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Abstract— This paper describes the approach to active liveness detection of the face using facial features and movements. The project 

aims to create a better method for detecting liveness in real-time on an application programming interface (API) server. The project is 

built using Python programming with the computer vision libraries OpenCV, dlib and MediaPipe and the deep learning library 

Tensorflow. There are five modules in active liveness detection progress related to different parts or movements on the face: headshakes, 

nodding, eye blinks, smiles, and mouths. The functionality of modules runs through face landmarking through dlib and MediaPipe and 

detection of face features through Tensorflow Convolutional Neural Network (CNN) trained in two different approaches: smile 

detection and eye-blink detection. The result of implementing face landmarking shows an accurate result through the pre-trained model 

of MediaPipe and the pre-trained parameter of the dlib 68 landmarking model. And more than 90% classification model accuracy in 

precision, recall, and f1-score for both trained CNNs in detecting smiles and eyes blinking through the Scikit-Learn classification report. 

In addition, the prototype API is also implemented using the Python RESTful API library, FastAPI, to test the detection functionality 

in the prototype Android application. The prototype result is outstanding, as the model excellently requests and retrieves from the API 

server. The possible research path gives the success of real-time detection on API servers for easy implementation of liveness detection 

on low-spec client devices. 
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I. INTRODUCTION

Face recognition and liveness detection are rapidly 
changing fields with lively research communities aimed at 
discovering new algorithms capable of delivering highly 
accurate and dependable results. Among the most captivating 
areas of study are deep learning techniques, which use neural 
networks to evaluate many facial images and videos. 
Additionally, traditional geometric modeling and statistical 
analysis are employed to identify patterns. 

Studies in face recognition and liveness are essential 
because they have the potential to impact various sectors, such 
as security, law enforcement, marketing, and advertising. For 
instance, accurate face recognition technology can assist law 
enforcement in identifying suspects and tracking their 
movements. It also helps businesses better understand their 
clients and target their advertising more efficiently. 

From Mordor-Intelligence's report, the potential market of 
facial recognition globally reached $4.4 billion in 2019 and 

expected to hit $10.9 billion by 2025 [1]. Some countries, 
example China have implemented this technology anywhere. 
Face recognition market growth is driven by rising demand 
for improved security and surveillance systems in various 
industries, including government, healthcare, and retail [2]. 
However, ethical concerns related to face recognition and 
liveness technologies, such as privacy, biases, and 
discrimination, are crucial. As a result, continued study in this 
field is essential to ensure that these technologies are 
developed and used responsibly and ethically. 

A. Issue of Spoof Attack in Face Recognition

The major difficulty of face recognition is the false image
attacks [3]. A spoof image like printings or 3D printed face 
mask of an individual's face may be used in this type of attack 
to gain unauthorized access to secure areas or sensitive data 
without additional security validation [4]. The related attacks 
are especially dangerous in high-security environments where 
access to sensitive information or restricted areas is strictly 
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controlled. Make face recognition technology in the banking 
industry an example, and false image attacks could allow 
unauthorized individuals to access bank accounts and conduct 
malicious transactions [2], [5]. The articles below also discuss 

the current weaknesses of the face recognition system and 
potential issues when confronted with a strong attack using 
fake images. 

TABLE I 
PUBLICATIONS THAT DISCUSSED ABOUT FAKE IMAGE ATTACK 

Article Topic Discussed 

Face recognition under spoofing attacks: countermeasures 
and research directions. 

Discuss methods of attack, existing methodology and given solution.[6] 

A comparative study on face spoofing attacks. Need to provide more generalized algorithms for the detection of 
unpredictable spoofing attacks [7] 

Face Biometrics Under Spoofing Attacks: Vulnerabilities, 
Countermeasures, Open Issues, and Research Directions 

Discussed spoofing and anti-spoofing in face biometrics and to highlight 
open issues and future directions [8] 

A Study on Spoofing Face Detection System. A comprehensive overview of the research that has been carried out over the 
last decades in the emerging field of anti-spoofing [9] 

Statistical Analysis of Image Quality Measures for Face 
Liveness Detection. 

A technique for discriminating life from fake images given. Based upon the 
hypothesis that spoofing schemes leave statistical indication or structure in 
images  [10] 

B. Objectives and Proposed Solution 

The research aims to investigate methods and algorithms 
for detecting and validating whether the individual detected 
in front of the camera is a valid live person or an object with 
a spoofed image. For facial liveness, this project proposed a 
Face Recognition and Liveness Detection (FRLD) algorithm 
that focuses on detecting facial features and facial movement. 
[11]–[15]. As a result, FRLD can be implemented anywhere, 
like web applications, mobile applications, kiosk machines, 
etc. Finally, the face will be validated by a face validation 
module in order to identify an individual through a face image 
database. 

The study will use a pre-trained model provided in dlib and 
MediaPipe, which is BlazeFace and dlib 68 landmarks [16]–
[18] as fast implementation of face landmarking. The self-
trained TensorFlow neural network is trained into two high-
accuracy models: one model by two datasets of approximately 
4000 for smiling and one model by approximately 4800 for 
eye-blinks. The algorithms designed and implemented in this 
research have the potential to greatly improve the security and 
efficiency of identity verification processes in a wide range of 
applications.  

II. MATERIALS AND METHOD 

A. Literature Review: Face Recognition 

Face recognition is a technology that is being researched in 
the field of image processing. Human faces in videos or 
images are recognized and identified using computers. 
Normally, people recognize faces by comparing them to ones 
stored in their memory, and computers do the same with facial 
recognition systems. When inputting a video or picture into 
the system, it compares it to the previously stored faces and 
returns the percentage of similarities. 

Bledsoe et al. [19] introduced the first face recognition 
system in 1964 that could detect face identity based on their 
features. With a semi-automatic process, operators were 
asked to input twenty metrics about face features, such as the 
size of the mouth or eyes. The technologies involved in this 
subject have progressed more recently than facial recognition 
technology. Additionally, it is currently frequently utilized in 

a variety of fields, including security, marketing, and 
entertainment. 

 
Fig. 1  Steps in facial recognition algorithm [19] 

 

Face recognition software extracts face characteristics 
from an image or video input. This procedure is to recognize 
facial landmarks such as the nose, mouth, and eyes. Once 
these landmarks have been found, they are normalized into 
numerical values. These numerical data are sent into a 
machine learning model that has been trained to recognize and 
categorize different faces. To determine the identification of 
the individual in the input image or video, the machine 
learning model analyses the numerical values of the facial 
traits and compares them to a database of known faces. 

B. Literature Review: Liveness Detection 

Liveness detection is important in a face recognition 
system as it plays a crucial role in preventing fraud and 
ensuring the system's accuracy. Without liveness detection, 
the system could be vulnerable to manipulation using static 
images or videos rather than genuine live interactions. This 
could lead to erroneous identifications and potentially 
hazardous situations [20]. 

1)   Motion:  One of the approaches to achieving liveness 
detection involves utilizing motion as an indicator. When 
capturing a person's face in real-time, the 3D shape of their 
face changes with movement, making it challenging to 
deceive the system using a static 2D image. However, 
employing motion as an indicator has its limitations. For 
instance, it necessitates high-quality video for training, which 
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may slow down the face recognition process. Additionally, it 
can be deceived by 3D sculptures [20], [21]. 

2)   Texture:  The texture indicator relies on calculating the 
surface of the "face" input to the face recognition system. 
Training the model to detect surfaces makes it possible to 
determine if the face input is a genuine image or a mere photo 
on paper or a screen. This indicator offers the advantage of 
convenient implementation since it only requires samples of 
real and non-real faces. However, a drawback of using texture 
as an indicator is its inability to detect surface texture when 
input images or videos are of low quality, and it demands 
more samples for texture detection training [20], [22]. 

3)   Life Sign:  Lastly, the life sign is optimal for 
implementing a faster face biometric authentication system. 
The life sign indicator necessitates user interaction with the 
camera to detect life signs, such as moving the face in specific 
directions or blinking eyes. Nevertheless, a disadvantage of 
this indicator is that it will not work when facial features are 
covered by hands or when wearing a face mask [20]. 

C. Literature Review: Dataset 

Whitehill et al. [23] introduced the GENKI dataset, which 
comprises 63,000 unfiltered images gathered from personal 
web pages on the internet. Unlike images collected by 
laboratory scientists, ordinary individuals captured these 
worldwide for their personal use. The dataset encompasses 
three distinct categories: Smile, Non-Smile, and Unclear. For 
our project, where rapid detection is required, we will focus 
solely on the GENKI-4K subset. This subset contains 4,000 
images, specifically chosen to include only the Smile and 
Non-Smile categories. 

 
 

D. Proposed FRLD Algorithm 

The FRLD algorithm proposed in this paper is a 
combination of different Liveness Detection functionalities. It 
comprises five distinct functions based on MediaPipe 
Facemesh, dlib 68 landmarks, and TensorFlow Convolutional 
Neural Networks. Face shaking and nodding functions rely on 
MediaPipe FaceMesh, which depends on the Blazeface face 
detection model [18] to determine face direction. Eye-blinks 
and Smiling functions are processed by separate trained 
TensorFlow CNN models, producing Boolean outputs based 
on specific detection needs. The mouth opening function 
calculates the gap between the upper and lower lips using dlib 
68 landmarks [16],[20]. FRLD enables easy implementation 
of five different liveness detections for real individuals in 
front of the camera. 

The self-trained TensorFlow CNN for liveness detection 
uses separate training and validation sets. For instance, the 
smile detection CNN is trained with 20% validation set (981 
images) and 80% training set (3921 images). The model's 
output predicts whether an input image shows a person 
smiling or not. The project aims to implement a model 
capable of extracting both face and liveness features from 
input, enabling face recognition. The resulting process will be 
thoroughly evaluated to determine its success in verification. 

1)   Liveness Detection: Head Shake and Head Nod 

Module:  In the Head Shake and Head Nod Module, frames 
undergo facial landmark detection using MediaPipe 
FaceMesh [24], which relies on the BlazeFace model [18] to 
locate key facial landmarks in 2D (x, y) and 3D (x, y, z). After 
identifying the landmarks, the face direction is calculated 
using Camera Calibration and Rodrigues' rotation formula 
[25] to determine the nose angle in 2D. This enables the 
detection of face shaking or nodding. 

 

 
 

Fig. 2  Flowchart of Head Shake and Head Nod Module 

 
The improved Face Orientation Direction algorithm, based 

on Camera Calibration and Rodrigues' rotation formula [25], 
[26] on the MediaPipe FaceMesh, is as follows: 

 Perspective-n-Point (PnP) Problem [27] are referred to 
solve the calculation of face angle by face landmarks 
received. The formula following is the equations that 
PnP problem mentioned. 
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 �� � � ��|	
�� (1) 

Or, 

 ��1� �  ��� 0 ��0 �� ��0 0 1 � ���� ��� ��� 	���� ��� ��� 	���� ��� ��� 	�� ����1  (2) 

a) !, �# is coordinates of the projection point in 
pixel unit. 

b) A is a camera matrix, or a matrix of intrinsic 
parameters. 

c) (cx, cy) is a principal point that is usually at the 
image center. 

d) fx, fy are the focal lengths expressed in pixel 
units. 

e) (X, Y, Z) are the coordinates of a 3D point in 
the world coordinate space. 

f) And [R|t] is the rotation and transformation 
matrix. 

 The angle of the head pose is taken from the calculation 
in PnP problem, the (X, Y, Z) is the exact direction that 
the head facing. Assume the X and Y as angle and draw 
a line from the middle point of the 2D graph which is 
(0,0). The direction of the face can be calculated when, 

a) $ �  %�&   and |$| � 'ℎ&�&)ℎ*+, , then head 
pose should be "Look Up." 

b) $ �  -�&  and |$| � 'ℎ&�&)ℎ*+, , then head 
pose should be "Look Down." 

c) . �  %�&  and |.| � 'ℎ&�&)ℎ*+, , then head 
pose should be "Look right." 

d) . �  -�&  and |.| � 'ℎ&�&)ℎ*+, , then head 
pose should be "Look Left" 

e) If four requirements above not fulfilled, consider 

the head pose is "Look Front" 
 Refer to the Fig. 3 as direction reference 

 
Fig. 3  Example of an image with acceptable resolution 

2)   Liveness Detection: Eye-Blink Module:  In the blink 
module, frames are initially processed through the open-cv 
haarcascades algorithm's left-eye and right-eye configurations 
to obtain cropped images of both eyes. These cropped images 
are then input into the Eye-Blink TensorFlow Model, which 
generates binary outputs ("0" for not closed and "1" for 
closed) for each eye. If both eyes are detected as closed 
(output: "1" for both), the module registers a blink and 

concludes its operation [28], [29][30]. 

 

 
Fig. 4  Flowchart of Eye-Blink Module 

 
The combined approach of open-cv haarcascades 

algorithm and the Eye-Blink TensorFlow Model follows these 
steps: 

 The original frame with face will crop down the left eye 
and right eye by using open-cv haarcascades 

algorithm's left eye configuration and right eye 
configuration. 

 The cropped eye's frame will resize into 24 x 24-pixel 
image to fulfill the input size of the model. 

 The improvement of the input allows any resolution's 
human face image to be detected by the Eye-Blink 
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Module because the resolution will be lower down for 
faster detection speed in Eye-Blink TensorFlow Model 

3)   Liveness Detection: Smile Module:  In the smile 
module, the frames are first passed through the face-cropping 
function based on the open-cv haarcascades algorithm's 
configuration to obtain the cropped images of the face. These 

images are then input into the Smile TensorFlow Model, 
which produces an output for face expression in "0" or "1" 
(non-smile or smile). If the output shows that the face is 
smiling, the module considers the smile to have occurred and 
finishes its operation [31], [32]. The combined open-cv 
haarcascades algorithm with the Smile TensorFlow Model is 
elaborated in the following set of algorithms.  

 

 
Fig. 5  Flowchart of Smile Module 

 
 The original frame with face will crop down only the 

face part by using open-cv haarcascades algorithm's 
front face configuration.  

 The cropped face frame will resize into 64 x 64-pixel 
image to fulfill the input size of the model. 

 The improvement of the input allows any resolution's 
human face image to be detected by the Smile Module 
because the resolution will be lower down for faster 
detection speed in Smile TensorFlow Model 

 The simplified output in "0" and "1" ease to output the 
Boolean result for the detection since the detection is to 
get the result of smiling. The "0" would represent the 
face expression is non-smile and "1" as smiling face. 

4)   Liveness Detection: Mouth Opening Module:  In the 
mouth opening module, the frames are first passed through 
the dlib 68 face landmarking model to detect and locate the 
face landmarks. Once the landmarks are identified, the 
distance of lips, known as Mouth Aspect Ratio (MAR), is 
calculated in integer value based on algorithm from Mauck R. 
By allocating the threshold value, we allow it to detect if the 
mouth in the image is opened. The mouth will be considered 
open when the MAR detected is larger than the allocated 
threshold value. (MAR > threshold) The procedure of the 
improved algorithm is shown below: 

 We first refer to 68 face landmarks with every indexed 
landmark to get the mouth landmarks. 

 

 
Fig. 6  dlib 68 Face Landmark Reference Index [16]  

 
 After that, the calculation of Mouth Aspect Ratio 

(MAR) will be following the equation:  
Vertical Euclidean distances of the right side of the mouth. 

 � �  34.5 - .67� % 4$5 - $67� ,  (1) 

 8!., $# � 9:;,�:�< 51, >!., $# � 9:;,�:�< 59 (2) 

Vertical Euclidean distances of left side of mouth. 

 @ �  34.5 - .67� %  4$5 - $67� ,  (3) 
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 8!., $# � 9:;,�:�< 53, >!., $# � 9:;,�:�< 57 (4) 

Horizontal Euclidean distances of mouth.  

 C �  34.5 - .67� % 4$5 - $67�  (5) 

 8!., $# � 9:;,�:�< 49, >!., $# � 9:;,�:�< 55 (6)  Mouth Aspect Ratio, ��� � ! � % @ #  ÷ !2.0 ÷ C# (7) 

  

When ��� is larger than threshold value, the mouth will be 
considered as open. 

III. RESULTS AND DISCUSSION 

A. Implementation of the Proposed Algorithm and Validation 

The landmarking function of MediaPipe [24] enables the 
developer to attach it for several needs in capturing the face 
and face landmarks. Example by using the FaceMesh function 
in MediaPipe we will be able to plot the face area that 
MediaPipe FaceMesh function detected. The face 
landmarking function in dlib library also provides powerful 
face landmarking features as the result of mouth detection is 
overall powerful. 

 
Fig. 7   Result of FaceMesh using MediaPipe when proceed the Face Shaking 
and Face Nodding Module 

 
Fig. 8  Result of face landmarking using dlib when proceed the Mouth 
Opening Module  

B. Testing of Self-trained TensorFlow Model (Smiling and 

Eye-Blink) 

1)   Smile Detection:  Using the GENKI-4K and Smiling 

or Not Datasets. The training scoring evaluation shows that 
the model can achieve more than 90% of scorings in terms of 
precision, recall and f1-score when detecting the smile image 

and overall accuracy of the model also achieve 91% in 
detecting the smile and non-smile image. 

 
Fig. 9  Training and validation accuracy of Smile Tensorflow Model 

 

 
Fig. 10  Training and validation loss of Smile Tensorflow Model 

TABLE II 
CLASSIFICATION REPORT OF SMILE TENSORFLOW MODEL 

 precision recall 
f1-

score 
support 

Non-Smile (Class 
0) 

0.90 0.91 0.90 454 

Smile (Class 1) 0.92 0.91 0.92 527 
accuracy   0.91 981 
macro avg 0.91 0.91 0.91 981 
weighted avg 0.91 0.91 0.91 981 

2)   Eye-blink Detection:  The training scoring evaluation 
shows that the model can achieve more than 90% of scoring 
in terms of precision, recall and f1-score when detecting the 
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closed eye image and overall accuracy of the model also 
achieve 92% in detecting the open and closed eye. 

TABLE III 
CLASSIFICATION REPORT OF BLINK TENSORFLOW MODEL 

 precision recall 
f1-

score 
support 

Open (Class 0) 0.92 0.93 0.92 543 

Closed (Class 1) 0.93 0.92 0.92 525 

accuracy   0.92 1068 
macro avg 0.92 0.92 0.92 1068 
weighted avg 0.92 0.92 0.92 1068 

 

 
Fig. 11  Training and validation accuracy of Blink Tensorflow Model  

 

 
Fig. 12  Training and validation loss of Blink Tensorflow Model  

C. Prototype Deployment 

To assess the reliability of the FRLD algorithm, 
deployment becomes essential to identify any potential issues 
in the proposed detection logic. For the API deployment, 
FastAPI [33] will be utilized as it allows for swift deployment 
of a prototype API. FastAPI is a lightweight Python-based 
web framework designed for creating high-performance APIs 
using standard Python type hints. Its use of open standards 
enables the generation of production-ready code and 
automatic interactive documentation [34].  

 

 

Fig. 13  Flowchart of API Prototype  
 

On the client side, the Android platform will serve as the 
front-end client for capturing front-camera images. These 
images will be transmitted to the server using the Volley 
library, which can send images as string data. Upon receiving 
the image data, the server will leverage Python's image 
processing libraries, such as OpenCV or Pillow, to analyze 
and manipulate the images as required. The server will then 
respond to the Android client with the image processing 
findings, which may comprise text extracted from the picture 
or object recognition data. 

RESTful API can simplify the communication between the 
front-end and back-end. This is because RESTful API 
standardized the way of data transmission between different 
systems, ensuring efficient and reliable data exchange. 

During the server setup, API testing can be conducted 
using any programming language capable of converting 
images into base64 strings and sending them to the web server 
through API requests. This allows for comprehensive testing 
of the API's functionality, ensuring that the server can 
accurately transmit and process images. 

As for the Android implementation, the image can be 
captured through the device's camera and saved as a bitmap 
image file. Before being delivered to the server, the bitmap 
picture can be encoded into a base64 string format. This 
procedure guarantees that the picture is safely transferred, and 
that the server can quickly handle it upon reception. 

Utilizing base64 encoding facilitates the inclusion of 
binary data, such as images, within the API request. This 
encoding ensures that the image data is safely transmitted 
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over networks without the risk of data corruption or loss 
during transmission. 

Overall, combining base64 encoding for image data and 
implementing RESTful API endpoints creates a robust and 
reliable communication channel between the front-end 
Android client and the back-end server. This setup enables 
seamless testing and deployment of the FRLD algorithm in 
real-world scenarios, providing valuable insights into the 
algorithm's performance and reliability in practical 
applications. 

 

 
Fig. 14   Interface of Android prototype  

 

 
Fig. 15  Information panel of Android prototype 

IV. CONCLUSION 

In this study, an API prototype is built and testing in an 
Android mobile device to test for reliability of the API to 
mobile device. The success of detection the liveness by front 
camera image on mobile phone means the mindset of process 
the image on server or serverless service are possible. And 
suits the concept of edge computing [35]. Our team expects 
more researchers to focus on this topic and propose a better 
solution in detecting face liveness. 

The study also helps to reduce false positives in face 
recognition systems. By ensuring that the face being scanned 
is a live person, the system can be more accurate in identifying 
individuals. This is especially critical in applications like 
access control and identity verification, where false positives 
can lead to unauthorized access or security breaches. The 
system can be more dependable and accurate with liveness 
detection, lowering the danger of false positives. 

From hospitals and government buildings to sports 
stadiums and music halls, this adaptability may be useful in a 

variety of sectors and environments. With liveness detection, 
the system can be more accurate and secure, providing 
enhanced protection and peace of mind. 

A. Achievements 

Remarkably, MediaPipe and dlib are able to compute the 
face direction and mouth opening without extra effort, such as 
machine learning or pre-processing of the input image. 
Unfortunately, the smile detection model still has some 
difficulties detecting smiles, which may be related to the 
limited sample size used in training. However, overall, the 
self-trained model achieves high scores in detection. 

During the deployment stage, it is fortunate that the image 
from the Android application prototype still works after being 
sent through the network to the server by using base64 
encoding to convert the image to a string. The Web API server 
is functioning well, with some minor errors such as 
connection issues when using different internet networks (e.g., 
accommodation versus university). The university's firewall 
is believed to be blocking potential spamming of requests to 
prevent DDOS attacks. 

B. Limitations and Future Improvements 

Because of the time limitation, the project could only 
proceed with implementing a slightly trained model combined 
with a pre-trained model for the system. One possible 
improvement for the project would be to add more datasets or 
test different variants of Deep Learning models, apart from 
Convolutional Neural Network. Transfer learning for the face 
features model could also be tested to determine its 
performance compared to that of this project. Additionally, 
fine-tuning the model using a larger dataset or more 
sophisticated techniques, such as adversarial training, could 
further improve the system's robustness against attacks. 

The deployment of the client prototype is still too simple 
and buggy. The way of implementing the client through 
webpage would be more reliable in this case as the using of 
API leads to necessary of internet connectivity like webpage. 
Moreover, the website deployment could enable more flexible 
and efficient access to the system, with the ability to handle 
multiple requests and provide real-time feedback to users. The 
website could also offer more customization options and 
integrate with other tools or services, such as biometric 
authentication or identity management platforms. 
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