
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Practical Evaluation of Federated Learning in Edge AI for IoT

Sauryadeep Pal a,*, Muhammad Umair a, Wooi-Haw Tan a, Yee-Loo Foo a
a Faculty of Engineering, Multimedia University, Cyberjaya, 63100, Malaysia

Corresponding author: *ylfoo@mmu.edu.my

Abstract— AI running locally on IoT Edge devices is called Edge AI. Federated Learning (FL) is a Machine Learning (ML) technique

that builds upon the concept of distributed computing and preserves data privacy while still supporting trainable AI models. This paper

evaluates the FL regarding practical CPU usage and training time. Additionally, the paper presents how biased IoT Edge clients affect

the performance of an AI model. Existing literature on the performance of FL indicates that it is sensitive to imbalanced data

distributions and does not easily converge in the presence of heterogeneous data. Furthermore, model training uses significant on-device

resources, and low-power IoT devices cannot train complex ML models. This paper investigates optimal training parameters to make

FL more performant and researches the use of model compression to make FL more accessible to IoT Edge devices. First, a flexible test

environment is created that can emulate clients with biased data samples. Each compressed version of the ML model is used for FL.

Evaluation is done regarding resources used and the overall ML model performance. Our current study shows an accuracy

improvement of 1.16% from modifying training parameters, but a balance is needed to prevent overfitting. Model compression can

reduce resource usage by 5.42% but tends to accelerate overfitting and increase model loss by 9.35%.

Keywords— Internet-of-Things (IoT); edge AI; machine learning; federated learning.

Manuscript received 15 Nov. 2022; revised 29 Jan. 2023; accepted 2 Sep. 2023. Date of publication 30 Nov. 2023.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

A. Cloud AI and Edge AI

Artificial Intelligence (AI) can augment Internet of Things

(IoT) applications by improving the efficiency of IoT

operations, improving data management, and adding new

features [1], [2]. Due to the resource demands of AI

frameworks, cloud computing is a popular method of
implementing AI in IoT systems [3]–[5]. This type of AI,

often called Cloud AI, is hosted on the cloud and is not

constrained by the limited resources of IoT Edge devices [6],

[7]. Cloud computing offers scalable deployments and

flexibility in resource allocation [8], which can be quite

beneficial for any AI application. However, Cloud AI does

have several drawbacks related to speed, response time, and

data security [9]. Due to local data collection and processing,

Edge AI models are not bottlenecked by large data traffic

loads or poor network connections as Cloud AI models have

the potential [10]–[13].
Furthermore, centralization means that Cloud AI models

are unable to guarantee the security and privacy of their data

[14]. A breach in data security can potentially affect all data

in the system, including sensitive data such as passwords [15].

Conversely, the data on an edge device is restricted to that

device and does not leave it. Even in the case of a security

breach, the data on other edge devices is not affected, thus

providing a greater degree of data privacy and security [16]–

[19]. This is greatly beneficial for IoT applications which can

have multiple clients with sensitive data, such as health

monitoring systems [20]–[22].

B. Challenges of Edge AI for IoT Applications

While Edge AI can be a beneficial addition to many IoT

systems, there are some challenges to overcome when it

comes to its implementation on IoT Edge devices:

 Microcontrollers, which are commonly used as IoT

Edge devices, have very limited storage and memory

[23] thus necessitating a small AI model size and model

compression.

 IoT Edge devices also typically have weak CPUs which

might struggle or be completely incapable of executing

the complex mathematical operations of AI models
within a reasonable timescale.

 Locally available data may be limited in terms of both

quantity and scope. This inhibits strategies such as

model compression [24], along with potentially making

the model biased.

2115

JOIV : Int. J. Inform. Visualization, 7(3-2): Empowering the Future: The Role of Information Technology in Building Resilience - November 2023 2115-2125

Finding solutions for these issues is vital for making Edge

AI compatible with a wide variety of IoT applications. One

such potential solution is a Machine Learning (ML) technique

called Federated Learning (FL).

C. Federated Learning (FL)

FL is a ML technique based on the principles of

collaboration and central aggregation [25]. Figure 1 shows the
overview of a generic FL arrangement. Each client in the FL

network trains locally with its local dataset. In the context of

IoT applications, these clients would typically be IoT Edge

devices. Post-training, each client then uploads its local model

to a central server. The server aggregates the models from all

clients and sends the aggregated, updated model back to the

clients. FL provides a few key advantages:

 Data privacy is preserved as the data from each client

does not leave the client. The federated server only sees

a client’s ML model parameters, not the data it is

trained on.

 Through aggregation, FL allows each client to leverage

the training conducted by every other client in the

system. This reduces the local training and data each

client would require to obtain a similarly performant

model.

 FL provides a degree of flexibility to cater to different

types of clients. Each client contributes only as much

training as their computing resources allow yet can still
obtain the most updated and performant model through

aggregation. This can be quite beneficial for IoT

applications with IoT Edge devices with varying

computing capabilities.

 Implementing FL on existing Edge AI systems is easy

as FL can be purely software-based except for the

Federated Server, which can be implemented on IoT

Edge devices such as Raspberry Pi.

Fig. 1 A generic Federated Learning arrangement

FL is a relatively new technology; currently, much of its

research is based on theoretical simulations. While this

provides an idea of the strengths and weaknesses of FL,

practical evaluations are necessary to judge the true

capabilities of FL.

D. Background and Related Works

This section discusses the relevant research on the

performance of various Federated Learning algorithms and
studies evaluating Federated Learning in practical IoT

scenarios. The data collected in an IoT system typically tends

to display heterogeneity statistically and within the IoT

system as a whole. In an IoT system, the statistical distribution

of the data collected by edge devices can greatly vary from

device to device. Some devices may collect very few data

samples, while others may collect samples biased in a specific

direction. This leads to the overall data in the system being

Non-IID (Non-Independently and Identically Distributed).

Non-IID data has been known to degrade FL performance by

reducing model accuracy and making model convergence

inconsistent, requiring more training to achieve global model

convergence [26]. For example, FedAvg, one of the most

basic FL algorithms, can show up to ~55% reduction in

accuracy when trained on non-IID data [27].

Furthermore, IoT edge devices may vary greatly in terms

of hardware, directly affecting their data collection and ability

to perform in FL training sessions. This means that devices

that are consistently more active in FL training can make the

model more biased towards themselves. This phenomenon is
known as system heterogeneity, wherein an imbalance in

device capabilities negatively affects the performance of an

FL-trained model. Several FL algorithms, such as FedProx,

have been developed to improve the performance of FL in the

presence of heterogeneity by stabilizing and guaranteeing

model convergence [28]. However, comprehensive research

on the performance of these algorithms indicates that they are

2116

more sensitive to heterogeneity than initially claimed.

Evaluation of these algorithms shows that their performance

degrades in a statistical and system heterogeneity setting, and

model divergence is uncommon [29]. This is especially

problematic for IoT, as most applications would prefer

adaptable and flexible solutions when implementing Edge AI

in IoT systems.

In a practical IoT scenario, IoT Edge devices will typically

have responsibilities other than FL model training and must

allocate time and computing resources to fulfill these
responsibilities. Therefore, finding a tradeoff between

training time and model performance is important by

choosing the most optimal training epochs for edge devices

and the data batch size when training [29]. Evaluation of FL

in a practical IoT setting [30] shows that model training incurs

significant resource costs in CPU usage, power usage, and

network overhead. Furthermore, even on a relatively powerful

IoT edge device such as the Raspberry Pi 3, this study could

not feasibly train complex neural network models such as

MobileNet V1 on the device.

II. MATERIAL AND METHOD

We propose several solutions to solve the drawbacks of FL

for IoT applications, as identified by previous works. A

simple solution to degrading FL performance in

heterogeneous environments is to make the FL server

dynamic. For instance, the server could track the average

model accuracy and loss over n training rounds and halt

training if the model performance degrades by a certain

percentage. Another identified issue is the high computing

cost of running complex ML models on IoT edge devices

which makes inference extremely time consuming and even

precludes some models from running on certain IoT Edge

devices. Model optimization is therefore necessary and can be

achieved through model compression. In this study, we shall

implement three specific model compression techniques:

pruning, clustering, and quantization, and observe their effect

on model performance and resource usage.

A. Federated Learning Setup

The model used for experimentation is a multi-class

classification Convolutional Neural Network (CNN) trained

on the Dry Bean dataset [31]. The KerasTuner tool is used to

obtain an initial optimized model architecture. The FL

framework consists of a local Edge server and multiple Edge

clients. Figure 2 provides an overview of the FL framework

setup.
The Edge server and clients are connected through a

wireless Local Area Network (LAN), specifically a WiFi
Access Point. The server provides two services through

separate ports:

 A training service that coordinates Federated Training

between participating Edge clients. This service

executes the FedAvg algorithm to aggregate model

parameters from clients and broadcasts the aggregated

parameters back to the clients. It also keeps track of

resource usage during training.

 An updated model provider service that serves the most

updated model via HTTP. This service allows Edge

client devices incapable of training to still get the most

updated model through a simple HTTP request.

Fig. 2 Federated Learning setup overview

The Edge clients are IoT Edge devices of varying

capabilities. There are three types of IoT Edge devices taking

part in the experiments:

 Software emulators are essentially used to emulate

additional clients for FL and are capable of inference

and training. They interact with the server through the

training service. In an actual IoT scenario, they

represent the most computationally capable IoT Edge

devices, such as smartphones.

 Raspberry Pi 3 Model A+: This Raspberry Pi is a
moderately powerful IoT Edge device and can both

infer and train with its local model. Similar to the

emulated clients, it interacts with the server through the

training service. As a commonly used IoT Edge device,

the Raspberry Pi provides a good benchmark of FL

performance in a typical IoT application.

 ESP32: The ESP32 is a low-power microcontroller and

is very common in IoT applications. It represents those

IoT Edge devices that have very limited computing

resources and are able to only infer, and not train, with

their local model. The ESP32 cannot participate in

training, so it instead gets the most updated model
through the server’s model provider service.

2117

B. Experimental Setup

We used Python and multiple Python libraries for this

project to set up the test environment. The Python version

used is 3.10.7, 64-bit Windows. All ML models are built with
TensorFlow v2.12.0 and Keras, and the Flower library v1.3.0

implements FL.

The two IoT Edge devices used for testing are the

Raspberry Pi 3 Model A+ and the ESP32. The Raspberry Pi

is running Python 3.9.16, whereas the ESP32 is programmed

with the ESP-IDF. CUDA is not available for any of the IoT

Edge devices.

A laptop is used as the server for FL and for instantiating

software-emulated IoT Edge devices. This laptop has an Intel

i5-8300H CPU, GTX 1060 GPU, and 8 GB of RAM. The

operating system is Windows 11 64-bit.

C. Federated Training Round Overview

Figure 3 shows the overview of one round of Federated

Training. Each round begins with the server asking all

participating clients to start local training and sending
optional training instructions to each client, such as the epochs

to train for. Once every client has completed training and sent

the updated parameters to the server, it will aggregate these

parameters using the FedAvg algorithm. The aggregated

parameters are applied to the server’s own model and also

broadcast back to the clients so that they may update their

local models. Alongside the weights, each client also sends

the resource usage recorded during training to the server. This

includes the CPU time utilized and the RAM usage during

training, and these metrics are averaged and recorded by the

server. After the server and clients have updated their models,
they evaluate their models with their local datasets.

Fig. 3 Process flow of one round of Federated Training

The clients send their evaluation results to the server in

terms of loss and accuracy, along with the resource usage

metrics for evaluation. The server records a weighted average
of the accuracies and losses (the weight being the number of

samples in a client’s dataset) and adds the averaged evaluation

resource usage to the averaged training resource usage.

Lastly, the server records the time elapsed to complete the

training round. This concludes one round of training.

Two conditions determine if the server should continue

with the next round of training:

 If the pre-determined number of training rounds has

already been completed, or

 If further training will degrade model performance.
If either of these criteria are met, the server stops training

after the current round has concluded. It then displays the

relevant training results, as can be seen in Figure 4, and stores

every recorded metric in a CSV file. This file can later be used

to evaluate the overall effect of the training session in greater

detail.

2118

Fig. 4 The console and graphical output of a training session, showing loss and accuracy metrics

D. Measuring FL Performance and Resource Usage During

Training

To evaluate the performance and resource usage of FL, we

measure the following metrics during each training round:

 Client Loss and Accuracy: After training and model

update during each training round, all clients execute a

single round of evaluation on a fraction of their local
dataset. Their evaluated losses and accuracies are

aggregated via a weighted average (where the weight is

the number of samples a client has in their local dataset)

and reported as the client's loss and accuracy. These

two metrics are also collectively referred to as the client

metrics.

 Server Loss and Accuracy: The FL server has a

dataset concatenated from all participating clients'

datasets. In an actual FL setup, the server will most

likely not have this dataset or, ideally any client data,

as data privacy is a core tenet of FL. We have provided
the server with this

dataset only to facilitate FL evaluation. The server also

instantiates a copy of the ML model running on all Edge

clients but only uses it for evaluation and not training.

Each training round, the server randomly samples a

portion of the dataset and runs a single round of

evaluation with its own copy of the model, after

updating said model parameters with the aggregated

model parameters. The evaluated loss and accuracy are

recorded.

 Average Training Resource Usage: The psutil
(process and system utilities) Python library is used to

measure the accumulated CPU time for Federated

Training in each participating client. This library is also

used to measure the estimated RAM usage during

training. These two measurements are averaged across

clients to get a measure of the CPU time and RAM

usage during each round of FL training. The server also

records the time elapsed for each round of training,

using the timeit Python library.

E. Federated Training Evaluation

To counter the effects of overfitting and other types of

model performance degradation, we propose implementing a

training evaluation system to track the effect of training while

a training session is on-going. Every n-th round of training,

the server calculates the average of the server loss and

accuracy over the current and past n-1 rounds. These metrics

are used to determine whether FL is deteriorating or

improving the model performance and to take action

accordingly. Currently, the action is to halt training.

Figure 5 shows a side-by-side comparison of this system in

action, with the left graph being the control. Both of these

training sessions have the same number of clients, with

each being provided a biased dataset. These datasets contain
samples from only four randomly chosen classes of the seven

in the original dataset. Additionally, both training sessions

have the following starting conditions:

 50 planned training rounds

 10 clients with identical computing resources

 2 local epochs of training per client during each training

round

 Using the same pre-trained model for both server and

clients

For the graph on the right, the training evaluation rounds is

set to multiples of 5. Hence every 5n-th round (where n > 0),
the average server loss and accuracy over the current and past

4 rounds is calculated. If the average loss and accuracy have

both deteriorated from the previous average, the system

assumes that training is making the model worse and stops

further training. Hence, the training stops after only 10 rounds

out of the planned 50 rounds.

F. Manipulating Training Parameters to Improve FL

Performance

In a practical IoT scenario, we can readily manipulate three
Federated Training parameters: the number of training

rounds, the number of local training epochs, and the number

of clients participating in training. Changing model

hyperparameters, such as the learning rate, would have a

bigger impact on FL performance. However, most Edge AI

models are usually static and not easily modifiable. Thus, in

this project, we instead experiment with changing the number

of training rounds, the number of local training epochs, and

the number of clients in a training session. For these

experiments, we use emulated software clients to ensure that

each client is identical and that diversity does not affect the
results. To prevent potential bias from differing model

parameters and internal model structure, each client and the

server are provided with the same, completely untrained

model with no type of model compression applied. The server

has the entire Dry Bean dataset for evaluation, whereas each

client is provided with a random sub-sample of the Dry Bean

dataset. Each client dataset has approximately the same

2119

number of samples, and each client uses their local dataset for

training and evaluation. When one training parameter is being

experimented on, the others are kept constant. The training

evaluation system described in the previous section has also

been disabled for these experiments. The metrics measured

for these experiments are the server loss and accuracy and the

client loss and accuracy. To get an idea of the model

performance at the end of training, we measure the average of

these metrics over the last 5 rounds of training.

Fig. 5 The outcome of Federated Training without (left) and with (right) training evaluation. Note that these graphs also show the pre-training (round 0) metrics

Figure 6 shows the results of adjusting the training rounds.

We started with 50 training rounds and went up in steps of 50

up to 300 training rounds. There were 10 participating clients

for all training sessions, with each client training locally for 1

epoch per training round.

Fig. 6 End of training loss and accuracy metrics when varying training rounds

Figure 7 shows the results of adjusting the local training

epochs. We started with 1 epoch per round and went up to 10

epochs per round. The number of participating clients was 10

for all training sessions. The number of training rounds was

also kept at a constant 50 for all training sessions. Figure 8

shows the results of varying the number of clients

participating in training. We started with 5 clients and went
up to 15. The local training epochs per client was fixed at 1,

and the number of training rounds was also fixed at 50 for all

training sessions.

Fig. 7 End of training loss and accuracy metrics when varying local training

epochs

Fig. 8 End of training loss and accuracy metrics when varying the number of

participating clients

2120

G. Implementing Model Compression

Model compression is the generic name for a variety of

techniques that can help reduce the size and computational

complexity of a neural network. These reductions can be the
difference that allows an IoT Edge device to run a particular

model, and hence are an important consideration for any Edge

AI system. With regards to FL, a less complex model can

speed up training as local training would require fewer

computing resources.

In this project, we have implemented three model

compression techniques. It should be noted that these model

compression techniques apply only to the model and not any

of its training and evaluation code and data. The techniques

are as follows:

 Pruning: Neural network pruning is a technique by
which parameters are systematically removed from a

large, over-parameterized model, to produce an overall

smaller, less complex model [32]. Any drop in accuracy

caused by pruning is usually rectified by tuning the

pruned model with the original’s model dataset. This

project uses the TensorFlow Model Optimization

Toolkit to implement pruning. The pruning algorithm

used is constant sparsity, so a constant user-defined

sparsity is targeted for the parameters of each layer. The

target sparsity for this project is 75%, so the pruning

algorithm will attempt to remove 75% of the

parameters in each layer. It should be noted that this
type of pruning does not change the model structure by

physically removing model parameters. Rather, it

“masks” parameters by setting their value to zero. This

way, any multiplication operations with these

parameters will have a pre-determined answer of zero

and the CPU does not need to perform the actual

multiplication, thus reducing the CPU usage.

Furthermore, compression algorithms such as gzip can

take advantage of the large number of continuous

zeroes to compress the model more efficiently.

 Clustering: Clustering is based on the k-Means
clustering algorithm and is contingent on the idea of

weight sharing. The goal is to group similar weights in

each neural network layer into clusters and represent

each weight in a cluster by its centroid value [33].

Clustering allows compression algorithms to take

advantage of the data redundancy introduced by several

unique weights now represented by the same value to

reduce model size greatly. This project uses the

TensorFlow Model Optimization Toolkit to implement

clustering. The target number of clusters per layer is set

to 3. As with pruning, clustering does not change the
underlying model structure but rather manipulates

existing parameters.

 Quantization: Quantization is the process of reducing

the number of bits used to represent model parameters.

For example, model weights can be stored as 16-bit

floating points instead of 32-bit, halving their storage

requirement. Aside from storage savings, quantization

schemes can also reduce the computational complexity

of the model. Microcontrollers, particularly other low-

power IoT Edge devices, benefit greatly as they

typically have low-power CPUs and limited memory.
Thus, any reduction in complexity will result in a

speed-up in inference and training. We implement

float16 quantization in this project using the

TensorFlow Lite model conversion toolkit.

This quantization scheme attempts to convert as many

model parameters as possible from 32-bit floating

points to 16-bit floating points, which greatly reduces

the storage occupied by the model.

This experiment uses a single Raspberry Pi 3 Model A+ as

the only client for 20 rounds of Federated Training. Both the

server and the client use completely untrained models and
train locally for 5 epochs each training round. The server has

the entire Dry Bean dataset to evaluate its model, while the

client is provided a randomly sub-sampled portion of the Dry

Bean dataset for training and evaluation. Table 1 shows the

effect of various model compression techniques on model

performance during Federated Training.

TABLE I

MODEL PERFORMANCE METRICS WHEN IMPLEMENTING VARIOUS TYPES OF MODEL COMPRESSION

Compression Type Server Loss Client Loss Server

Accuracy

Client

Accuracy

Loss Deviation

(%)

Accuracy Deviation

(%)

No Compression 0.240334484 0.238781825 0.922480166 0.928205132 0.648 0.619
Pruning, Clustering 0.256751227 0.243673545 0.923626208 0.931868136 5.227 0.888
Quantization 0.246050501 0.200120828 0.919806063 0.932600737 20.588 1.381
Pruning, Quantization 0.236408308 0.172866923 0.921716142 0.951648355 31.051 3.196

Clustering, Quantization 0.243828276 0.189846137 0.921187186 0.941391945 24.895 2.17
Pruning, Clustering,
Quantization

0.262808117 0.222650793 0.92356745 0.932600737 16.544 0.973

The metrics here are averaged over the last 5 rounds of a

training session. The accuracy and loss deviation columns

show the difference between server and client metrics. As the

server has the entire dataset for evaluation, these deviations
can indicate whether the model’s performance is

deteriorating. Table 2 shows the uncompressed and

compressed sizes of the model file when using the gzip file

compression algorithm. Model size is important, as storage

can be a premium in many IoT Edge devices.

TABLE II

UNCOMPRESSED AND GZIP COMPRESSED MODEL FILE SIZES

Compression

Type

Uncompressed

File Size

(Bytes)

Compressed

File Size

(Bytes)

Compression

Ratio

No
Compression

631220 278525 2.266

Pruning,
Clustering

629492 48741 12.915

Quantization 355740 148755 2.391

2121

Pruning,

Quantization
356116 148871 2.392

Clustering,
Quantization

354228 44092 8.034

Pruning,
Clustering,
Quantization

354228 44082 8.036

Figure 9 shows the average resource usage per training

round in terms of CPU time, RAM usage, and the time

required for one round of training. It should be noted that

these resource measurements are estimations and may not

correspond exactly to the actual resource usage during

training. While all effort was made to conduct the training in

an isolated environment with no other programs running in

the foreground, the Raspberry Pi’s OS may have been running

background tasks that could have affected the resource usage

measurements. Regardless, these estimates still provide a

good approximation of the resource usage during training.

Fig. 9 Training resource usage when implementing various types of model compression

III. RESULT AND DISCUSSION

A. Minimizing Model Degradation due to heterogeneity

Previous works mostly focused on using more

sophisticated FL algorithms to counter degrading model

performance with heterogeneous data. However, research has

shown that these algorithms do not perform to the level

expected, so our approach is to make the FL system dynamic

and able to respond appropriately when it detects worsening

model performance. Our proposed implementation consists of

a detection system based on averaging model performance

metrics over a fixed number of rounds and a default response

of simply stopping further training.
From Figure 5, evaluating both training sessions' final loss

and accuracy metrics shows that the early training stop has

successfully reduced model degradation. The client metrics of

both sessions might give the incorrect impression that the

model is performing well and is soon to converge. As each

client has a biased dataset, training and evaluating a model

with the same dataset will naturally produce good loss and

accuracy metrics with the bias going unnoticed. However, the

server has an unbiased dataset, so its model evaluation shows

the true effect of training. The server loss and accuracy in the

control training session reduces heavily with more training.

The session with training evaluation stops training early, thus
preventing the model from being degraded as much. The final

evaluated server loss is 43.28% less than the control session,

while the server accuracy is 7.835% more.

Our current system, while serving its designed purpose, is

quite basic at this time. However, the system is scalable and

can be made more sophisticated with research. For example,

future projects may focus on more complex responses, such

as adjusting the local training epochs for the clients or

reducing the number of clients participating. A major

drawback of a dynamic training system such as this is that

while it can be quite effective, it depends on the server's
accuracy and loss metrics for unbiased training evaluations.

Thus, the server would need to have a large and varied dataset,

with the best-case scenario being to have a dataset

concatenated from the datasets of all clients in the Edge AI

framework. Any client data leaving its host client can be a

major data security and privacy breach, especially for

sensitive applications such as smart healthcare. The risk can

2122

be somewhat mitigated by anonymizing client data so that its

origin is unidentifiable, or by using publicly available

datasets. Both methods have their drawbacks, but the point

remains that a reduction in data security and privacy is

something to keep in mind when implementing a dynamic

training system.

B. Evaluating the Effect of Varying Training Parameters in

Federated Learning

We experimented with varying three training parameters,

the number of training rounds, the local training epochs, and

the number of clients participating in training, and observed

the effect that each of these had on Federated Training.

Figures 6, 7, and 8 show the results of these experiments.

Before coming to any conclusions, it is important to note that

these results must be assumed specific to our FL environment

without further study. It is possible that the results here may

not be reproducible in other FL environments that differ in

terms of the type of ML model used or a number of other
factors. That being said, we believe that the results of these

experiments expose some patterns that could be common in

most, if not all, FL applications. The following observations

are made:

 Regarding the number of training rounds, we can

observe from Figure 6 that the model does become

more accurate and less lossy with more training.

However, after a certain point, this is no longer the case.

The best-recorded accuracy and loss metrics are when

the model is trained for 200 rounds. Beyond that, the

accuracy starts decreasing, and the loss increases,

which indicates the model is not converging.
Furthermore, the deviation between server and client

metrics becomes noticeably larger. When the model is

trained for 350 rounds instead of 200, the difference

between server and client loss goes from 0.0231 to

0.047, a 103.46% increase. These are signs that the

model could be overfitting. Thus, the conclusion here

is that training a model indefinitely will be detrimental

to its performance. Instead, an optimal number of

training rounds should be found, also keeping in mind

other factors that have not been explored here, such as

the training time and resource usage.
 There is a similar pattern with local training epochs.

While 1 epoch seems insufficient, the optimal number

at least for our use case, seems to be 2. Training for

more epochs is more resource-intensive and time-

consuming, making the model perform worse and

inhibiting model convergence. This can be observed in

Figure 7, wherein the accuracy and loss degrade with

local epochs > 2, along with an increased deviation in

both metrics. For the training session with 10 local

epochs, the deviation in accuracy is 178% more and the

deviation in loss is 1093.33% more as compared to the
session with 2 local epochs. This is once again a

potential sign of overfitting. As with the number of

training rounds, careful considerations must also be

made when selecting the optimal number of local

training epochs.

 The number of clients seems to have the least effect on

Federated Training. This experiment could be due to

the variance in the number of clients and the maximum

number of clients being quite low. A practical IoT

scenario could have thousands of clients; in that

context, only 15 may not be enough to affect training.

Regardless, hints of the same pattern are still observed

with training rounds and local training epochs. When

comparing the training session with 10 clients and the

session with 15 clients, the loss deviation increases by

0.0096. A similar increase of 0.0161 is also observed

when the session with 5 clients. Thus, too few clients

results in insufficient training, and too many clients will
most likely make the training detrimental to the model

in terms of both performance as well as resource usage.

The overarching theme of these results is that finding a

balance is necessary during Federated Training. The

maximum observed increase in accuracy is 1.16% when the

local training epochs are increased to 8 from 1. However, this

same change also increases the loss deviation by almost

158%. Too much of any parameter, be it the number of

training rounds, the local training epochs, or the number of

clients, has the tendency to make the model worse by making

it less likely to converge and increasing the chance of
overfitting, thus defeating the entire purpose of training.

Simultaneously, too little training may not be sufficient to

improve the model in an observable manner. However,

finding this balance could be an issue as the balancing point

will differ greatly from use case to use case. At this time, the

best solution seems to be doing something similar to the

experiments discussed here: to run trials with different values

and then select the most optimal ones.

C. Evaluating Model Compression Techniques for More

Accessible Federated Learning

We implemented and evaluated the effectiveness of three

model compression techniques in Federated Training:

pruning, clustering, and quantization. As far as we are aware,

this project is the first of its kind to implement and evaluate

the effects of model compression in an FL environment. From

the results in Table 1, Table 2 and Figure 9, the following is

observed:

 The model with no compression has the most robust

performance. It has the least deviation in loss and

accuracy out of all the models and is thus the most
resistant to overfitting with continued training.

However, it also has the largest model size and file

compression does not reduce the original model file

size by much.

 Every model compression technique, implemented

individually or in combination with others, causes an

observable degradation in model performance, and a

minor increase or decrease in the usage of one or more

computing resources. The biggest difference is seen in

training time, in which up to 11.2% reductions can be

observed.
 Pruning and clustering do not change the model size but

do greatly improve the efficacy of file compression

algorithms. Compared to the uncompressed model, the

compression ratio increased from 2.266 to 12.915 (a

469.947% increase). A smaller-sized compressed

model requires less storage and is easier to transmit

over networks, which is advantageous for both Edge AI

and FL. However, pruning and clustering does put the

2123

model at greater risk of overfitting earlier. The accuracy

deviation for the pruned and clustered model, for

example, is approximately 43.5% more as compared to

the uncompressed model.

 Quantization seems to have the biggest effect in

reducing model size. This decrease in model size is

especially important in IoT as some Edge devices, such

as the ESP32 do not have the required memory to load

large models. The drawback of quantization is that the

loss in precision when converting parameters from
single precision to half-precision floating points causes

a drop in robustness, with the quantized model having

noticeably higher loss and accuracy deviations

compared to the uncompressed model. The deviations

get even worse when quantization is used in

conjunction with any other compression method, with

the exception being when quantization, pruning, and

clustering are implemented together. Lastly, the CPU

time and RAM usage decrease is minimal or even non-

existent in any compression involving quantization.

One possible cause for this could be the extra overhead
from the device having to truncate full-precision

training parameters to half-precision model parameters.

 The pruned, clustered, and quantized model appears to

have the best resource savings. Compared to the

uncompressed model, the CPU time is decreased by

approximately 0.42%, RAM usage is reduced by

5.42%, and each round takes approximately 11.2% less

time to complete. Accuracy-wise, this model

outperforms the uncompressed model, although it is

more lossy. This compression scheme makes the model

more prone to overfitting, and the server loss is also
9.35% more than the uncompressed model.

Overall, model compression is an effective technique for

reducing model size and complexity. For IoT applications,

model compression, particularly quantization, may be

necessary to make some models accessible to low power IoT

Edge devices. We tested this out by stripping the model of its

training and evaluation portions and keeping just the base

model. Furthermore, we changed the quantization scheme to

full integer, wherein all model parameters are converted to 8-

bit or 16-bit integers [34]. In this case, the uncompressed

model was 282,409 bytes and the quantized model was 74,977

bytes in size. Our ESP32 fails to load the un-quantized model
as it does not have enough free memory to allocate but is able

to load and successfully infer with the quantized model. For

devices already capable of inference, model compression can

reduce resource usage during training to various degrees thus

allowing the device more computational resources for other

tasks.

The primary drawback of model compression is a drop in

model performance. The observed increases in loss and

accuracy deviations for this particular experiment were not

insignificant, and this is still a comparatively simple deep

learning model compared to those used in image recognition
or other complex tasks. There will always be a tradeoff

between model performance and resource usage when

implementing model compression. The drop in model

performance will vary across use cases and concerning FL,

will also depend on factors such as local training epochs and

the number of training rounds. It is up to the user to decide

whether the resource usage decrease and storage savings

brought about by implementing one (or more) model

compression techniques is worth the reduction in model

performance.

IV. CONCLUSION

In this work, we evaluated FL regarding model
performance and resource usage in a practical scenario, and

implemented a few solutions to improve FL. One key

weakness of FL is degrading model performance in the

presence of heterogeneity. Our solution is not to modify the

underlying FL algorithm but to make the training framework

dynamic enough to detect and respond to deteriorating model

performance. This technique worked, although at the cost of

reduced data privacy and security. Furthermore, we evaluated

the effect of training parameters on FL performance. The

results reveal that careful balancing of training parameters,

such as the training rounds, local training epochs, and the
number of participating clients, is required. Poorly chosen

parameters can lead to insufficient training or detrimental

effects on the model’s loss and accuracy. Lastly, we

experimented with implementing various types of model

compression in order to make FL, and Edge AI in general,

more accessible to low-power IoT Edge devices. A reduction

in computing resource usage was certainly observed with

model compression, and in one case, it enabled a low-power

IoT Edge device to infer with a model it was previously

incapable of running. Model compression did, however come

with its drawbacks, namely worse model performance.

REFERENCES

[1] P. K M and N. B S, “AIoT - Artificial Intelligence of Things,” Int. J.

Adv. Res. Sci. Commun. Technol., pp. 88–92, Apr. 2021,

doi: 10.48175/ijarsct-v4-i3-013.

[2] A. Matin, M. R. Islam, X. Wang, H. Huo, and G. Xu, “AIoT for

sustainable manufacturing: Overview, challenges, and opportunities,”

Internet of Things, vol. 24, p. 100901, Dec. 2023,

doi: 10.1016/J.IOT.2023.100901.

[3] Y. Wu, “Cloud-Edge Orchestration for the Internet of Things:

Architecture and AI-Powered Data Processing,” IEEE Internet Things

J., vol. 8, no. 16, pp. 12792–12805, Aug. 2021,

doi: 10.1109/JIOT.2020.3014845.

[4] F. Firouzi, B. Farahani, and A. Marinšek, “The convergence and

interplay of edge, fog, and cloud in the AI-driven Internet of Things

(IoT),” Inf. Syst., vol. 107, p. 101840, Jul. 2022,

doi: 10.1016/J.IS.2021.101840.

[5] U. F. Mustapha, A. W. Alhassan, D. N. Jiang, and G. L. Li,

“Sustainable aquaculture development: a review on the roles of cloud

computing, internet of things and artificial intelligence (CIA),” Rev.

Aquac., vol. 13, no. 4, pp. 2076–2091, Sep. 2021,

doi: 10.1111/RAQ.12559.

[6] J. Ren, D. Zhang, S. He, Y. Zhang, and T. Li, “A Survey on End-Edge-

Cloud Orchestrated Network Computing Paradigms,” ACM Comput.

Surv., vol. 52, no. 6, Oct. 2019, doi: 10.1145/3362031.

[7] C. Mwase, Y. Jin, T. Westerlund, H. Tenhunen, and Z. Zou,

“Communication-efficient distributed AI strategies for the IoT edge,”

Futur. Gener. Comput. Syst., vol. 131, pp. 292–308, Jun. 2022, doi:

10.1016/J.FUTURE.2022.01.013.

[8] P. Mell and T. Grance, “The NIST definition of cloud computing,”

National Institute of Standards and Technology, Gaithersburg, MD,

2011. doi: 10.6028/NIST.SP.800-145.

[9] D. Saadia, “Integration of Cloud Computing, Big Data, Artificial

Intelligence, and Internet of Things: Review and Open Research

Issues,” https://services.igi-

global.com/resolvedoi/resolve.aspx?doi=10.4018/IJWLTT.20210101

02, vol. 16, no. 1, pp. 10–17, Jan. 2021,

doi: 10.4018/IJWLTT.2021010102.

2124

[10] G. K. Sriram, “Edge Computing Vs. Cloud Computing: an Overview

of Big Data Challenges and Opportunities for Large Enterprises,”

www.irjmets.com @International Res. J. Mod. Eng., vol. 04, no. 01,

pp. 1–6, 2022.

[11] L. Sun, L. Sun, X. Jiang, H. Ren, H. Ren, and Y. Guo, “Edge-Cloud

Computing and Artificial Intelligence in Internet of Medical Things:

Architecture, Technology and Application,” IEEE Access, vol. 8, pp.

101079–101092, 2020, doi: 10.1109/ACCESS.2020.2997831.

[12] S. Duan et al., “Distributed Artificial Intelligence Empowered by End-

Edge-Cloud Computing: A Survey,” IEEE Commun. Surv. Tutorials,

vol. 25, no. 1, pp. 591–624, 2023,

doi: 10.1109/COMST.2022.3218527.

[13] F. Saeik et al., “Task offloading in Edge and Cloud Computing: A

survey on mathematical, artificial intelligence and control theory

solutions,” Comput. Networks, vol. 195, p. 108177, Aug. 2021,

doi: 10.1016/J.COMNET.2021.108177.

[14] A. Singh, S. C. Satapathy, A. Roy, and A. Gutub, “AI-Based Mobile

Edge Computing for IoT: Applications, Challenges, and Future

Scope,” Arab. J. Sci. Eng. 2021 478, vol. 47, no. 8, pp. 9801–9831,

Jan. 2022, doi: 10.1007/S13369-021-06348-2.

[15] K. Cao, Y. Liu, G. Meng, and Q. Sun, “An Overview on Edge

Computing Research,” IEEE Access, vol. 8, pp. 85714–85728, 2020,

doi: 10.1109/ACCESS.2020.2991734.

[16] Z. Xu, W. Liu, J. Huang, C. Yang, J. Lu, and H. Tan, “Artificial

Intelligence for Securing IoT Services in Edge Computing: A Survey,”

Secur. Commun. Networks, vol. 2020, 2020,

doi: 10.1155/2020/8872586.

[17] Y. Xiao, Y. Jia, C. Liu, X. Cheng, J. Yu, and W. Lv, “Edge Computing

Security: State-of-The-Art and Challenges,” Proc. IEEE, vol. 107, no.

8, pp. 1608–1631, Aug. 2019, doi: 10.1109/JPROC.2019.2918437.

[18] H. Zeyu, X. Geming, W. Zhaohang, and Y. Sen, “Survey on Edge

Computing Security,” Proc. - 2020 Int. Conf. Big Data, Artif. Intell.

Internet Things Eng. ICBAIE 2020, pp. 96–105, Jun. 2020,

doi: 10.1109/ICBAIE49996.2020.00027.

[19] M. Caprolu, R. Di Pietro, F. Lombardi, and S. Raponi, “Edge

Computing Perspectives: Architectures, Technologies, and Open

Security Issues,” Proc. - 2019 IEEE Int. Conf. Edge Comput. EDGE

2019 - Part 2019 IEEE World Congr. Serv., pp. 116–123, Jul. 2019,

doi: 10.1109/EDGE.2019.00035.

[20] S. S. Ambarkar and N. Shekokar, “Toward Smart and Secure IoT

Based Healthcare System,” Stud. Syst. Decis. Control, vol. 266, pp.

283–303, 2020, doi: 10.1007/978-3-030-39047-1_13/COVER.

[21] H. A. El Zouka and M. M. Hosni, “Secure IoT communications for

smart healthcare monitoring system,” Internet of Things, vol. 13, p.

100036, Mar. 2021, doi: 10.1016/J.IOT.2019.01.003.

[22] J. B. Awotunde, R. G. Jimoh, S. O. Folorunso, E. A. Adeniyi, K. M.

Abiodun, and O. O. Banjo, “Privacy and Security Concerns in IoT-

Based Healthcare Systems,” Internet of Things, pp. 105–134, 2021,

doi: 10.1007/978-3-030-75220-0_6/COVER.

[23] S. Soro, “TinyML for Ubiquitous Edge AI,” no. 20, Feb. 2021.

[24] T. Sipola, J. Alatalo, T. Kokkonen, and M. Rantonen, “Artificial

Intelligence in the IoT Era: A Review of Edge AI Hardware and

Software,” Conf. Open Innov. Assoc. Fruct, vol. 2022-April, no. i, pp.

320–331, 2022, doi: 10.23919/FRUCT54823.2022.9770931.

[25] C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao, “A survey on

federated learning,” Knowledge-Based Syst., vol. 216, p. 106775,

2021, doi: 10.1016/j.knosys.2021.106775.

[26] T. Liu, J. Ding, T. Wang, M. Pan, and M. Chen, “Towards Fast and

Accurate Federated Learning with Non-IID Data for Cloud-Based IoT

Applications,” J. Circuits, Syst. Comput., vol. 31, no. 13, pp. 1–10,

2022, doi: 10.1142/S0218126622502358.

[27] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated

Learning with Non-IID Data,” Comput. J., no. May, Jun. 2018,

doi: 10.48550/arXiv.1806.00582.

[28] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,

“Federated Optimization in Heterogeneous Networks,” 2018.

[29] M. Tahir and M. I. Ali, “On the Performance of Federated Learning

Algorithms for IoT,” IoT, vol. 3, no. 2, pp. 273–284, 2022,

doi: 10.3390/iot3020016.

[30] Y. Gao et al., “End-to-End Evaluation of Federated Learning and Split

Learning for Internet of Things,” Proc. IEEE Symp. Reliab. Distrib.

Syst., vol. 2020-Septe, pp. 91–100, 2020,

doi: 10.1109/SRDS51746.2020.00017.

[31] M. Koklu and I. A. Ozkan, “Multi-class classification of dry beans

using computer vision and machine learning techniques,” Comput.

Electron. Agric., vol. 174, p. 105507, Jul. 2020,

doi: 10.1016/j.compag.2020.105507.

[32] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the

value of network pruning,” 7th Int. Conf. Learn. Represent. ICLR

2019, pp. 1–21, 2019.

[33] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing

deep neural networks with pruning, trained quantization and Huffman

coding,” 4th Int. Conf. Learn. Represent. ICLR 2016 - Conf. Track

Proc., pp. 1–14, 2016.

[34] B. Jacob et al., “Quantization and Training of Neural Networks for

Efficient Integer-Arithmetic-Only Inference,” Proc. IEEE Comput.

Soc. Conf. Comput. Vis. Pattern Recognit., pp. 2704–2713, 2018, doi:

10.1109/CVPR.2018.00286.

2125

