
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Biometric Authentication based on Liveness Detection Using
Face Landmarks and Deep Learning Model

Ooi Zhi Jie a, Lim Tong Ming b,*, Tan Chi Wee a
a Faculty of Computing and Information Technology, Tunku Abdul Rahman University of Management and Technology, Malaysia

b Centre for Business Incubation and Entrepreneurial Ventures, Tunku Abdul Rahman University of Management and Technology, Malaysia

Corresponding author: *limtm@tarc.edu.my

Abstract— This paper describes the approach to active liveness detection of the face using facial features and movements. The project

aims to create a better method for detecting liveness in real-time on an application programming interface (API) server. The project is

built using Python programming with the computer vision libraries OpenCV, dlib and MediaPipe and the deep learning library

Tensorflow. There are five modules in active liveness detection progress related to different parts or movements on the face: headshakes,

nodding, eye blinks, smiles, and mouths. The functionality of modules runs through face landmarking through dlib and MediaPipe and

detection of face features through Tensorflow Convolutional Neural Network (CNN) trained in two different approaches: smile

detection and eye-blink detection. The result of implementing face landmarking shows an accurate result through the pre-trained model

of MediaPipe and the pre-trained parameter of the dlib 68 landmarking model. And more than 90% classification model accuracy in

precision, recall, and f1-score for both trained CNNs in detecting smiles and eyes blinking through the Scikit-Learn classification report.

In addition, the prototype API is also implemented using the Python RESTful API library, FastAPI, to test the detection functionality

in the prototype Android application. The prototype result is outstanding, as the model excellently requests and retrieves from the API

server. The possible research path gives the success of real-time detection on API servers for easy implementation of liveness detection

on low-spec client devices.

Keywords— Liveness detection; face landmarking; perspective-n-point problem; deep learning; computer vision; face motion.

Manuscript received 15 Dec. 2022; revised 11 Jun. 2023; accepted 2 Aug. 2023. Date of publication 30 Nov. 2023.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Face recognition and liveness detection are rapidly
changing fields with lively research communities aimed at
discovering new algorithms capable of delivering highly
accurate and dependable results. Among the most captivating
areas of study are deep learning techniques, which use neural
networks to evaluate many facial images and videos.
Additionally, traditional geometric modeling and statistical
analysis are employed to identify patterns.

Studies in face recognition and liveness are essential
because they have the potential to impact various sectors, such
as security, law enforcement, marketing, and advertising. For
instance, accurate face recognition technology can assist law
enforcement in identifying suspects and tracking their
movements. It also helps businesses better understand their
clients and target their advertising more efficiently.

From Mordor-Intelligence's report, the potential market of
facial recognition globally reached $4.4 billion in 2019 and

expected to hit $10.9 billion by 2025 [1]. Some countries,
example China have implemented this technology anywhere.
Face recognition market growth is driven by rising demand
for improved security and surveillance systems in various
industries, including government, healthcare, and retail [2].
However, ethical concerns related to face recognition and
liveness technologies, such as privacy, biases, and
discrimination, are crucial. As a result, continued study in this
field is essential to ensure that these technologies are
developed and used responsibly and ethically.

A. Issue of Spoof Attack in Face Recognition

The major difficulty of face recognition is the false image
attacks [3]. A spoof image like printings or 3D printed face
mask of an individual's face may be used in this type of attack
to gain unauthorized access to secure areas or sensitive data
without additional security validation [4]. The related attacks
are especially dangerous in high-security environments where
access to sensitive information or restricted areas is strictly

1057

JOIV : Int. J. Inform. Visualization, 7(3-2): Empowering the Future: The Role of Information Technology in Building Resilience - November 2023 1057-1065

controlled. Make face recognition technology in the banking
industry an example, and false image attacks could allow
unauthorized individuals to access bank accounts and conduct
malicious transactions [2], [5]. The articles below also discuss

the current weaknesses of the face recognition system and
potential issues when confronted with a strong attack using
fake images.

TABLE I
PUBLICATIONS THAT DISCUSSED ABOUT FAKE IMAGE ATTACK

Article Topic Discussed

Face recognition under spoofing attacks: countermeasures
and research directions.

Discuss methods of attack, existing methodology and given solution.[6]

A comparative study on face spoofing attacks. Need to provide more generalized algorithms for the detection of
unpredictable spoofing attacks [7]

Face Biometrics Under Spoofing Attacks: Vulnerabilities,
Countermeasures, Open Issues, and Research Directions

Discussed spoofing and anti-spoofing in face biometrics and to highlight
open issues and future directions [8]

A Study on Spoofing Face Detection System. A comprehensive overview of the research that has been carried out over the
last decades in the emerging field of anti-spoofing [9]

Statistical Analysis of Image Quality Measures for Face
Liveness Detection.

A technique for discriminating life from fake images given. Based upon the
hypothesis that spoofing schemes leave statistical indication or structure in
images [10]

B. Objectives and Proposed Solution

The research aims to investigate methods and algorithms
for detecting and validating whether the individual detected
in front of the camera is a valid live person or an object with
a spoofed image. For facial liveness, this project proposed a
Face Recognition and Liveness Detection (FRLD) algorithm
that focuses on detecting facial features and facial movement.
[11]–[15]. As a result, FRLD can be implemented anywhere,
like web applications, mobile applications, kiosk machines,
etc. Finally, the face will be validated by a face validation
module in order to identify an individual through a face image
database.

The study will use a pre-trained model provided in dlib and
MediaPipe, which is BlazeFace and dlib 68 landmarks [16]–
[18] as fast implementation of face landmarking. The self-
trained TensorFlow neural network is trained into two high-
accuracy models: one model by two datasets of approximately
4000 for smiling and one model by approximately 4800 for
eye-blinks. The algorithms designed and implemented in this
research have the potential to greatly improve the security and
efficiency of identity verification processes in a wide range of
applications.

II. MATERIALS AND METHOD

A. Literature Review: Face Recognition

Face recognition is a technology that is being researched in
the field of image processing. Human faces in videos or
images are recognized and identified using computers.
Normally, people recognize faces by comparing them to ones
stored in their memory, and computers do the same with facial
recognition systems. When inputting a video or picture into
the system, it compares it to the previously stored faces and
returns the percentage of similarities.

Bledsoe et al. [19] introduced the first face recognition
system in 1964 that could detect face identity based on their
features. With a semi-automatic process, operators were
asked to input twenty metrics about face features, such as the
size of the mouth or eyes. The technologies involved in this
subject have progressed more recently than facial recognition
technology. Additionally, it is currently frequently utilized in

a variety of fields, including security, marketing, and
entertainment.

Fig. 1 Steps in facial recognition algorithm [19]

Face recognition software extracts face characteristics
from an image or video input. This procedure is to recognize
facial landmarks such as the nose, mouth, and eyes. Once
these landmarks have been found, they are normalized into
numerical values. These numerical data are sent into a
machine learning model that has been trained to recognize and
categorize different faces. To determine the identification of
the individual in the input image or video, the machine
learning model analyses the numerical values of the facial
traits and compares them to a database of known faces.

B. Literature Review: Liveness Detection

Liveness detection is important in a face recognition
system as it plays a crucial role in preventing fraud and
ensuring the system's accuracy. Without liveness detection,
the system could be vulnerable to manipulation using static
images or videos rather than genuine live interactions. This
could lead to erroneous identifications and potentially
hazardous situations [20].

1) Motion: One of the approaches to achieving liveness
detection involves utilizing motion as an indicator. When
capturing a person's face in real-time, the 3D shape of their
face changes with movement, making it challenging to
deceive the system using a static 2D image. However,
employing motion as an indicator has its limitations. For
instance, it necessitates high-quality video for training, which

1058

may slow down the face recognition process. Additionally, it
can be deceived by 3D sculptures [20], [21].

2) Texture: The texture indicator relies on calculating the
surface of the "face" input to the face recognition system.
Training the model to detect surfaces makes it possible to
determine if the face input is a genuine image or a mere photo
on paper or a screen. This indicator offers the advantage of
convenient implementation since it only requires samples of
real and non-real faces. However, a drawback of using texture
as an indicator is its inability to detect surface texture when
input images or videos are of low quality, and it demands
more samples for texture detection training [20], [22].

3) Life Sign: Lastly, the life sign is optimal for
implementing a faster face biometric authentication system.
The life sign indicator necessitates user interaction with the
camera to detect life signs, such as moving the face in specific
directions or blinking eyes. Nevertheless, a disadvantage of
this indicator is that it will not work when facial features are
covered by hands or when wearing a face mask [20].

C. Literature Review: Dataset

Whitehill et al. [23] introduced the GENKI dataset, which
comprises 63,000 unfiltered images gathered from personal
web pages on the internet. Unlike images collected by
laboratory scientists, ordinary individuals captured these
worldwide for their personal use. The dataset encompasses
three distinct categories: Smile, Non-Smile, and Unclear. For
our project, where rapid detection is required, we will focus
solely on the GENKI-4K subset. This subset contains 4,000
images, specifically chosen to include only the Smile and
Non-Smile categories.

D. Proposed FRLD Algorithm

The FRLD algorithm proposed in this paper is a
combination of different Liveness Detection functionalities. It
comprises five distinct functions based on MediaPipe
Facemesh, dlib 68 landmarks, and TensorFlow Convolutional
Neural Networks. Face shaking and nodding functions rely on
MediaPipe FaceMesh, which depends on the Blazeface face
detection model [18] to determine face direction. Eye-blinks
and Smiling functions are processed by separate trained
TensorFlow CNN models, producing Boolean outputs based
on specific detection needs. The mouth opening function
calculates the gap between the upper and lower lips using dlib
68 landmarks [16],[20]. FRLD enables easy implementation
of five different liveness detections for real individuals in
front of the camera.

The self-trained TensorFlow CNN for liveness detection
uses separate training and validation sets. For instance, the
smile detection CNN is trained with 20% validation set (981
images) and 80% training set (3921 images). The model's
output predicts whether an input image shows a person
smiling or not. The project aims to implement a model
capable of extracting both face and liveness features from
input, enabling face recognition. The resulting process will be
thoroughly evaluated to determine its success in verification.

1) Liveness Detection: Head Shake and Head Nod

Module: In the Head Shake and Head Nod Module, frames
undergo facial landmark detection using MediaPipe
FaceMesh [24], which relies on the BlazeFace model [18] to
locate key facial landmarks in 2D (x, y) and 3D (x, y, z). After
identifying the landmarks, the face direction is calculated
using Camera Calibration and Rodrigues' rotation formula
[25] to determine the nose angle in 2D. This enables the
detection of face shaking or nodding.

Fig. 2 Flowchart of Head Shake and Head Nod Module

The improved Face Orientation Direction algorithm, based

on Camera Calibration and Rodrigues' rotation formula [25],
[26] on the MediaPipe FaceMesh, is as follows:

 Perspective-n-Point (PnP) Problem [27] are referred to
solve the calculation of face angle by face landmarks
received. The formula following is the equations that
PnP problem mentioned.

1059

 �� � � ��|	
�� (1)

Or,

 ��1� � ��� 0 ��0 �� ��0 0 1 � ���� ��� ��� 	���� ��� ��� 	���� ��� ��� 	�� ����1 (2)

a) !, �# is coordinates of the projection point in
pixel unit.

b) A is a camera matrix, or a matrix of intrinsic
parameters.

c) (cx, cy) is a principal point that is usually at the
image center.

d) fx, fy are the focal lengths expressed in pixel
units.

e) (X, Y, Z) are the coordinates of a 3D point in
the world coordinate space.

f) And [R|t] is the rotation and transformation
matrix.

 The angle of the head pose is taken from the calculation
in PnP problem, the (X, Y, Z) is the exact direction that
the head facing. Assume the X and Y as angle and draw
a line from the middle point of the 2D graph which is
(0,0). The direction of the face can be calculated when,

a) $ � %�& and |$| � 'ℎ&�&)ℎ*+, , then head
pose should be "Look Up."

b) $ � -�& and |$| � 'ℎ&�&)ℎ*+, , then head
pose should be "Look Down."

c) . � %�& and |.| � 'ℎ&�&)ℎ*+, , then head
pose should be "Look right."

d) . � -�& and |.| � 'ℎ&�&)ℎ*+, , then head
pose should be "Look Left"

e) If four requirements above not fulfilled, consider

the head pose is "Look Front"
 Refer to the Fig. 3 as direction reference

Fig. 3 Example of an image with acceptable resolution

2) Liveness Detection: Eye-Blink Module: In the blink
module, frames are initially processed through the open-cv
haarcascades algorithm's left-eye and right-eye configurations
to obtain cropped images of both eyes. These cropped images
are then input into the Eye-Blink TensorFlow Model, which
generates binary outputs ("0" for not closed and "1" for
closed) for each eye. If both eyes are detected as closed
(output: "1" for both), the module registers a blink and

concludes its operation [28], [29][30].

Fig. 4 Flowchart of Eye-Blink Module

The combined approach of open-cv haarcascades

algorithm and the Eye-Blink TensorFlow Model follows these
steps:

 The original frame with face will crop down the left eye
and right eye by using open-cv haarcascades

algorithm's left eye configuration and right eye
configuration.

 The cropped eye's frame will resize into 24 x 24-pixel
image to fulfill the input size of the model.

 The improvement of the input allows any resolution's
human face image to be detected by the Eye-Blink

1060

Module because the resolution will be lower down for
faster detection speed in Eye-Blink TensorFlow Model

3) Liveness Detection: Smile Module: In the smile
module, the frames are first passed through the face-cropping
function based on the open-cv haarcascades algorithm's
configuration to obtain the cropped images of the face. These

images are then input into the Smile TensorFlow Model,
which produces an output for face expression in "0" or "1"
(non-smile or smile). If the output shows that the face is
smiling, the module considers the smile to have occurred and
finishes its operation [31], [32]. The combined open-cv
haarcascades algorithm with the Smile TensorFlow Model is
elaborated in the following set of algorithms.

Fig. 5 Flowchart of Smile Module

 The original frame with face will crop down only the

face part by using open-cv haarcascades algorithm's
front face configuration.

 The cropped face frame will resize into 64 x 64-pixel
image to fulfill the input size of the model.

 The improvement of the input allows any resolution's
human face image to be detected by the Smile Module
because the resolution will be lower down for faster
detection speed in Smile TensorFlow Model

 The simplified output in "0" and "1" ease to output the
Boolean result for the detection since the detection is to
get the result of smiling. The "0" would represent the
face expression is non-smile and "1" as smiling face.

4) Liveness Detection: Mouth Opening Module: In the
mouth opening module, the frames are first passed through
the dlib 68 face landmarking model to detect and locate the
face landmarks. Once the landmarks are identified, the
distance of lips, known as Mouth Aspect Ratio (MAR), is
calculated in integer value based on algorithm from Mauck R.
By allocating the threshold value, we allow it to detect if the
mouth in the image is opened. The mouth will be considered
open when the MAR detected is larger than the allocated
threshold value. (MAR > threshold) The procedure of the
improved algorithm is shown below:

 We first refer to 68 face landmarks with every indexed
landmark to get the mouth landmarks.

Fig. 6 dlib 68 Face Landmark Reference Index [16]

 After that, the calculation of Mouth Aspect Ratio

(MAR) will be following the equation:
Vertical Euclidean distances of the right side of the mouth.

 � � 34.5 - .67� % 4$5 - $67� , (1)

 8!., $# � 9:;,�:�< 51, >!., $# � 9:;,�:�< 59 (2)

Vertical Euclidean distances of left side of mouth.

 @ � 34.5 - .67� % 4$5 - $67� , (3)

1061

 8!., $# � 9:;,�:�< 53, >!., $# � 9:;,�:�< 57 (4)

Horizontal Euclidean distances of mouth.

 C � 34.5 - .67� % 4$5 - $67� (5)

 8!., $# � 9:;,�:�< 49, >!., $# � 9:;,�:�< 55 (6) Mouth Aspect Ratio, ��� � ! � % @ # ÷ !2.0 ÷ C# (7)

When ��� is larger than threshold value, the mouth will be
considered as open.

III. RESULTS AND DISCUSSION

A. Implementation of the Proposed Algorithm and Validation

The landmarking function of MediaPipe [24] enables the
developer to attach it for several needs in capturing the face
and face landmarks. Example by using the FaceMesh function
in MediaPipe we will be able to plot the face area that
MediaPipe FaceMesh function detected. The face
landmarking function in dlib library also provides powerful
face landmarking features as the result of mouth detection is
overall powerful.

Fig. 7 Result of FaceMesh using MediaPipe when proceed the Face Shaking
and Face Nodding Module

Fig. 8 Result of face landmarking using dlib when proceed the Mouth
Opening Module

B. Testing of Self-trained TensorFlow Model (Smiling and

Eye-Blink)

1) Smile Detection: Using the GENKI-4K and Smiling

or Not Datasets. The training scoring evaluation shows that
the model can achieve more than 90% of scorings in terms of
precision, recall and f1-score when detecting the smile image

and overall accuracy of the model also achieve 91% in
detecting the smile and non-smile image.

Fig. 9 Training and validation accuracy of Smile Tensorflow Model

Fig. 10 Training and validation loss of Smile Tensorflow Model

TABLE II
CLASSIFICATION REPORT OF SMILE TENSORFLOW MODEL

 precision recall
f1-

score
support

Non-Smile (Class
0)

0.90 0.91 0.90 454

Smile (Class 1) 0.92 0.91 0.92 527
accuracy 0.91 981
macro avg 0.91 0.91 0.91 981
weighted avg 0.91 0.91 0.91 981

2) Eye-blink Detection: The training scoring evaluation
shows that the model can achieve more than 90% of scoring
in terms of precision, recall and f1-score when detecting the

1062

closed eye image and overall accuracy of the model also
achieve 92% in detecting the open and closed eye.

TABLE III
CLASSIFICATION REPORT OF BLINK TENSORFLOW MODEL

 precision recall
f1-

score
support

Open (Class 0) 0.92 0.93 0.92 543

Closed (Class 1) 0.93 0.92 0.92 525

accuracy 0.92 1068
macro avg 0.92 0.92 0.92 1068
weighted avg 0.92 0.92 0.92 1068

Fig. 11 Training and validation accuracy of Blink Tensorflow Model

Fig. 12 Training and validation loss of Blink Tensorflow Model

C. Prototype Deployment

To assess the reliability of the FRLD algorithm,
deployment becomes essential to identify any potential issues
in the proposed detection logic. For the API deployment,
FastAPI [33] will be utilized as it allows for swift deployment
of a prototype API. FastAPI is a lightweight Python-based
web framework designed for creating high-performance APIs
using standard Python type hints. Its use of open standards
enables the generation of production-ready code and
automatic interactive documentation [34].

Fig. 13 Flowchart of API Prototype

On the client side, the Android platform will serve as the
front-end client for capturing front-camera images. These
images will be transmitted to the server using the Volley
library, which can send images as string data. Upon receiving
the image data, the server will leverage Python's image
processing libraries, such as OpenCV or Pillow, to analyze
and manipulate the images as required. The server will then
respond to the Android client with the image processing
findings, which may comprise text extracted from the picture
or object recognition data.

RESTful API can simplify the communication between the
front-end and back-end. This is because RESTful API
standardized the way of data transmission between different
systems, ensuring efficient and reliable data exchange.

During the server setup, API testing can be conducted
using any programming language capable of converting
images into base64 strings and sending them to the web server
through API requests. This allows for comprehensive testing
of the API's functionality, ensuring that the server can
accurately transmit and process images.

As for the Android implementation, the image can be
captured through the device's camera and saved as a bitmap
image file. Before being delivered to the server, the bitmap
picture can be encoded into a base64 string format. This
procedure guarantees that the picture is safely transferred, and
that the server can quickly handle it upon reception.

Utilizing base64 encoding facilitates the inclusion of
binary data, such as images, within the API request. This
encoding ensures that the image data is safely transmitted

1063

over networks without the risk of data corruption or loss
during transmission.

Overall, combining base64 encoding for image data and
implementing RESTful API endpoints creates a robust and
reliable communication channel between the front-end
Android client and the back-end server. This setup enables
seamless testing and deployment of the FRLD algorithm in
real-world scenarios, providing valuable insights into the
algorithm's performance and reliability in practical
applications.

Fig. 14 Interface of Android prototype

Fig. 15 Information panel of Android prototype

IV. CONCLUSION

In this study, an API prototype is built and testing in an
Android mobile device to test for reliability of the API to
mobile device. The success of detection the liveness by front
camera image on mobile phone means the mindset of process
the image on server or serverless service are possible. And
suits the concept of edge computing [35]. Our team expects
more researchers to focus on this topic and propose a better
solution in detecting face liveness.

The study also helps to reduce false positives in face
recognition systems. By ensuring that the face being scanned
is a live person, the system can be more accurate in identifying
individuals. This is especially critical in applications like
access control and identity verification, where false positives
can lead to unauthorized access or security breaches. The
system can be more dependable and accurate with liveness
detection, lowering the danger of false positives.

From hospitals and government buildings to sports
stadiums and music halls, this adaptability may be useful in a

variety of sectors and environments. With liveness detection,
the system can be more accurate and secure, providing
enhanced protection and peace of mind.

A. Achievements

Remarkably, MediaPipe and dlib are able to compute the
face direction and mouth opening without extra effort, such as
machine learning or pre-processing of the input image.
Unfortunately, the smile detection model still has some
difficulties detecting smiles, which may be related to the
limited sample size used in training. However, overall, the
self-trained model achieves high scores in detection.

During the deployment stage, it is fortunate that the image
from the Android application prototype still works after being
sent through the network to the server by using base64
encoding to convert the image to a string. The Web API server
is functioning well, with some minor errors such as
connection issues when using different internet networks (e.g.,
accommodation versus university). The university's firewall
is believed to be blocking potential spamming of requests to
prevent DDOS attacks.

B. Limitations and Future Improvements

Because of the time limitation, the project could only
proceed with implementing a slightly trained model combined
with a pre-trained model for the system. One possible
improvement for the project would be to add more datasets or
test different variants of Deep Learning models, apart from
Convolutional Neural Network. Transfer learning for the face
features model could also be tested to determine its
performance compared to that of this project. Additionally,
fine-tuning the model using a larger dataset or more
sophisticated techniques, such as adversarial training, could
further improve the system's robustness against attacks.

The deployment of the client prototype is still too simple
and buggy. The way of implementing the client through
webpage would be more reliable in this case as the using of
API leads to necessary of internet connectivity like webpage.
Moreover, the website deployment could enable more flexible
and efficient access to the system, with the ability to handle
multiple requests and provide real-time feedback to users. The
website could also offer more customization options and
integrate with other tools or services, such as biometric
authentication or identity management platforms.

ACKNOWLEDGEMENTS

We thank Tunku Abdul Rahman University of
Management and Technology (TAR UMT) for providing
financial support and technical support when completing this
study.

REFERENCES

[1] Mordor-Intelligence, "Facial Recognition Market - Growth, Trends,
Covid-19 Impact, and Forecasts (2023 - 2028),"

Mordorintelligence.com, [Online]. Available:
https://www.mordorintelligence.com/industry-reports/facial-
recognition-market.

[2] D. Sharma and A. Selwal, "A survey on face presentation attack
detection mechanisms: hitherto and future perspectives," Multimed

Syst, vol. 29, no. 3, pp. 1527–1577, 2023, doi: 10.1007/s00530-023-

01070-5.

1064

[3] J. K. Khan and D. Upadhyay, "Security issues in face recognition,"

2014 5th International Conference - Confluence The Next Generation

Information Technology Summit (Confluence), Sep. 2014,
doi: 10.1109/confluence.2014.6949341.

[4] R. Singh, A. Agarwal, M. Singh, S. Nagpal, and M. Vatsa, "On the
Robustness of Face Recognition Algorithms Against Attacks and
Bias," Proceedings of the AAAI Conference on Artificial Intelligence,

vol. 34, no. 09, pp. 13583–13589, Apr. 2020,
doi: 10.1609/aaai.v34i09.7085.

[5] M. C. Gentile, D. Danks, and M. Harrell, "Case Study: Does Facial

Recognition Tech Enhance Security?," Harvard Business Review. Nov.
2022. [Online]. Available: https://hbr.org/2022/11/does-facial-
recognition-tech-enhance-security

[6] L. Li, P. L. Correia, and A. Hadid, "Face recognition under spoofing
attacks: countermeasures and research directions," IET Biom, vol. 7,
no. 1, pp. 3–14, Jan. 2018, doi: 10.1049/iet-bmt.2017.0089.

[7] S. Kumar, S. Singh, and J. Kumar, "A comparative study on face
spoofing attacks," IEEE Xplore. pp. 1104–1108, May 2017.
doi: 10.1109/CCAA.2017.8229961.

[8] A. Hadid, "Face Biometrics Under Spoofing Attacks: Vulnerabilities,
Countermeasures, Open Issues, and Research Directions," 2014 IEEE

Conference on Computer Vision and Pattern Recognition Workshops,

Jun. 2014, doi: 10.1109/cvprw.2014.22.
[9] P. Kavitha and K. Vijaya, "A Study on Spoofing Face Detection

System," 2017. [Online]. Available:

https://api.semanticscholar.org/CorpusID:198996446
[10] E. A. Raheem and Ahmad, "Statistical Analysis of Image Quality

Measures for Face Liveness Detection," Lecture notes in electrical

engineering, vol. 547, Jan. 2019, doi: 10.1007/978-981-13-6447-1_69.
[11] Y. Li, Y. Li, Q. Yan, H. Kong, and R. H. Deng, "Seeing Your Face Is

Not Enough," Computer and Communications Security, Oct. 2015,

doi: 10.1145/2810103.2813612.
[12] D. Garud and S. S. Agrwal, "Face liveness detection," IEEE Xplore.

pp. 789–792, Sep. 2016. doi: 10.1109/ICACDOT.2016.7877695.

[13] J. Yang, Z. Lei, S. Liao, and S. Z. Li, "Face Liveness Detection with
Component Dependent Descriptor," IEEE Xplore. pp. 1–6, Jun. 2013.
doi: 10.1109/ICB.2013.6612955.

[14] A. Ali, F. Deravi, and S. Hoque, “Liveness Detection Using Gaze
Collinearity,” 2012 Third International Conference on Emerging
Security Technologies, Sep. 2012, doi: 10.1109/est.2012.12.

[15] L. Wang, X. Ding, and C. Fang, "Face live detection method based on
physiological motion analysis," Tsinghua Sci Technol, vol. 14, no. 6,
pp. 685–690, Dec. 2009, doi: 10.1016/s1007-0214(09)70135-x.

[16] M. Jabberi, A. Wali, B. B. Chaudhuri, and A. M. Alimi, "68 landmarks
are efficient for 3D face alignment: what about more?," Multimed

Tools Appl, Apr. 2023, doi: 10.1007/s11042-023-14770-x.

[17] S. Hangaragi, T. Singh, and N. N, "Face Detection and Recognition
Using Face Mesh and Deep Neural Network," Procedia Comput Sci,
vol. 218, pp. 741–749, 2023, doi: 10.1016/j.procs.2023.01.054.

[18] V. Bazarevsky, Y. Kartynnik, A. Vakunov, K. Raveendran, and M.
Grundmann, "BlazeFace: Sub-millisecond Neural Face Detection
onMobile GPUs," arXiv:1907.05047 [cs], Jul. 2019, [Online].

Available: https://arxiv.org/abs/1907.05047
[19] P. Shaha, U. Sharma, and K. Pawar, "Face Recognition Technology,"

International Journal of Research in Engineering, Science and

Management, vol. 1, no. 9, pp. 149–151, Sep. 2018, [Online].
Available:
https://www.ijresm.com/Vol_1_2018/Vol1_Iss9_September18/IJRE

SM_19_32.pdf
[20] S. Chakraborty and D. Das, "An Overview of Face Liveness

Detection," International Journal on Information Theory, vol. 3, no. 2,

pp. 11–25, Apr. 2014, doi: 10.5121/ijit.2014.3202.

[21] S. Li, X. Dong, Y. Shi, B. Lu, L. Sun, and W. Li, "Multi-angle head

pose classification with masks based on color texture analysis and
stack generalization," Concurr Comput, vol. 35, no. 18, 2023,
doi: 10.1002/cpe.6331.

[22] C. Gao, X. Li, F. Zhou, and S. Mu, "Face liveness detection based on
the improved CnN with context and texture information," Chinese

Journal of Electronics, vol. 28, no. 6, pp. 1092–1098, 2019,

doi: 10.1049/cje.2019.07.012.
[23] J. Whitehill, G. Littlewort, I. Fasel, M. Bartlett, and J. Movellan,

"Toward Practical Smile Detection," IEEE Trans Pattern Anal Mach

Intell, vol. 31, no. 11, pp. 2106–2111, Nov. 2009,
doi: 10.1109/tpami.2009.42.

[24] I. Grishchenko and V. Bazarevsky, "MediaPipe Holistic —

Simultaneous Face, Hand and Pose Prediction, on Device," Google AI

Blog. Dec. 2020. [Online]. Available:
https://ai.googleblog.com/2020/12/mediapipe-holistic-simultaneous-

face.html
[25] L. Fraiture, "A History of the Description of the Three-Dimensional

Finite Rotation," Journal of The Astronautical Sciences, vol. 57, no.

1–2, pp. 207–232, Jan. 2009, doi: 10.1007/bf03321502.
[26] X. Zhao, S. Sulaiman, L. Chen, M. Dong, Y. Duo, and H. Song,

"Continuity Rotation Representation for Head Pose Estimation

without Keypoints," in ACM International Conference Proceeding

Series, 2023, pp. 358–363. doi: 10.1145/3594315.3594341.
[27] F. Rocca, M. Mancas, and B. Gosselin, "Head Pose Estimation by

Perspective-n-Point Solution Based on 2D Markerless Face Tracking,"
Springer eBooks, vol. 136, pp. 67–76, Jul. 2014, doi: 10.1007/978-3-
319-08189-2_8.

[28] E. Garea-Llano and A. Morales-Gonzalez, "Framework for biometric
iris recognition in video, by deep learning and quality assessment of
the iris-pupil region," J Ambient Intell Humaniz Comput, vol. 14, no.

6, pp. 6517–6529, 2023, doi: 10.1007/s12652-021-03525-x.
[29] V. Panwar and Pooja, "A Review on Iris Recognition System using

Machine and Deep Learning," in 3rd IEEE 2022 International

Conference on Computing, Communication, and Intelligent Systems,

ICCCIS 2022, 2022, pp. 857–866.
doi: 10.1109/ICCCIS56430.2022.10037643.

[30] N. K. Singh, S. Mishra, and A. Bhardwaj, "Eye Blinking Detection
Test," in Proceedings - 2021 3rd International Conference on

Advances in Computing, Communication Control and Networking,

ICAC3N 2021, 2021, pp. 1734–1736.
doi: 10.1109/ICAC3N53548.2021.9725633.

[31] R. Rao and V. N. Hedge, "Recognition and Classification of Smiles

using Computer Vision," in 2022 1st International Conference on

Artificial Intelligence Trends and Pattern Recognition, ICAITPR 2022,
2022. doi: 10.1109/ICAITPR51569.2022.9844198.

[32] L. Ruan, Y. Han, J. Sun, Q. Chen, and J. Li, "Facial expression
recognition in facial occlusion scenarios: A path selection multi-
network," Displays, vol. 74, 2022, doi: 10.1016/j.displa.2022.102245.

[33] P. Bansal and A. Ouda, "Study on Integration of FastAPI and Machine
Learning for Continuous Authentication of Behavioral Biometrics," in
2022 International Symposium on Networks, Computers and

Communications (ISNCC), 2022, pp. 1–6.
doi: 10.1109/ISNCC55209.2022.9851790.

[34] P. Bansal and A. Ouda, "Study on Integration of FastAPI and Machine

Learning for Continuous Authentication of Behavioral Biometrics," in
2022 International Symposium on Networks, Computers and

Communications, ISNCC 2022, 2022.

doi: 10.1109/ISNCC55209.2022.9851790.
[35] K. Cao, Y. Liu, G. Meng, and Q. Sun, "An Overview on Edge

Computing Research," IEEE Access, vol. 8, pp. 85714–85728, 2020,

doi: 10.1109/access.2020.2991734.

1065

