remaining number of occurrences is divided equally 

across other intervals.  

Following data discretization, the prepared data were used 

to build a BN using unsupervised structural learning methods. 

In unsupervised learning, the network was built intuitively 

without specifying the target/outcome node [36]. It thus 

allows visualization of relationships between the variables 

when the outcome node is not specified, as opposed to 

relationships concerning the outcome node in the supervised 
learning method. In this study, three unsupervised learning 

methods were employed, including the maximum spanning 

tree (MST), equivalence class (EQ), and taboo order [37]. All 

networks are evaluated with the specified statistical metrics to 

assess performance. The construction of BN is shown in 

Figure 3. 
 

 
Fig. 2  Model construction for target evaluation 
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III. RESULTS AND DISCUSSION 

As shown in Table 3, the highest mean overall precision 

result for training and testing data using the equal distance 

technique was 70.8 %, while equal frequency has the lowest 

mean overall precision of 41.6%.  

TABLE III 

OVERALL PRECISION RESULTS OF DIFFERENT DATA DISCRETIZATION 

METHODS  

Overall Precision Equal Frequency K-Means Equal Distance  

Train Test Train Test Train Test 

Mean 41.1 41.2 58.9 59.1 75.1 75.2 

Minimum 33.5 33.3 42.9 42.8 49.2 49.6 

Maximum 76.7 76.6 92.8 92.8 99.7 99.7 

On Target Node 76.7 76.6 76.6 76.9 76.7 76.8 

Meanwhile, the precision on the target node achieves ~77% 

across all discretization techniques with slight variation. The 

k-means and equal distance techniques show SpO2 has the 

highest overall precision. The initial probability distribution 

of discretized data using equal frequency is shown in Figure 

3. Continuous data discretized by the equal frequency method 

is shown because the data for each node is distributed equally 

based on the number of occurrences. The discrete variables 

are also shown where respiratory failure (P/F ≤ 300) 

occurrences were 77%, with one-third of the patients below 
58 years old and one-third above 73 years old. The occurrence 

of respiratory failure as given by the Target node is 76.7%. 

However, despite the condition to distribute equal numbers of 

occurrences across specified intervals, 54% have PEEP 

values less than 5 cmH2O. This node was re-discretized using 

the k-means method. 

 

 
Fig. 3  Initial probability distribution of data discretization using equal frequency 

 

Discretized data were fed into the maximum spanning tree 

(MST), equivalence class (EQ), and taboo order structural 

learning algorithms. The performance of these three BNs for 

each discretization method (nine total outcomes) is shown in 
Table 4. BN generated using taboo order with data discretized 

by the equal distance method in the testing dataset has 

achieved the highest overall precision of 83.5 %. Considering 

each node in the network as the target allows the computations 

of minimum and maximum overall precision of the associated 

node indicated in brackets in Table 4. BN generated using 

MST by equal frequency discretization has the minimum 

overall precision associated with the temperature (temp) node. 

Meanwhile, using the equal distance method in preparing a 
dataset for BN generated using EQ shows the maximum 

precision of a single node was obtained for the FiO2 node 

with 99.6%. Generally, a minimum precision of a node of 

more than 40% suggests they are advantageous for BN 

creation using unsupervised structural learning methods. 

TABLE IV 

OVERALL PRECISION RESULTS OF DIFFERENT DATA DISCRETIZATION METHODS  

Structural Learning 
Training Testing 

Equal Frequency K-Means Equal Distance Equal Frequency K-Means Equal Distance 

MST 71.9 75.6 82.2 71.7 75.6 82.1 

Minimum 41.2 48.3 54.6 40.8 (Temp) 48.4 (HR) 54.1 (Age) 

Maximum 99.1 97.7 99.1 99.1 (FiO2, SF) 97.8 (FiO2) 99.2 (SpO2) 

Target 80.1 76.7 76.7 79.5 76.6 76.6 

EQ 75.1 78.3 83.4 74.9 78.3 83.4 

Minimum 44.3 50.1 56.2 43.6 (Temp) 50.1 (HR) 55.7 (Age) 

Maximum 99.2 99.3 99.6 99.1 (SF) 99.3 (FiO2) 99.6 (FiO2) 

Target 80.5 77.2 77 80.1 77.1 77.1 

Taboo Order 75.2 78.4 83.5 75.1 78.4 83.5 

Minimum 45.9  50.5 56.4 45.4 (HR) 50.5 (HR) 56.1 (Age) 

Maximum 99.2 99.3 99.6 99.1 (SF) 99.3 (FiO2) 99.6 (FiO2) 

Target 80.5 77.7 77.2 80.2 77.4 77.2 
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Further examination of the target node in the network 

demonstrating the highest overall precision on this node was 

achieved by BNs generated with the taboo order structural 

learning algorithm employing the dataset discretized using the 

equal frequency method with 80.5% in the training dataset 

and 80.2% in the testing dataset, as shown in Figure 4.  

 

 

 
Fig. 4  Target node performance results for a) MST, b) EQ, and c) taboo order 

structural learning  

The highest sensitivity was 100% using datasets generated 

via k-means and equal distance in BNs generated by MST 

unsupervised structural learning. This latter result suggests 

these datasets correctly classified all respiratory failure cases. 

However, the MST-generated BN with high sensitivity also 

returns 0% specificity, where all the non-respiratory failure 

cases were incorrectly classified as respiratory failure. 

Therefore, taboo order generated BNs using equal frequency 
discretization are the most suitable prediction model in the 

absence of PaO2 with an overall precision of 80% in training 

and testing data, an accurate prediction (reliability) of 78%, 

and sensitivity and specificity of 94% and 37%, respectively. 

The BN generated using MST consists of 14 nodes and 13 

directed arcs. In this BN shown in Figure 5, the classification 

node denoted as the target is directly connected with SF (S/F 

ratio) as its parent and SpO2 as its child node. The SF node 

stemming from FiO2 is also parent to PEEP, which connects 

with rr (respiratory rate) nodes. This MST-generated BN 

shows that demographic predictors, such as age and gender, 

are connected away from the target node.  
 

 
Fig. 5  Bayesian network using maximum spanning tree (MST) algorithm  

1053



Meanwhile, the age node junction also connects the 

relationships between vital sign predictors (HR, bp, Temp). 

The advantages of this structural learning method are as 

follows: the relationships between the predictors can be 

interpreted directly, and visible patterns of variable clustering 

can be observed to provide further insight. 

The BN generated by taboo order unsupervised learning 

employing equal frequency discretization is shown in Figure 

6, with 40 arcs connected among the 14 nodes. Concerning 

the target node, temp, SF, and rr have parent relationships, 

while PEEP, FiO2, SpO2, and MAP were found to have a child 

relationship. The color of the nodes can observe clustering 

patterns within certain types of variables. For example, the 

variables most related to respiratory function, such as sf, SpO2, 

and FiO2 are clustered near the Target node.  

 

 

Fig. 6  Bayesian network using taboo order algorithm  

 

Meanwhile, on the other side of the target node, variables 

relating to blood pressure with demographic variables are 
grouped at the top. These clusters leave some variables in the 

middle of the network with the target node, such as heart rate, 

temperature, MAP, and PEEP, which would vary 

significantly with respiratory failure. SpO2 and FiO2 are both 

directly connected to the target node, as expected. The derived 

S/F ratio, which usually corresponds to the P/F ratio, is 

directly connected to the target as a parent node, similar to the 

MST-generated BN. The demographic variables, despite not 

being directly related to the target, offer risk inference for 

respiratory failure only because they are basic information 

required for all admitted patients. 
The first part of this study compared three different 

discretization methods with an equal number of intervals for 

preparing datasets for structural learning. These datasets were 

employed for unsupervised structural learning using MST, 

EQ, and taboo order algorithms. The results determined that 

the taboo order-generated BN using equal distance 

discretization had the highest overall precision at 83.5%. In 

contrast, BN generated using an unsupervised learning taboo 

order algorithm with equal frequency discretization achieved 

the highest overall precision at the desired target node 

corresponding to P/F ratio ≤300 at 80.5% in the absence of 

arterial blood gas value, PaO2, as a predictor. The 
performances of the specified target node (PF ratio) are 

consistent with different structural learning algorithms but 

varied depending on data discretization techniques, 

suggesting sensitivity to the data discretization technique 

chosen.  

The built BN models showed the parent-child relationship 

between S/F ratio and the Target node. The use of S/F ratio as 
substitute to P/F ratio has been debated over time [38-40]. 

This relationship suggests that S/F ratio is suitable to predict 

respiratory failure in the absence of P/F ratio as both train and 

test model showed high sensitivity. Furthermore, in the MST 

model which limits one parent for every child node, the SF 

ratio is parent to Target node, with FiO2 as its parent node. 

Meanwhile, in the more heuristic search using taboo Order 

algorithm reveals that SF is parent to SpO2, FiO2, and the 

Target node. The graphical representation of the BN showed 

that other than the SF ratio, which is highly associated with 

the target node as observed in MST-generated network, SpO2, 
FiO2, and PEEP, were found to have a direct influence on the 

target node in the taboo order-generated BN, suggesting their 

importance in the classification of P/F ratio. Meanwhile, in 

the absence of PaO2 as predictors, the variables selected were 

able to achieve 80% accuracy in the classification of PF ratio, 

PF ≤ 300.  

The findings in this study were consistent with Ren et al. 

[41], wherein a large dataset, SpO2, FiO2, and PEEP readings 

can facilitate the assessment of PF ratio with high accuracy. 

Meanwhile, several variables have been deemed predictive of 

ARDS, such as low P/F ratio, oxygen saturation (SpO2), heart 

rate, hemoglobin, and albumin level [42]. In one study, older 
age, use of vasopressors, and platelet count were identified to 

be important predictors among ICU patients with ARDS [11].  

This study is limited to all patients who experienced 

respiratory failure at any point during their ICU stay. 

Therefore, respiratory and non-respiratory failure patients 
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have no clear and specific differences. Hence, we recommend 

studying two patient cohorts, that is, between respiratory 

failure and non-respiratory failure patients, to better identify 

which readily available variables are highly associated with 

respiratory failure. 

IV. CONCLUSION 

This study demonstrates the use of the Bayesian network 

to classify respiratory dysfunction defined by P/F ≤ 300 using 

commonly available variables in the ICU. Using unsupervised 

structural learning methods, the Bayesian network mapped 

the relationship between the predictors and  the classification 

node. Taboo order-generated Bayesian network was found to 

have the highest overall precision for the network and the 

classification node. Additionally, SpO2, FiO2, PEEP, and 

MAP were found to be highly associated with PF ratio ≤ 300. 

This Bayesian network could distinguish respiratory 

dysfunction cases 90% of the time correctly. 
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