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Abstract— Smartphone-based mobile fundus photography is gaining popularity due to the rise of handheld fundus lenses, allowing a 

portable solution for a mobile-based computer-assisted diagnostic system (CADS). With such a system, professionals can monitor and 

diagnose numerous retinal diseases, including diabetic retinopathy (DR), glaucoma, age-related macular degeneration, etc. on their 

smartphone devices. In this study, we proposed a unified CADS tool for smartphone devices that can detect and identify six crucial 

retinal features utilizing both a filtering approach and a deep learning (DL) approach. These features are retinal blood vessels (RBV), 

optic discs (OD), hemorrhages (HM), microaneurysm (MA), hard exudates (HE), and soft exudates (SE). Traditional filtering is applied 

for RBV segmentation using B-COSFIRE and Frangi filter, whereas vessel inpainting and automatic canny edge-based Hough 

transform are used to localize OD center and radius. The DR lesions (HM, MA, HE, OD segmentation, and SE) are detected using a 

transfer learning-based Resnet50 backbone and multiclass DL U-net architecture. RBV segmentation achieved 94.94% and 94.44% 

accuracy in the DRIVE and STARE datasets. OD localization achieved an accuracy of 99.60% in the MESSIDOR dataset. Lastly, the 

IDRiD dataset is used to train and validate the DR lesions with an overall accuracy of 99.7%, F1-score of 77.4, and mean IoU of 59.2. 

The smartphone application can perform all the segmentation tasks at once in an average of 30 seconds. Given the availability, it is 

possible to improve the accuracy of the DL method further by training with more mobile fundus datasets. 

Keywords— Mobile application; retinal image analysis; fundus image; diabetic retinopathy; lesion detection; vessel segmentation; optic 

disc localization 
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I. INTRODUCTION

Retinal fundus cameras are modern-day medical imaging 

devices used to capture the inner surface of the eye, i.e., the 

retina. The captured images are called retinal fundus images 

containing important landmarks of the retina such as retinal 

blood vessels (RBV), optic discs (OD), macula, fovea, retinal 

background, etc. Ophthalmologists use these captured fundus 

images and diagnose the landmarks by identifying potential 

symptoms that may indicate health risks [1]. These images 
may show signs of lesions such as hemorrhages, 

microaneurysm, exudates, neovascularization, retinal tearing, 

optic cup formation, vessel caliber, tortuosity, etc. Depending 

on each symptom’s severity, diabetic retinopathy (DR), 

retinal detachment, glaucoma, hypertension, diabetes, kidney 

dysfunction, age-related macular degeneration (AMD), and 

other ocular and systemic diseases can be diagnosed and 

treated by professionals [2]–[7]. Therefore, it is a crucial 
diagnostic tool for both medical professionals and patients for 

early detection of these diseases to prevent partial or complete 

blindness. 

To properly diagnose the fundus images, expert physicians 

examine the retinal structures by manually segmenting the 

retinal blood vessels (RBV), OD localization and 

segmentation, lesions identification, and grading. It is a 

tedious and time-consuming process for the experts, 

especially when the quantity of the image increases, thus 

leading researchers to an easier solution, such as computer-

aided diagnostic system (CADS) tools. Nowadays, various 
CADS tools are proposed by the researchers, such as RBV 

segmentation CADS tools are used to find abnormalities by 

calculating the retinal vascular network to indicate potential 

signs such as vessel tortuosity and leakage  [8]. Like RBV 

CADS tools, OD localization and segmentation CADS are 
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proposed to help diagnose glaucoma  [9]. Recent 

advancements in machine learning (ML) and deep learning 

(DL) techniques opened the door for more accurate results as 

well as an automatic screening of DR while lowering the cost 

and increasing patients’ access to DR screening [10]. 

Although traditional desktop fundus (DF) cameras capture 

high-quality images, they are very expensive and require 

additional setup, which hinders accessibility in resource-

limited settings and lacks portability. A handheld fundus (HF) 

lens is an alternative to DF cameras, which work similarly to 
an ophthalmoscope. A device with a camera, such as a 

smartphone, is attached to the lens that can capture the image 

of the retina [11]. These lenses are already commercially 

available, making it possible to utilize a smartphone-based 

CADS for a cheaper, portable diagnosis alternative that can 

benefit in a limited resource environment. 

A. Retinal Blood Vessel Segmentation 

Various researchers have conducted many RBV 
segmentation studies over the past few decades. As time 

progressed, RBV segmentation techniques shifted from the 

traditional filtering approach to deep learning techniques. 

Traditional filtering approaches are categorized into five 

sections, i.e., pattern classification, morphological 

processing, vessel tracking, matched filtering, and multiscale 

approaches [12]. Though these approaches are considered 

earlier methods, they are still being investigated in recent 

years.  

Bar Combination of Shifted Filter Responses (B-

COSFIRE) is a traditional bio-inspired filter based on key-

point detection and pattern recognition [13], [14]. The 
original author achieved 94.42% and 94.97% accuracy in 

Digital Retinal Images for Vessel Extraction (DRIVE) and 

Structured Analysis of the Retina (STARE) databases, 

respectively. This filter’s accuracy was improved in a few 

recent studies, e.g., by applying the multiscale Frangi filter 

and Otsu’s thresholding [15], optimal parameter optimization 

[16], and adaptive thresholding with automatic parameter 

estimation [17].  

Other notable methodologies were also conducted based on 

unsupervised traditional approaches. They are Soares et al.’s 

approach using 2-D Gabor wavelet [18], Gaussian Matched 
filter introduced by Chaudhuri et al. [19], Matched filter 

response with adaptive thresholding by Hoover et al. [20]. 

Later, a few other researchers incorporated supervised 

classification methods by classifying fundus image pixels as 

vessel pixels or non-vessel pixels with the traditional methods 

[21]–[23].  

The key difference between supervised and unsupervised 

classification is that supervised algorithms extract vessels 

based on training ground truth data, and unsupervised 

methods find inherent patterns within the image to be 

categorized as blood vessels or non-blood vessel pixels [12]. 
Because of that, unsupervised methods are usually less 

computationally expensive and do not rely on a large amount 

of ground truth data but are less accurate than supervised 

methods. However, the supervised classifier’s requirement 

for ground truth data also plays a key role in achieving higher 

accuracy, which can result in lower accuracy when ground 

truth data is insufficient.  

Most techniques discussed above also apply some pre-

processing steps such as green channel image (GCI) 

extraction, contrast limited adaptive histogram equalization 

(CLAHE), gaussian filter, etc. Post-processing steps such as 

morphological closing, opening, and thresholding are also 

applied to improve vessel detection rate. 

The evolution of the DL method in modern times allowed 

for improved accuracy in terms of sensitivity and specificity. 

A DL architecture consists of several hierarchical layers and 

an encoder and decoder that extract higher-level features from 
the input [24]. Depending on the layer type, quantity, and 

depth, numerous architectures such as convolutional neural 

network (CNN), multiscale CNN, fully convolutional neural 

network (FCN), recurrent neural networks (RNN), deep 

neural network (DNN), and artificial neural network (ANN) 

has been proposed that were applied for RBV segmentation 

[25], [26].  

Among these, CNN is widely used to classify and segment 

RBV. It is constructed with three main layers: convolutional, 

pooling, and fully connected. AlexNet, Inception-v3, and 

Resnet are a few of the pre-trained CNN architectures used to 
classify RBV. Fan & Mo, Liskowski & Krawiec, and Uysal 

& Güraksin proposed RBV segmentation studies with CNN 

that achieved an accuracy of 96.12%, 94.95%, and 94.19% in 

DRIVE and 96.14%, 95.66%, and 94.71 in STARE datasets 

which are higher compared to many previous traditional 

filtering approaches [27]–[29].  

 

 
Fig. 1  U-net Architecture [30]. 

Out of the many DL architectures mentioned, U-net 

architecture [30] has been explored the most by many 

researchers to address several aspects of vessel detection 

shortcomings to improve accuracy over the previous 

networks. Its structure consists of symmetrical encoders and 

decoders, which form a shape like “U” hence the name (Fig. 

1). A full comprehensive recent result of multiple studies for 

U-net architecture is discussed by [26]. 

B. Optic Disc Localization and Segmentation 

Researchers have been investigating the OD part of the 

fundus image to help medical professionals perform retinal 

image analysis more accurately and efficiently. A dependable 

technique for segmenting the optic disc is crucial in 

establishing a point of reference for identifying optic nerve 

head disorders such as glaucoma and DR [9]. This is essential 

for the automated screening of abnormalities in the optic 
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nerve head. There are two different methods in the OD 

analysis research area. The OD localization method detects 

the OD center and radius; the other is the OD segmentation to 

identify every pixel belonging to the whole OD. 

The OD region has a higher contrast against the retinal 

background, making it easy to spot. Past techniques utilized 

thresholding [31], [32], contrast-based [33], [34], vessel 

inpainting [35], Hough transform [36]–[38] and 

morphological algorithm [39] methods to segment or localize 

OD. DL methods have also been studied for automatic OD 
segmentation. Similar to the RBV methodologies DL method, 

corresponding segmented OD ground truth is also required to 

train a DL model. Few databases, such as MESSIDOR [40], 

Drishti-GS [41], Indian Diabetic Retinopathy Image Dataset 

(IDRiD) [42] provide ground truth data. A lot of the same DL 

architectures, as discussed in section II (A) are also employed 

in OD detection using CNN, FCN, U-net, etc. According to a 

recent study [43], U-net and generative adversarial network 

(GAN) models have shown impressive results for OD 

segmentation as well as glaucoma detection. 

C. Diabetic Retinopathy Screening 

DR is an ocular complication of diabetes that leads to 

swelling and leakage of fluids and blood from blood vessels 

in the retina. These leakages are forms of lesions, namely, 

microaneurysms (MA), hemorrhages (HM), and soft and hard 

exudates (EX) [44]. Depending on the presence of these 

lesions, DR is categorized into five stages based on a severity 

scale starting from no DR, mild non-proliferative DR 

(NPDR), moderate NPDR, severe NPDR, and proliferative 

DR(PDR) [45]. DR lesion detection and DR classification are 
the most common methodologies in DR-CADS where 

detection is done by segmentation to visualize the lesions, and 

classification is to grade the severity scale of DR.  

According to Alyoubi et al. [44], DR classifications are 

divided into four categories, namely binary, multi-level, 

lesion-based, and vessel-based classification. In binary 

classification, DR is classified into two classes that are normal 

images (no DR) and DR images [46]–[48]. Multi-level 

classifications are divided into many classes ranging from 

three to five stages of DR [49]–[53]. Lesion-based studies 

involved detecting specific lesions such as MA [54], HM [55], 
or EX [56], [57].  

Most of these methods use DL approaches to classify based 

on various versions of CNN and FCN architecture with basic 

data augmentation to increase dataset size and use pre-trained 

networks. While most research performed the segmentation 

of different lesions separately, few have proposed a multi-

class semantic segmentation model to extract features [58], 

[59]. MESSIDOR, IDRiD, DIARETDB1 [60], DDR [61] are 

the most commonly used databases in these studies that 

provide grading or pixel-level ground truth data. 

D. Mobile-based Retinal Analysis Methods 

Several smartphone-based fundus imaging devices, such as 

20D lens, D-Eye, Peek Retina, iExaminer, and iNview [62] 

are readily available, similar to Fig. 2(a). They are HF lenses 

that can be attached to a smartphone device to capture various 

ranges of mobile fundus images (Fig. 2b). Usually, these 

lenses produce a very narrow field of view (FOV) and low-

resolution image compared to DF cameras, but they are 

portable, compact, and cheaper solutions [63]. Another 

drawback of the HF lens is it requires some adjusting before 

capturing a usable fundus image to avoid glaring and incorrect 

focal distance. 

The smartphone device is crucial in capturing the actual 

fundus image through the HF lens. Smartphone devices have 

come a long way both in photography and computational 

power. Nowadays, an average smartphone camera can capture 

high-resolution images with high dynamic range and can 

process ML and DL algorithms locally on the device [65]. 
This opens the possibility of not only processing HF-

produced fundus images but also DF-produced images on the 

smartphone device as well.  

 

  
(a) (b) 

Fig. 2  (a) A handheld fundus lens attached to a smartphone [62], (b) Mobile 

Fundus Image [64]. 

With its availability, few researchers have been 

investigating smartphone-based CADS that can perform 

multiple retinal analysis tasks. Xu et al. proposed an RBV 

segmentation using the traditional filtering approach using the 

Gabor filter and bottom-hat transformation [66]. Previously, 

a smartphone-based RBV segmentation method using an 

optimized B-COSFIRE filter was investigated for Android 

devices [67] that achieved comparable performance to the 
desktop implementations. Khaing et al. proposed an OD 

segmentation method on smartphone-captured fundus images 

by extracting vessel structures[68].  

While others also attempted DR detection methodologies 

using DL techniques on smartphone devices [11], [69]–[71]. 

It is important to note that most of the DR screening study for 

mobile implementation focuses only on the HF lenses and the 

application. The core methodologies they used for DR 

screening are various off-the-shelf Artificial Intelligence (AI) 

and DL-based software available on the market. 

TABLE I 

PREVIOUS STUDIES ON SMARTPHONE-BASED FUNDUS ANALYSIS METHODS.  

S = SEGMENTATION, G = GRADING 

Author RBV OD DR Method S/G Result 

Xu et al. [66] Yes No No 
Filter 

based 
S 

Accuracy = 

92.65% 

Rajalakshmi 

et al. [71] 
No No Yes 

AI-

based 
G 

Sensitivity 

= 95.80% 

Specificity 

= 80.20% 

Hacisoftaoglu 

et al. [69] 
No No Yes 

DL 

based 
S 

Accuracy = 

98.60% 

Hossain et al. 

[67] 
Yes No No 

Filter 

based 
S 

Accuracy = 

95.42% 

Khaing et al. 

[68] 
No Yes No 

Filter 

based 

S 

 

Precision = 

92.64% 

 

Table 1 summarizes a number of published studies on 
smartphone-based fundus image analysis methods. Few 
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authors have approached different solutions in specific 

domains to introduce this analysis approach using HF lenses. 

However, smartphone CADS are not globally popularized yet 

due to the lack of studies, as no CADS can perform multiple 

feature extraction analyses simultaneously from mobile 

fundus images. A unified approach of multiple-feature 

extraction is appropriate for a better retinal image analysis 

system by analyzing the DR lesions and other crucial retinal 

features that may indicate DR symptoms, opening the door to 

multi-feature smartphone-based retinal image screening. 
In this study, we approached a unified RBV, OD, and DR 

lesion segmentation method in a smartphone application that 

addresses the gaps mentioned in the research fields. Due to 

the vast size of this domain, the scope of this study is limited 

to segmentation only. Classification of disease/grading is a 

potential field that may be investigated further. 

II. MATERIALS AND METHOD 

The overall methods are divided into two sections: the 

filtering approach and the deep learning approach. RBV 

segmentation and OD localization are performed using 

traditional filtering, whereas the DL method is used for lesion 

detection. Fig. 3 shows the overview of the proposed solution. 
The retinal image is loaded or captured in the Android 

ecosystem, and the actual image processing is executed in a 

Python software development kit (SDK) within the Android 

ecosystem. Fundus image is resized and encoded into byte 

array and then passed to the python SDK, decoded as a red, 

green, and blue (RGB) image for processing. After this step, 

each feature extraction method is followed and discussed in 

the following sections. 

 

 
Fig. 3  Overview of the proposed mobile implementation of RBV Segmentation, OD Localization, and DR Lesion Detection. 

 

A. Retinal Blood Vessel Segmentation 

The RBV segmentation method is an extended study of a 

previous approach conducted by our previous work [67]. The 

key difference is including the Frangi filter and fine-tuning 
the parameters. Fig. 4 illustrates the framework overview of 

RBV segmentation.  

 

 
Fig. 4  RBV segmentation overview 

 

The first step is pre-processing by extracting the green 

channel image (GCI) from the RGB image, identifying, and 

padding the region of interest (ROI) for generating a 

corresponding mask that identifies the field of view (FOV). 

GCI is extracted because the green channel has the highest 

contrast against the retinal background. CLAHE filter with 

clip limit parameter 0.015 is applied to the GCI to enhance the 
contrast for better blood vessel detection. 

Next, the Python implementation of the B-COSFIRE filter 

is used to extract a grayscale image of the vessels. The B-

COSFIRE filter requires two types of parameters, i.e., 

symmetric and asymmetric filter parameters. The original 

parameter from Azzopardi et al. is also used in this method 

[13]. The B-COSFIRE grayscale output is inverted and passed 

as a Frangi filter input to highlight finer vessels, producing a 

grayscale image. The sigma parameters from the B-COSFIRE 

filter were also applied to Frangi filter. 

This Frangi grayscale output is binarized with ISODATA 
thresholding. The binary image usually contains some noise 

and gaps within the vessels, which are removed using 

morphological closing and opening. The binarized vessel 

output is converted to byte arrays and is passed to the 

graphical user interface (GUI). 
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B. Optic Disc Localization 

For OD localization, the retinal RGB image also goes 

through pre-processing step, where the red and blue (RB) 

channel is extracted and combined. Concurrently, the RGB 
image is converted into CIELab format, and the L* channel is 

extracted for ROI masking. Then, the ROI of the RB image is 

extended by padding around the edge of the image boundary 

using the mask. This padded image is copied into two, and the 

CLAHE method is applied to one of them to extract blood 

vessels. 

 
Extraction of the vessels is conducted by background 

subtraction using a convolve 2D filter on the CLAHE image. 

Otsu’s method is applied to binarize the background 

subtracted image. The binarized image is inverted and 

multiplied with the other padded image so that all the black 

pixels are set to null values. These null values are replaced 
with the neighboring values during the inpainting method in 

a certain way so that instead of the vessels, a uniform 

distribution of the background pixel is formed, thus replacing 

the vessels with the retinal background.  

An automatic canny edge parameter method is proposed by 

applying Gaussian blur on the in-painted image. Then, the 

median value of the blurred image is taken and multiplied 

with a positive and negative sigma value of 0.8. This 

automatically generates a lower and upper parameter value 

that is passed as Hough Transform parameter 2 and parameter 

1. The Hough Transform outputs OD center and radius 

coordinates if a circle is detected and later visualized by 
drawing the circle on the original RGB image and is passed to 

the GUI (Fig. 5). 

C. Diabetic Retinopathy Lesion Detection 

Using a transfer learning approach, we proposed a multi-

class semantic segmentation DL method to detect DR lesions. 

Resnet50 is used as the backbone pre-trained network, and U-

net is used as the decoder (Fig. 6). The Resnet50 encoder 

employs the pre-trained weights by ImageNet Large Scale 
Visual Recognition Challenge 2012 (ILSVRC2012) with 

1,000,000 labeled images [72], and the U-net architecture 

utilizes the various features classified by the pre-trained 

network to predict segmentation outputs [73]. 

IDRiD dataset provides five different classes of ground 

truth segmentation for 84 digital fundus images, namely, 

hemorrhages (HM), microaneurysms (MA), hard exudates 

(HE), soft exudates (SE), and optic disc (OD). Among these, 

all except OD are classed as DR lesions. However, OD may 

indicate potential signs of DR based on its size and formation. 

Also, not all 84 images have an equal distribution of ground 
truth masks for all classes. 

 

 
Fig. 6  Combined Resnet50 and U-net model [73]. 

 

The non-ROI, i.e., the black regions, are removed by 

identifying the retinal background and converting the RGB 

image to CIELab format image. The L* channel from this 

image is selected, and ISODATA is applied to create a mask 

that represents the ROI. Then, using the Canny edge detection 

method, the ROI top, bottom, left, and right areas are 
identified and cropped from the original RGB image, as 

shown in Figure 7(a). The removed non-ROI are the 

unnecessary black regions that do not contain any meaningful 

information, thus improving learning during training. On the 

other hand, ground truth masks are also cropped according to 

their corresponding cropped RGB image size.  

 

 
Fig. 5  OD Localization overview 
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Fig. 7  (a) ROI cropped image (left), (b) Mask overlay (middle), (c) colorized mask label (right). 

 

Each ground truth mask contains two-pixel values: lesion 
pixels (white) or non-lesion pixels (black). As there are 

multiple classes of ground truth masks for a single RGB, all 

the mask images are converted into one label mask for 

multiclass classification. This label mask contains values 

ranging from 0-5 that represent each class as illustrated in Fig. 

7(c). All the images are resized into 512x512 resolution for 

training. 

The IDRiD dataset does not have an equal number of 

segmentation ground truth masks for every class resulting in 

an imbalance problem. Therefore, data augmentation such as 

cropping, shear, zoom, flip, normalization, etc. is applied to 
increase the dataset size to reduce the imbalance issue. The 

dataset is divided into 54 training sets and 27 validation sets. 

During training, each label mask image is converted into a 

one-hot encoded image with a size of 512x512x6. The 

training configuration consists of batch size 4, Adam 

optimizer with learning rate 0.0001, Softmax activation with 

6 classes as the last dense layer, 15 epochs, and Dice 

coefficient, and categorical focal loss is used as the loss 

function. The loss L is as follows: 

� �
�1 � ��� 	 
�

�1 � �� � 	 
� � �� 	 
� � 
� 

� ���
 	 �������

� �1 � �
� 	 ����1 � ���� 

(1) 

Where tp = true positive, fp = false positive, fn = false 

negative, gt = ground truth, pr = prediction, and β = 1. 

Intersection over union (IOU) and F1 score are monitored 
during model training. 

The model outputs prediction as a 512x512x6 shape where 

each array of the last depth represents a single lesion class. 

Every pixel in each class is a probability value that 

corresponds to its dimension. The higher the probability 

value, the more likely that pixel of that class is detected as a 

lesion. Since this is a multi-class approach, each pixel is 

mutually exclusive. That is why a label mask is generated 

where each pixel is the class indices of the prediction that has 

the highest probability for that pixel location. This label mask 

can be converted into a one-hot encoded image for extracting 
binary segmentation mask for each class or can be visualized 

by color coding the labels. The Resnet50+U-Net model was 

trained on the Google Cloud Platform on a GPU with 12GB 

of VRAM due to a large number of augmented images. 

 

III. RESULTS AND DISCUSSIONS 

Quantitative and qualitative assessment for this study is 

divided into three sections to distinguish each aspect of 

segmentation methods. Since all the methods are based on 

segmentation outputs, the key metrics for quantitative 

assessment are the same for all the extracted features and 

summarized in Table II, where TP = true positive – indicates 

correctly identified white pixels (Ones), TN = true negative – 
correctly identified black pixels (Zeros), FP = false positive – 

number of wrongly detected white pixels, and FN = false 

negative – wrongly detected black pixels. 

Accuracy (Acc), Sensitivity (Sn), and Specificity (Sp) are 

measured for all the retinal segmentation outputs as these are 

the most commonly used metrics in previous studies. IoU and 

F1-score are also calculated for DR lesions segmentation 

outputs for each class. 

TABLE II 

PERFORMANCE METRIC FOR SEGMENTATION OUTPUTS 

Metric Definition 

Sensitivity (Sn) TP/(TP+FN) 

Specificity (Sp) TN/(TN+FP) 

Accuracy (Acc) (TP+TN)/(TP+TN+FP+FN) 

F1-score 2TP/(2TP+FP+FN) 

Intersection over 
Union (IoU) 

TP/(TP+FP+FN) 

 

The robustness of this study is performing multiple retinal 

segmentation tasks within low-powered settings e.g., 

smartphone devices. Although few mobile-based fundus 
datasets are available, none provide any manually annotated 

data that can be used for validation. Hence, a qualitative 

assessment is opted for the mobile fundus image dataset 

provided by the oDocs montaging dataset [64]. DRIVE and 

STARE datasets are chosen for RBV segmentation evaluation 

with 20 test images each. 1200 images from the MESSIDOR 

dataset are validated for OD localization. As for DR detection, 

each class i.e., HM, MA, HE, SE, and OD, containing 27 test 

ground truth segmentation data in the IDRiD dataset are also 

evaluated. 

In Table III quantitative results of all the extracted features 

are tabulated for their respective datasets. RBV and OD 
results show comparable performance with the state-of-the-
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art methods. Specifically, for RBV segmentation, the overall 

accuracy and sensitivity are higher than in the previous 

studies as shown in Table IV. However, for DR detection, one 

feature i.e., MA scored considerably low due to the fact this 

type of lesion is exceedingly small and can be hard to detect. 

TABLE III 

SEGMENTATION RESULTS FOR ALL FEATURES 

Features Dataset 
Performance Metrics 

Sn Sp Acc F1-Score IoU Time (seconds) 

Blood Vessel 
DRIVE 78.32 96.51 94.94 72.76 - 

~10 
STARE 79.57 95.66 94.44 70.14 - 

Optic Disc Loc. MESSIDOR 78.82 99.77 99.60 - - ~5 

DR (Overall) 

IDRiD 

74.30 99.82 99.70 77.40 59.20 

~10 

Haemorrhages 52.22 99.65 99.03 58.64 40.25 

Hard Exudates 64.68 99.70 99.27 68.73 55.38 

Microaneurysms 25.03 99.93 99.83 27.30 16.75 

Optic Disc Seg 96.70 99.86 99.80 95.26 91.70 

Soft Exudates 69.00 99.94 99.87 70.70 53.05 

 

TABLE IV 

COMPARISON OF RBV SEGMENTATION RESULTS FROM THE PAST STUDIES 

Method 
Segmentation Performance 

Dataset Sn (%) Sp(%) Acc (%) 

Proposed 
Method 

(~10 seconds) 

DRIVE 78.32 96.51 94.94 

STARE 79.57 95.66 94.44 

Hossain et al. 
[67] 

(~9 seconds) 

DRIVE 76.12 96.65 94.87 

STARE 74.39 97.74 95.96 

Azzopardi et 
al. [13] 

(~10 seconds) 

DRIVE 76.55 97.04 94.42 

STARE 77.16 97.01 94.97 

Xu et al. [66] 

(~2 minutes) 

DRIVE 78.60 95.50 93.30 

STARE 82.50 93.10 92.00 

 

While other studies have achieved higher accuracy by 

training the MA separately, this defeats the purpose of our 

scope, which is executing the model within smartphone 

devices. Training a model for each class will create their 

weights that cumulatively increase the total size of weights. 

Multiclass segmentation solves this issue by predicting all the 

classes with singular weight. On the other hand, the DL 

method has the best detection for OD because of its bright 

regions against the retinal background. Although not directly 

indicating a DR lesion, DL OD detection serves as a useful 
backup to extract OD if localization fails as well as help 

identify abnormal formation of the OD, which may be related 

to DR. Compared to a previous study by Furtado, the 

proposed DL method scored significantly higher IoUs for HA, 

MA, SE, and OD features [58]. 

A visual assessment can be observed in Fig. 8, where a 

DRIVE and mobile fundus images are processed with the 

proposed RBV and OD localization method. As shown in the 

bottom section, the proposed method can segment the retinal 

vessel but contains noise as the mobile fundus images are 
generally grainy. The OD is also successfully localized, and a 

circle is drawn over the fundus image where the OD is 

located. The qualitative study shows that the RBV method can 

extract most of the vessels but starts to produce noisy pixels 

as the vessels get smaller. This is a challenge that is very 

difficult to solve with traditional filtering approaches. 

 

   

(a) (b) (c) 

   

(d) (e) (f) 

Fig. 8 (a) A DRIVE retinal fundus image, (b) Proposed RBV segmentation 

output, (c) Ground truth image, (d) Mobile fundus image, (e) Mobile RBV 

segmentation output, (f) OD localization. 

 

Fig. 9 displays an example of a fundus image input, its 

respective DR prediction, and the ground truth mask. Each 

color of the prediction image and ground truth image 

represents a specific lesion type class, as illustrated and 

labeled in Fig. 7c. The bottom two rows are the segmented 

mask images extracted from the prediction output image. The 

visual assessment shows the prediction output image 
demonstrates striking resemblances with the ground truth 

image. These lesion data can be utilized to estimate the 

severity of DR by calculating the quantity of each lesion.  
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Fig. 9  DR lesion prediction and segmentation output of proposed DL model. 

 

As proof of concept, an Android-based mobile application 

(Fig. 10), Mobile Retinal Image Analysis (mRIA), is 

developed to perform all the feature extraction mentioned in 

this study. The GUI is based on the Android native framework 

and the core backend image and DL processing is executed in 

a Python environment that runs within the Android 

ecosystem. Thus, internet accessibility is not required. Fundus 

images can be either captured from the mobile camera or 
loaded from the storage device as input. 

 

  

Fig. 10  Smartphone implementation of the proposed Retinal Image Analysis 

system. 

The user can choose all or any of the three methods of 

segmenting features, i.e., RBV segmentation, OD, and Lesion 

to perform the analysis. The processed output mask images 

are shown in a unified image viewer (Fig. 10, right) where 

each mask image is color-coded to represent a specific feature 

and overlayed on top of the original fundus image. The user 

can control the opacity of the features as well as hide or show 

individual features. 

The image and DL processing execution are done on a 

separate backend thread, thus making it faster to segment 

fundus images. On average, it takes around 25-30 seconds to 

process a single image to extract all six features. The DL 
model weight size is about 281 Megabytes (MB), and the total 

size of the Android Package Kit (APK) executable is about 

500 MB. Therefore, executing the application locally on a 

device without an internet connection is proper. 

The user can also customize the color of the highlighted 

features and save the processed output. The application was 

tested on Android version 7.2, 9.1, and 13 on x86, x64, and 

arm64-v8a architecture. On average the image processing 

time is about 35 seconds when all the features are selected for 

processing. 

IV. CONCLUSION 

In this study, a total of six retinal feature extraction 

methods are proposed. These are retinal blood vessel 

segmentation, optic disc localization and segmentation, and 

detection of hemorrhages, microaneurysms, hard exudates, 

and soft exudates. Combinatorial filtering and deep learning 

methodologies were proposed to extract the features. A 

smartphone application is developed as a prototype 

application that can perform these retinal feature extractions 
with a single button press. This opened up an opportunity for 

a cheap and portable retinal image analysis method suitable 

for resource-limited settings using handheld fundus lenses. 

The quantitative result shows the proposed methods achieved 

comparable performance with the state-of-the-art methods. 

Filtering approaches such as vessel extraction achieved an 

accuracy of 94.94% in the DRIVE and 99.44% in STARE 

dataset, whereas optic disc localization achieved an accuracy 

of 99.60% in the MESSIDOR dataset. Diabetic retinopathy 

lesion detection using our proposed deep learning method 

performed an overall accuracy of 99.70%. 
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