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Abstract— AI running locally on IoT Edge devices is called Edge AI. Federated Learning (FL) is a Machine Learning (ML) technique 

that builds upon the concept of distributed computing and preserves data privacy while still supporting trainable AI models. This paper 

evaluates the FL regarding practical CPU usage and training time. Additionally, the paper presents how biased IoT Edge clients affect 

the performance of an AI model. Existing literature on the performance of FL indicates that it is sensitive to imbalanced data 

distributions and does not easily converge in the presence of heterogeneous data. Furthermore, model training uses significant on-device 

resources, and low-power IoT devices cannot train complex ML models. This paper investigates optimal training parameters to make 

FL more performant and researches the use of model compression to make FL more accessible to IoT Edge devices. First, a flexible test 

environment is created that can emulate clients with biased data samples. Each compressed version of the ML model is used for FL. 

Evaluation is done regarding resources used and the overall ML model performance. Our current study shows an accuracy 

improvement of 1.16% from modifying training parameters, but a balance is needed to prevent overfitting. Model compression can 

reduce resource usage by 5.42% but tends to accelerate overfitting and increase model loss by 9.35%. 
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I. INTRODUCTION

A. Cloud AI and Edge AI

Artificial Intelligence (AI) can augment Internet of Things

(IoT) applications by improving the efficiency of IoT 

operations, improving data management, and adding new 

features [1], [2]. Due to the resource demands of AI 

frameworks, cloud computing is a popular method of 
implementing AI in IoT systems [3]–[5]. This type of AI, 

often called Cloud AI, is hosted on the cloud and is not 

constrained by the limited resources of IoT Edge devices [6], 

[7]. Cloud computing offers scalable deployments and 

flexibility in resource allocation [8], which can be quite 

beneficial for any AI application. However, Cloud AI does 

have several drawbacks related to speed, response time, and 

data security [9]. Due to local data collection and processing, 

Edge AI models are not bottlenecked by large data traffic 

loads or poor network connections as Cloud AI models have 

the potential [10]–[13]. 
Furthermore, centralization means that Cloud AI models 

are unable to guarantee the security and privacy of their data 

[14]. A breach in data security can potentially affect all data 

in the system, including sensitive data such as passwords [15]. 

Conversely, the data on an edge device is restricted to that 

device and does not leave it. Even in the case of a security 

breach, the data on other edge devices is not affected, thus 

providing a greater degree of data privacy and security [16]–

[19]. This is greatly beneficial for IoT applications which can 

have multiple clients with sensitive data, such as health 

monitoring systems [20]–[22]. 

B. Challenges of Edge AI for IoT Applications

While Edge AI can be a beneficial addition to many IoT

systems, there are some challenges to overcome when it 

comes to its implementation on IoT Edge devices: 

 Microcontrollers, which are commonly used as IoT

Edge devices, have very limited storage and memory

[23] thus necessitating a small AI model size and model

compression.

 IoT Edge devices also typically have weak CPUs which

might struggle or be completely incapable of executing

the complex mathematical operations of AI models
within a reasonable timescale.

 Locally available data may be limited in terms of both

quantity and scope. This inhibits strategies such as

model compression [24], along with potentially making

the model biased.
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Finding solutions for these issues is vital for making Edge 

AI compatible with a wide variety of IoT applications. One 

such potential solution is a Machine Learning (ML) technique 

called Federated Learning (FL). 

C. Federated Learning (FL) 

FL is a ML technique based on the principles of 

collaboration and central aggregation [25]. Figure 1 shows the 
overview of a generic FL arrangement. Each client in the FL 

network trains locally with its local dataset. In the context of 

IoT applications, these clients would typically be IoT Edge 

devices. Post-training, each client then uploads its local model 

to a central server. The server aggregates the models from all 

clients and sends the aggregated, updated model back to the 

clients. FL provides a few key advantages: 

 Data privacy is preserved as the data from each client 

does not leave the client. The federated server only sees 

a client’s ML model parameters, not the data it is 

trained on. 

 Through aggregation, FL allows each client to leverage 

the training conducted by every other client in the 

system. This reduces the local training and data each 

client would require to obtain a similarly performant 

model. 

 FL provides a degree of flexibility to cater to different 

types of clients. Each client contributes only as much 

training as their computing resources allow yet can still 
obtain the most updated and performant model through 

aggregation. This can be quite beneficial for IoT 

applications with IoT Edge devices with varying 

computing capabilities. 

 Implementing FL on existing Edge AI systems is easy 

as FL can be purely software-based except for the 

Federated Server, which can be implemented on IoT 

Edge devices such as Raspberry Pi. 

 
Fig. 1  A generic Federated Learning arrangement 

 

FL is a relatively new technology; currently, much of its 

research is based on theoretical simulations. While this 

provides an idea of the strengths and weaknesses of FL, 

practical evaluations are necessary to judge the true 

capabilities of FL. 

D. Background and Related Works 

This section discusses the relevant research on the 

performance of various Federated Learning algorithms and 
studies evaluating Federated Learning in practical IoT 

scenarios. The data collected in an IoT system typically tends 

to display heterogeneity statistically and within the IoT 

system as a whole. In an IoT system, the statistical distribution 

of the data collected by edge devices can greatly vary from 

device to device. Some devices may collect very few data 

samples, while others may collect samples biased in a specific 

direction. This leads to the overall data in the system being 

Non-IID (Non-Independently and Identically Distributed). 

Non-IID data has been known to degrade FL performance by 

reducing model accuracy and making model convergence 

inconsistent, requiring more training to achieve global model 

convergence [26]. For example, FedAvg, one of the most 

basic FL algorithms, can show up to ~55% reduction in 

accuracy when trained on non-IID data [27]. 

Furthermore, IoT edge devices may vary greatly in terms 

of hardware, directly affecting their data collection and ability 

to perform in FL training sessions. This means that devices 

that are consistently more active in FL training can make the 

model more biased towards themselves. This phenomenon is 
known as system heterogeneity, wherein an imbalance in 

device capabilities negatively affects the performance of an 

FL-trained model. Several FL algorithms, such as FedProx, 

have been developed to improve the performance of FL in the 

presence of heterogeneity by stabilizing and guaranteeing 

model convergence [28]. However, comprehensive research 

on the performance of these algorithms indicates that they are 
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more sensitive to heterogeneity than initially claimed. 

Evaluation of these algorithms shows that their performance 

degrades in a statistical and system heterogeneity setting, and 

model divergence is uncommon [29]. This is especially 

problematic for IoT, as most applications would prefer 

adaptable and flexible solutions when implementing Edge AI 

in IoT systems. 

In a practical IoT scenario, IoT Edge devices will typically 

have responsibilities other than FL model training and must 

allocate time and computing resources to fulfill these 
responsibilities. Therefore, finding a tradeoff between 

training time and model performance is important by 

choosing the most optimal training epochs for edge devices 

and the data batch size when training [29]. Evaluation of FL 

in a practical IoT setting [30] shows that model training incurs 

significant resource costs in CPU usage, power usage, and 

network overhead. Furthermore, even on a relatively powerful 

IoT edge device such as the Raspberry Pi 3, this study could 

not feasibly train complex neural network models such as 

MobileNet V1 on the device. 

II. MATERIAL AND METHOD 

We propose several solutions to solve the drawbacks of FL 

for IoT applications, as identified by previous works. A 

simple solution to degrading FL performance in 

heterogeneous environments is to make the FL server 

dynamic. For instance, the server could track the average 

model accuracy and loss over n training rounds and halt 

training if the model performance degrades by a certain 

percentage. Another identified issue is the high computing 

cost of running complex ML models on IoT edge devices 

which makes inference extremely time consuming and even 

precludes some models from running on certain IoT Edge 

devices. Model optimization is therefore necessary and can be 

achieved through model compression. In this study, we shall 

implement three specific model compression techniques: 

pruning, clustering, and quantization, and observe their effect 

on model performance and resource usage. 

A. Federated Learning Setup 

The model used for experimentation is a multi-class 

classification Convolutional Neural Network (CNN) trained 

on the Dry Bean dataset [31]. The KerasTuner tool is used to 

obtain an initial optimized model architecture. The FL 

framework consists of a local Edge server and multiple Edge 

clients. Figure 2 provides an overview of the FL framework 

setup. 
The Edge server and clients are connected through a 

wireless Local Area Network (LAN), specifically a WiFi 
Access Point. The server provides two services through 

separate ports:  

 A training service that coordinates Federated Training 

between participating Edge clients. This service 

executes the FedAvg algorithm to aggregate model 

parameters from clients and broadcasts the aggregated 

parameters back to the clients. It also keeps track of 

resource usage during training. 

 An updated model provider service that serves the most 

updated model via HTTP. This service allows Edge 

client devices incapable of training to still get the most 

updated model through a simple HTTP request. 

 
Fig. 2  Federated Learning setup overview 

 

The Edge clients are IoT Edge devices of varying 

capabilities. There are three types of IoT Edge devices taking 

part in the experiments: 

 Software emulators are essentially used to emulate 

additional clients for FL and are capable of inference 

and training. They interact with the server through the 

training service. In an actual IoT scenario, they 

represent the most computationally capable IoT Edge 

devices, such as smartphones. 

 Raspberry Pi 3 Model A+: This Raspberry Pi is a 
moderately powerful IoT Edge device and can both 

infer and train with its local model. Similar to the 

emulated clients, it interacts with the server through the 

training service. As a commonly used IoT Edge device, 

the Raspberry Pi provides a good benchmark of FL 

performance in a typical IoT application. 

 ESP32: The ESP32 is a low-power microcontroller and 

is very common in IoT applications. It represents those 

IoT Edge devices that have very limited computing 

resources and are able to only infer, and not train, with 

their local model. The ESP32 cannot participate in 

training, so it instead gets the most updated model 
through the server’s model provider service. 
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B. Experimental Setup 

We used Python and multiple Python libraries for this 

project to set up the test environment. The Python version 

used is 3.10.7, 64-bit Windows. All ML models are built with 
TensorFlow v2.12.0 and Keras, and the Flower library v1.3.0 

implements FL.  

The two IoT Edge devices used for testing are the 

Raspberry Pi 3 Model A+ and the ESP32. The Raspberry Pi 

is running Python 3.9.16, whereas the ESP32 is programmed 

with the ESP-IDF. CUDA is not available for any of the IoT 

Edge devices. 

A laptop is used as the server for FL and for instantiating 

software-emulated IoT Edge devices. This laptop has an Intel 

i5-8300H CPU, GTX 1060 GPU, and 8 GB of RAM. The 

operating system is Windows 11 64-bit. 
 

C. Federated Training Round Overview 

Figure 3 shows the overview of one round of Federated 

Training. Each round begins with the server asking all 

participating clients to start local training and sending 
optional training instructions to each client, such as the epochs 

to train for. Once every client has completed training and sent 

the updated parameters to the server, it will aggregate these 

parameters using the FedAvg algorithm. The aggregated 

parameters are applied to the server’s own model and also 

broadcast back to the clients so that they may update their 

local models. Alongside the weights, each client also sends 

the resource usage recorded during training to the server. This 

includes the CPU time utilized and the RAM usage during 

training, and these metrics are averaged and recorded by the 

server. After the server and clients have updated their models, 
they evaluate their models with their local datasets.  

 

Fig. 3  Process flow of one round of Federated Training 

 

The clients send their evaluation results to the server in 

terms of loss and accuracy, along with the resource usage 

metrics for evaluation. The server records a weighted average 
of the accuracies and losses (the weight being the number of 

samples in a client’s dataset) and adds the averaged evaluation 

resource usage to the averaged training resource usage. 

Lastly, the server records the time elapsed to complete the 

training round. This concludes one round of training. 

Two conditions determine if the server should continue 

with the next round of training: 

 If the pre-determined number of training rounds has 

already been completed, or 

 If further training will degrade model performance. 
If either of these criteria are met, the server stops training 

after the current round has concluded. It then displays the 

relevant training results, as can be seen in Figure 4, and stores 

every recorded metric in a CSV file. This file can later be used 

to evaluate the overall effect of the training session in greater 

detail. 
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Fig. 4  The console and graphical output of a training session, showing loss and accuracy metrics 

 

D. Measuring FL Performance and Resource Usage During 

Training 

To evaluate the performance and resource usage of FL, we 

measure the following metrics during each training round: 

 Client Loss and Accuracy: After training and model 

update during each training round, all clients execute a 

single round of evaluation on a fraction of their local 
dataset. Their evaluated losses and accuracies are 

aggregated via a weighted average (where the weight is 

the number of samples a client has in their local dataset) 

and reported as the client's loss and accuracy. These 

two metrics are also collectively referred to as the client 

metrics. 

 Server Loss and Accuracy: The FL server has a 

dataset concatenated from all participating clients' 

datasets. In an actual FL setup, the server will most 

likely not have this dataset or, ideally any client data, 

as data privacy is a core tenet of FL. We have provided 
the server with this  

dataset only to facilitate FL evaluation. The server also 

instantiates a copy of the ML model running on all Edge 

clients but only uses it for evaluation and not training. 

Each training round, the server randomly samples a 

portion of the dataset and runs a single round of 

evaluation with its own copy of the model, after 

updating said model parameters with the aggregated 

model parameters. The evaluated loss and accuracy are 

recorded. 

 Average Training Resource Usage: The psutil 
(process and system utilities) Python library is used to 

measure the accumulated CPU time for Federated 

Training in each participating client. This library is also 

used to measure the estimated RAM usage during 

training. These two measurements are averaged across 

clients to get a measure of the CPU time and RAM 

usage during each round of FL training. The server also 

records the time elapsed for each round of training, 

using the timeit Python library. 

E. Federated Training Evaluation 

To counter the effects of overfitting and other types of 

model performance degradation, we propose implementing a 

training evaluation system to track the effect of training while 

a training session is on-going. Every n-th round of training, 

the server calculates the average of the server loss and 

accuracy over the current and past n-1 rounds. These metrics 

are used to determine whether FL is deteriorating or 

improving the model performance and to take action 

accordingly. Currently, the action is to halt training.  

Figure 5 shows a side-by-side comparison of this system in 

action, with the left graph being the control. Both of these 

training sessions have the same number of clients, with 

each being provided a biased dataset. These datasets contain 
samples from only four randomly chosen classes of the seven 

in the original dataset. Additionally, both training sessions 

have the following starting conditions: 

 50 planned training rounds 

 10 clients with identical computing resources 

 2 local epochs of training per client during each training 

round 

 Using the same pre-trained model for both server and 

clients 

For the graph on the right, the training evaluation rounds is 

set to multiples of 5. Hence every 5n-th round (where n > 0), 
the average server loss and accuracy over the current and past 

4 rounds is calculated. If the average loss and accuracy have 

both deteriorated from the previous average, the system 

assumes that training is making the model worse and stops 

further training. Hence, the training stops after only 10 rounds 

out of the planned 50 rounds. 

F. Manipulating Training Parameters to Improve FL 

Performance 

In a practical IoT scenario, we can readily manipulate three 
Federated Training parameters: the number of training 

rounds, the number of local training epochs, and the number 

of clients participating in training. Changing model 

hyperparameters, such as the learning rate, would have a 

bigger impact on FL performance. However, most Edge AI 

models are usually static and not easily modifiable. Thus, in 

this project, we instead experiment with changing the number  

of training rounds, the number of local training epochs, and 

the number of clients in a training session. For these 

experiments, we use emulated software clients to ensure that 

each client is identical and that diversity does not affect the 
results. To prevent potential bias from differing model 

parameters and internal model structure, each client and the 

server are provided with the same, completely untrained 

model with no type of model compression applied. The server 

has the entire Dry Bean dataset for evaluation, whereas each 

client is provided with a random sub-sample of the Dry Bean 

dataset. Each client dataset has approximately the same 
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number of samples, and each client uses their local dataset for 

training and evaluation. When one training parameter is being 

experimented on, the others are kept constant. The training 

evaluation system described in the previous section has also 

been disabled for these experiments. The metrics measured 

for these experiments are the server loss and accuracy and the 

client loss and accuracy. To get an idea of the model 

performance at the end of training, we measure the average of 

these metrics over the last 5 rounds of training. 

 

 

Fig. 5  The outcome of Federated Training without (left) and with (right) training evaluation. Note that these graphs also show the pre-training (round 0) metrics 

 

Figure 6 shows the results of adjusting the training rounds. 

We started with 50 training rounds and went up in steps of 50 

up to 300 training rounds. There were 10 participating clients 

for all training sessions, with each client training locally for 1 

epoch per training round. 
 

 
Fig. 6  End of training loss and accuracy metrics when varying training rounds 

 

Figure 7 shows the results of adjusting the local training 

epochs. We started with 1 epoch per round and went up to 10 

epochs per round. The number of participating clients was 10 

for all training sessions. The number of training rounds was 

also kept at a constant 50 for all training sessions. Figure 8 

shows the results of varying the number of clients 

participating in training. We started with 5 clients and went 
up to 15. The local training epochs per client was fixed at 1, 

and the number of training rounds was also fixed at 50 for all 

training sessions. 

 

 

Fig. 7  End of training loss and accuracy metrics when varying local training 

epochs 

 

 

Fig. 8  End of training loss and accuracy metrics when varying the number of 

participating clients 
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G. Implementing Model Compression 

Model compression is the generic name for a variety of 

techniques that can help reduce the size and computational 

complexity of a neural network. These reductions can be the 
difference that allows an IoT Edge device to run a particular 

model, and hence are an important consideration for any Edge 

AI system. With regards to FL, a less complex model can 

speed up training as local training would require fewer 

computing resources.  

In this project, we have implemented three model 

compression techniques. It should be noted that these model 

compression techniques apply only to the model and not any 

of its training and evaluation code and data. The techniques 

are as follows: 

 Pruning: Neural network pruning is a technique by 
which parameters are systematically removed from a 

large, over-parameterized model, to produce an overall 

smaller, less complex model [32]. Any drop in accuracy 

caused by pruning is usually rectified by tuning the 

pruned model with the original’s model dataset. This 

project uses the TensorFlow Model Optimization 

Toolkit to implement pruning. The pruning algorithm 

used is constant sparsity, so a constant user-defined 

sparsity is targeted for the parameters of each layer. The 

target sparsity for this project is 75%, so the pruning 

algorithm will attempt to remove 75% of the 

parameters in each layer. It should be noted that this 
type of pruning does not change the model structure by 

physically removing model parameters. Rather, it 

“masks” parameters by setting their value to zero. This 

way, any multiplication operations with these 

parameters will have a pre-determined answer of zero 

and the CPU does not need to perform the actual 

multiplication, thus reducing the CPU usage. 

Furthermore, compression algorithms such as gzip can 

take advantage of the large number of continuous 

zeroes to compress the model more efficiently. 

 Clustering: Clustering is based on the k-Means 
clustering algorithm and is contingent on the idea of 

weight sharing. The goal is to group similar weights in 

each neural network layer into clusters and represent 

each weight in a cluster by its centroid value [33]. 

Clustering allows compression algorithms to take 

advantage of the data redundancy introduced by several 

unique weights now represented by the same value to 

reduce model size greatly. This project uses the 

TensorFlow Model Optimization Toolkit to implement 

clustering. The target number of clusters per layer is set 

to 3. As with pruning, clustering does not change the 
underlying model structure but rather manipulates 

existing parameters. 

 Quantization: Quantization is the process of reducing 

the number of bits used to represent model parameters. 

For example, model weights can be stored as 16-bit 

floating points instead of 32-bit, halving their storage 

requirement. Aside from storage savings, quantization 

schemes can also reduce the computational complexity 

of the model. Microcontrollers, particularly other low-

power IoT Edge devices, benefit greatly as they 

typically have low-power CPUs and limited memory. 
Thus, any reduction in complexity will result in a 

speed-up in inference and training. We implement 

float16 quantization in this project using the 

TensorFlow Lite model conversion toolkit.  

This quantization scheme attempts to convert as many 

model parameters as possible from 32-bit floating 

points to 16-bit floating points, which greatly reduces 

the storage occupied by the model. 

This experiment uses a single Raspberry Pi 3 Model A+ as 

the only client for 20 rounds of Federated Training. Both the 

server and the client use completely untrained models and 
train locally for 5 epochs each training round. The server has 

the entire Dry Bean dataset to evaluate its model, while the 

client is provided a randomly sub-sampled portion of the Dry 

Bean dataset for training and evaluation. Table 1 shows the 

effect of various model compression techniques on model 

performance during Federated Training.  

TABLE I 

MODEL PERFORMANCE METRICS WHEN IMPLEMENTING VARIOUS TYPES OF MODEL COMPRESSION 

Compression Type Server Loss Client Loss Server 

Accuracy 

Client 

Accuracy 

Loss Deviation 

(%) 

Accuracy Deviation 

(%) 

No Compression 0.240334484 0.238781825 0.922480166 0.928205132 0.648 0.619 
Pruning,  Clustering 0.256751227 0.243673545 0.923626208 0.931868136 5.227 0.888 
Quantization 0.246050501 0.200120828 0.919806063 0.932600737 20.588 1.381 
Pruning, Quantization 0.236408308 0.172866923 0.921716142 0.951648355 31.051 3.196 

Clustering, Quantization 0.243828276 0.189846137 0.921187186 0.941391945 24.895 2.17 
Pruning, Clustering, 
Quantization 

0.262808117 0.222650793 0.92356745 0.932600737 16.544 0.973 

 

The metrics here are averaged over the last 5 rounds of a 

training session. The accuracy and loss deviation columns 

show the difference between server and client metrics. As the 

server has the entire dataset for evaluation, these deviations 
can indicate whether the model’s performance is 

deteriorating. Table 2 shows the uncompressed and 

compressed sizes of the model file when using the gzip file 

compression algorithm. Model size is important, as storage 

can be a premium in many IoT Edge devices. 

TABLE II 

UNCOMPRESSED AND GZIP COMPRESSED MODEL FILE SIZES 

Compression 

Type 

Uncompressed 

File Size 

(Bytes) 

Compressed 

File Size 

(Bytes) 

Compression 

Ratio 

No 
Compression 

631220 278525 2.266 

Pruning, 
Clustering 

629492 48741 12.915 

Quantization 355740 148755 2.391 
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Pruning, 

Quantization 
356116 148871 2.392 

Clustering, 
Quantization 

354228 44092 8.034 

Pruning, 
Clustering, 
Quantization 

354228 44082 8.036 

 

Figure 9 shows the average resource usage per training 

round in terms of CPU time, RAM usage, and the time 

required for one round of training. It should be noted that 

these resource measurements are estimations and may not 

correspond exactly to the actual resource usage during 

training. While all effort was made to conduct the training in 

an isolated environment with no other programs running in 

the foreground, the Raspberry Pi’s OS may have been running 

background tasks that could have affected the resource usage 

measurements. Regardless, these estimates still provide a 

good approximation of the resource usage during training. 

 
Fig. 9  Training resource usage when implementing various types of model compression 

 

III. RESULT AND DISCUSSION 

A. Minimizing Model Degradation due to heterogeneity 

Previous works mostly focused on using more 

sophisticated FL algorithms to counter degrading model 

performance with heterogeneous data. However, research has 

shown that these algorithms do not perform to the level 

expected, so our approach is to make the FL system dynamic 

and able to respond appropriately when it detects worsening 

model performance. Our proposed implementation consists of 

a detection system based on averaging model performance 

metrics over a fixed number of rounds and a default response 

of simply stopping further training. 
From Figure 5, evaluating both training sessions' final loss 

and accuracy metrics shows that the early training stop has 

successfully reduced model degradation. The client metrics of 

both sessions might give the incorrect impression that the 

model is performing well and is soon to converge. As each 

client has a biased dataset, training and evaluating a model 

with the same dataset will naturally produce good loss and 

accuracy metrics with the bias going unnoticed. However, the 

server has an unbiased dataset, so its model evaluation shows 

the true effect of training. The server loss and accuracy in the 

control training session reduces heavily with more training. 

The session with training evaluation stops training early, thus 
preventing the model from being degraded as much. The final 

evaluated server loss is 43.28% less than the control session, 

while the server accuracy is 7.835% more. 

Our current system, while serving its designed purpose, is 

quite basic at this time. However, the system is scalable and 

can be made more sophisticated with research. For example, 

future projects may focus on more complex responses, such 

as adjusting the local training epochs for the clients or 

reducing the number of clients participating. A major 

drawback of a dynamic training system such as this is that 

while it can be quite effective, it depends on the server's 
accuracy and loss metrics for unbiased training evaluations. 

Thus, the server would need to have a large and varied dataset, 

with the best-case scenario being to have a dataset 

concatenated from the datasets of all clients in the Edge AI 

framework. Any client data leaving its host client can be a 

major data security and privacy breach, especially for 

sensitive applications such as smart healthcare. The risk can 
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be somewhat mitigated by anonymizing client data so that its 

origin is unidentifiable, or by using publicly available 

datasets. Both methods have their drawbacks, but the point 

remains that a reduction in data security and privacy is 

something to keep in mind when implementing a dynamic 

training system. 

B. Evaluating the Effect of Varying Training Parameters in 

Federated Learning 

We experimented with varying three training parameters, 

the number of training rounds, the local training epochs, and 

the number of clients participating in training, and observed 

the effect that each of these had on Federated Training. 

Figures 6, 7, and 8 show the results of these experiments. 

Before coming to any conclusions, it is important to note that 

these results must be assumed specific to our FL environment 

without further study. It is possible that the results here may 

not be reproducible in other FL environments that differ in 

terms of the type of ML model used or a number of other 
factors. That being said, we believe that the results of these 

experiments expose some patterns that could be common in 

most, if not all, FL applications. The following observations 

are made: 

 Regarding the number of training rounds, we can 

observe from Figure 6 that the model does become 

more accurate and less lossy with more training. 

However, after a certain point, this is no longer the case. 

The best-recorded accuracy and loss metrics are when 

the model is trained for 200 rounds. Beyond that, the 

accuracy starts decreasing, and the loss increases, 

which indicates the model is not converging. 
Furthermore, the deviation between server and client 

metrics becomes noticeably larger. When the model is 

trained for 350 rounds instead of 200, the difference 

between server and client loss goes from 0.0231 to 

0.047, a 103.46% increase. These are signs that the 

model could be overfitting. Thus, the conclusion here 

is that training a model indefinitely will be detrimental 

to its performance. Instead, an optimal number of 

training rounds should be found, also keeping in mind 

other factors that have not been explored here, such as 

the training time and resource usage.  
 There is a similar pattern with local training epochs. 

While 1 epoch seems insufficient, the optimal number 

at least for our use case, seems to be 2. Training for 

more epochs is more resource-intensive and time-

consuming, making the model perform worse and 

inhibiting model convergence. This can be observed in 

Figure 7, wherein the accuracy and loss degrade with 

local epochs > 2, along with an increased deviation in 

both metrics. For the training session with 10 local 

epochs, the deviation in accuracy is 178% more and the 

deviation in loss is 1093.33% more as compared to the 
session with 2 local epochs. This is once again a 

potential sign of overfitting. As with the number of 

training rounds, careful considerations must also be 

made when selecting the optimal number of local 

training epochs. 

 The number of clients seems to have the least effect on 

Federated Training. This experiment could be due to 

the variance in the number of clients and the maximum 

number of clients being quite low. A practical IoT 

scenario could have thousands of clients; in that 

context, only 15 may not be enough to affect training. 

Regardless, hints of the same pattern are still observed 

with training rounds and local training epochs. When 

comparing the training session with 10 clients and the 

session with 15 clients, the loss deviation increases by 

0.0096. A similar increase of 0.0161 is also observed 

when the session with 5 clients. Thus, too few clients 

results in insufficient training, and too many clients will 
most likely make the training detrimental to the model 

in terms of both performance as well as resource usage. 

The overarching theme of these results is that finding a 

balance is necessary during Federated Training. The 

maximum observed increase in accuracy is 1.16% when the 

local training epochs are increased to 8 from 1. However, this 

same change also increases the loss deviation by almost 

158%. Too much of any parameter, be it the number of 

training rounds, the local training epochs, or the number of 

clients, has the tendency to make the model worse by making 

it less likely to converge and increasing the chance of 
overfitting, thus defeating the entire purpose of training. 

Simultaneously, too little training may not be sufficient to 

improve the model in an observable manner. However, 

finding this balance could be an issue as the balancing point 

will differ greatly from use case to use case. At this time, the 

best solution seems to be doing something similar to the 

experiments discussed here: to run trials with different values 

and then select the most optimal ones. 

C. Evaluating Model Compression Techniques for More 

Accessible Federated Learning 

We implemented and evaluated the effectiveness of three 

model compression techniques in Federated Training: 

pruning, clustering, and quantization. As far as we are aware, 

this project is the first of its kind to implement and evaluate 

the effects of model compression in an FL environment. From 

the results in Table 1, Table 2 and Figure 9, the following is 

observed: 

 The model with no compression has the most robust 

performance. It has the least deviation in loss and 

accuracy out of all the models and is thus the most 
resistant to overfitting with continued training. 

However, it also has the largest model size and file 

compression does not reduce the original model file 

size by much. 

 Every model compression technique, implemented 

individually or in combination with others, causes an 

observable degradation in model performance, and a 

minor increase or decrease in the usage of one or more 

computing resources. The biggest difference is seen in 

training time, in which up to 11.2% reductions can be 

observed.  
 Pruning and clustering do not change the model size but 

do greatly improve the efficacy of file compression 

algorithms. Compared to the uncompressed model, the 

compression ratio increased from 2.266 to 12.915 (a 

469.947% increase). A smaller-sized compressed 

model requires less storage and is easier to transmit 

over networks, which is advantageous for both Edge AI 

and FL. However, pruning and clustering does put the 
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model at greater risk of overfitting earlier. The accuracy 

deviation for the pruned and clustered model, for 

example, is approximately 43.5% more as compared to 

the uncompressed model. 

 Quantization seems to have the biggest effect in 

reducing model size. This decrease in model size is 

especially important in IoT as some Edge devices, such 

as the ESP32 do not have the required memory to load 

large models. The drawback of quantization is that the 

loss in precision when converting parameters from 
single precision to half-precision floating points causes 

a drop in robustness, with the quantized model having 

noticeably higher loss and accuracy deviations 

compared to the uncompressed model. The deviations 

get even worse when quantization is used in 

conjunction with any other compression method, with 

the exception being when quantization, pruning, and 

clustering are implemented together. Lastly, the CPU 

time and RAM usage decrease is minimal or even non-

existent in any compression involving quantization. 

One possible cause for this could be the extra overhead 
from the device having to truncate full-precision 

training parameters to half-precision model parameters. 

 The pruned, clustered, and quantized model appears to 

have the best resource savings. Compared to the 

uncompressed model, the CPU time is decreased by 

approximately 0.42%, RAM usage is reduced by 

5.42%, and each round takes approximately 11.2% less 

time to complete. Accuracy-wise, this model 

outperforms the uncompressed model, although it is 

more lossy. This compression scheme makes the model 

more prone to overfitting, and the server loss is also 
9.35% more than the uncompressed model. 

Overall, model compression is an effective technique for 

reducing model size and complexity. For IoT applications, 

model compression, particularly quantization, may be 

necessary to make some models accessible to low power IoT 

Edge devices. We tested this out by stripping the model of its 

training and evaluation portions and keeping just the base 

model. Furthermore, we changed the quantization scheme to 

full integer, wherein all model parameters are converted to 8-

bit or 16-bit integers [34]. In this case, the uncompressed 

model was 282,409 bytes and the quantized model was 74,977 

bytes in size. Our ESP32 fails to load the un-quantized model 
as it does not have enough free memory to allocate but is able 

to load and successfully infer with the quantized model. For 

devices already capable of inference, model compression can 

reduce resource usage during training to various degrees thus 

allowing the device more computational resources for other 

tasks. 

The primary drawback of model compression is a drop in 

model performance. The observed increases in loss and 

accuracy deviations for this particular experiment were not 

insignificant, and this is still a comparatively simple deep 

learning model compared to those used in image recognition 
or other complex tasks. There will always be a tradeoff 

between model performance and resource usage when 

implementing model compression. The drop in model 

performance will vary across use cases and concerning FL, 

will also depend on factors such as local training epochs and 

the number of training rounds. It is up to the user to decide 

whether the resource usage decrease and storage savings 

brought about by implementing one (or more) model 

compression techniques is worth the reduction in model 

performance. 

IV. CONCLUSION 

In this work, we evaluated FL regarding model 
performance and resource usage in a practical scenario, and 

implemented a few solutions to improve FL. One key 

weakness of FL is degrading model performance in the 

presence of heterogeneity. Our solution is not to modify the 

underlying FL algorithm but to make the training framework 

dynamic enough to detect and respond to deteriorating model 

performance. This technique worked, although at the cost of 

reduced data privacy and security. Furthermore, we evaluated 

the effect of training parameters on FL performance. The 

results reveal that careful balancing of training parameters, 

such as the training rounds, local training epochs, and the 
number of participating clients, is required. Poorly chosen 

parameters can lead to insufficient training or detrimental 

effects on the model’s loss and accuracy. Lastly, we 

experimented with implementing various types of model 

compression in order to make FL, and Edge AI in general, 

more accessible to low-power IoT Edge devices. A reduction 

in computing resource usage was certainly observed with 

model compression, and in one case, it enabled a low-power 

IoT Edge device to infer with a model it was previously 

incapable of running. Model compression did, however come 

with its drawbacks, namely worse model performance. 
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