
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Continuous Training of Recommendation System for Airbnb Listings

Using Graph Learning

Yun-Hong Chan a, Kok-Why Ng a,*, Su-Cheng Haw a, Naveen Palanichamy a
a Faculty of Computing and Informatics, Multimedia University, Persiaran Multimedia, 63100 Cyberjaya, Selangor, Malaysia.

Corresponding author: *kwng@mmu.edu.my

Abstract—Recommender systems are getting increasingly important nowadays as they can boost user engagement and benefit

businesses. However, there remain some unsolved problems. This paper will address two key performance issues. First, the limited

ability to identify and leverage intrinsic relationships between data points. Second, the inability to adapt to new data. The first issue is

proposed to be addressed through a Graph Neural Network (GNN) to curate better recommendations. GNN will be trained with

Airbnb’s review data to utilize its outstanding expressive power to represent complex user-listing interactions at scale, followed by

generating embeddings to compute the relevant recommendations to the users. With the generated embeddings, the recommender

system will compute a recommendation list to every user based on the embedding similarity between the user and listings or the user’s

first-ever reviewed listing and listings. The second issue is proposed to be resolved by incorporating Continuous Training. The proposed

recommender system employs GraphSAGE with a customized Rating-Weighted Triplet Ranking Loss function, which outperformed

unsupervised GraphSAGE. Offline simulation validated the recommender system's ability to learn from the latest data and improve

over time. Overall, the proposed user-to-item (U2I) recommendation rating-weighted GraphSAGE substantially increased by 99.88%

in hit-rate@5 and 98.15% in coverage. This offers an effective solution for enhancing the recommender system for Airbnb listings. This

research validates the efficacy of GNN-based recommendations in capturing user-item relationships to aid in predicting relevant

recommendations, thus significantly driving up the adoption of GNN-based recommender systems.

Keywords— Recommender system; graph neural network; deep learning; continuous training.

Manuscript received 3 Nov. 2023; revised 29 Dec. 2023; accepted 21 Feb. 2024. Date of publication 31 Mar. 2024.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Recently, recommender systems have become crucial in
various real-world applications [1]–[8], such as ad ranking

and movie recommendations. They significantly impact user

engagement by providing personalized experiences and

facilitating serendipitous content discovery. To enhance user

retention, it is essential to develop effective recommender

systems that curate personalized experiences and provide

timely recommendations [9].

There are various patterns for personalization in the world

of research papers and industry papers regarding

recommender systems, and one of them is graph learning,

which leverages graph-structured data to capture relationships
between users and items [10]. Deep learning techniques have

further advanced the representation learning on graph-

structured data. By mapping each node (user or item) to a

vector representation, graph learning identifies structurally

similar nodes and enriches our understanding of users'

interests. In the real world, there is a lot of data that can be

stored in graph-structured data as the entities are linked with

certain relationships, such as the relationship created between

the user and Airbnb Listing. Graph representation learning

utilized the topological structure, graph structure and rich
nodes’ features information to convert graph nodes into

embeddings that can be used for downstream machine

learning tasks [11]. Our proposed recommender system

employs GraphSAGE with a customized loss function named

Rating-Weighted Triplet Ranking Loss. The proposed GNN

is aimed to capture the complex relationship within user-item

interactions while considering various weightages of user

preferences towards different items. Integrating the graph

structure information and relationships between data points

into a machine-learning task can have a significant impact.

For instance, a node's local neighborhood tends to have a

more substantial influence on the target node than distant
nodes. By leveraging the structural information of a node's

local neighborhood, the recommender system can offer users

247

JOIV : Int. J. Inform. Visualization, 8(1) - March 2024 247-254

more relevant and captivating items. At Pinterest, PinSage is

employed and trained using a massive dataset consisting of

7.5 billion examples. The graph utilized for training

comprises 3 billion nodes, representing pins and boards, along

with 18 billion edges. Extensive evaluation through offline

metrics, user studies, and A/B tests has revealed that PinSage

outperforms comparable deep learning and graph-based

alternatives, delivering superior quality recommendations

[12].

Continuous Training (CT) automatically retraining and
serving models in production. While many consider a

machine learning project complete after model deployment,

the iterative and cyclic nature of the model lifecycle

necessitates ongoing monitoring and retraining. Model

performance can degrade over time, mainly due to data

changes such as feature drift and concept drift. To address

this, the recommender system should incorporate Continuous

Training to adapt to evolving user interests, ensuring

relevancy even as user preferences change during platform

engagement. As users’ interests and behaviors might vary

over time, resulting in the data faced by the recommender
system being very volatile, building a recommender system

requires considering this fact. Otherwise, it would not be

adaptive enough to learn the latest users’ interests and provide

irrelevant recommendations to the users.

This paper will first explore and analyze various

recommender system techniques and develop an end-to-end

Continuous Training pipeline of the recommender system that

incorporates graph learning. By integrating these approaches,

the recommender system can dynamically adapt to user

preferences and ensure the freshness and accuracy of

recommendations over time. The following section will
review the different graph learning techniques. Section 3 will

discuss our proposed method. Section 4 is our experimental

results. The last section will conclude our work.

II. MATERIAL AND METHOD

This section reviews conducted on four different graph-

learning-based techniques for recommender systems such as

graph embedding, Graph Convolutional Network (GCN),

GraphSAGE, and Graph Attention Network (GAT). Although
each graph-learning-based technique has its pros and cons,

they all share a common ground: generating embeddings for

nodes in the graph.

A. Graph Embedding Techniques for Recommender Systems

Wang et al. [13] proposed constructing an item graph from

users’ behavior history and then applying the state-of-art

graph embedding methods to learn the embedding of each

item, dubbed Base Graph Embedding (BGE). The similarities

are computed using the dot product of the embedding vector
of items. Chen et al. [14] presented collaborative similarity

embedding (CSE), a unified representation learning

framework. CSE involves a direct similarity embedding

module for modeling user-item associations and a

neighborhood similarity embedding module for modeling

user-user and item-item similarities. They aimed to exploit

comprehensive, collaborative relations in a user-item bipartite

graph for recommender systems.

B. Graph Convolutional Techniques for Recommender

System

Graph Convolutional Network (GCN) learns informative

embeddings of users and items by effectively aggregating
information from their neighborhoods in graphs by utilizing

convolution and pooling operations. Sun et al. [15] proposed

Multi-Graph Convolution Collaborative Filtering (Multi-

GCCF) that would consider the difference in the natures of

the nodes and implement aggregation and transformation

functions that are dependent on the nature of the nodes to

ensure the relevance of the nature of the nodes with the

embedding’s construction process in graph convolution

network. To achieve this, multiple graphs are utilized in the

embedding learning process. It outperformed PinSage, which

proved to be a powerful GraphSAGE-based recommender
system algorithm by Pinterest for offline evaluation.

A novel framework called DGCN-BinCF (Binarized

Collaborative Filtering with Distilling Graph Convolutional

Network) is proposed by Wang et al. [16] to mine the hidden

interactions between users and items from implicit feedback.

This framework incorporates GCN-based Collaborative

Filtering to capture high-order feature interaction via cross-

operation.

Kang et al. [17] proposed Joint Multi-grained Popularity-

aware Graph Convolution Collaborative Filtering (JMP-

GCF). This method has specifically catered to capturing the

signals related to modeling user preferences within and
between different popularity granularities. They presented a

separated Bayesian Personalized Ranking (BPR) loss to

optimize the model’s parameter to accommodate the

architecture of capturing multigrain popularity features. A

multistage stacked training method is also used to speed up

convergence.

C. GraphSAGE Techniques for Recommender Systems

The majority of currently used methods for creating node
embeddings are inherently transductive. This becomes

problematic when graphs evolve and constantly encounter

unseen nodes in the production machine learning systems.

The importance of the inductive approach is highlighted as it

is generalizable and useful in helping facilitate the

construction of embeddings for new data in the same form of

features. GraphSAGE is proposed in [11] to resolve it in a way

that extends GCNs to the problem of inductive unsupervised

learning, followed by a framework that generalizes the GCN

strategy to use trainable aggregation functions—with PinSage

deployed at Pinterest [12] thoroughly assessed the learned

embeddings' quality on a variety of recommendation tasks.
Offline metrics, user studies, and A/B tests all significantly

boosted recommendation performance. PinSage algorithm

utilized sampling the node neighborhood through short

random walks and constructing a computation graph using

sampled neighborhood in an on-the-fly way to perform

efficient, localized convolutions. They proposed importance

pooling, which uses scores to weight node features in the

convolution layer, resulting in a 46% performance gain in

offline evaluation metrics.

Inductive Matrix Completion (IMC) relies on side

information to train the recommender system. These
constraints on content quality often cause the model to

perform inferiorly when high-quality content is unavailable.

248

However, Zhang et al. [18] introduced Inductive Graph-based

Matrix Completion (IGMC) to remove this constraint, which

is h-hop enclosing subgraph for each training user-item pair

and feeding these subgraphs to Graph Neural Networks to

learn rich graph pattern information from these subgraphs to

map the subgraph to the rating that its center user gives to its

center item, whereby corresponds to filling in the missing

entries of the rating matrix.

SWAG (Sample, Weight, and AGgregate) in [19] proposed

adapting GraphSAGE to weighted graphs. Their algorithm
constitutes three components: Sampling, Weighting, and

Aggregation. They apply sampling and aggregation

operations to derive knowledge from edge weight. Then,

weights on the graphs measure loss, sampling, and so on.

MUlti-task Sampling and Inductive Learning on Graphs

(MUSIG) in [20] is proposed to learn high-quality

representations of tracks for several different use cases in

music streaming platforms. This method has devised a

strategy to ensure the embeddings can be used for other tasks

and avoid a mismatch between original learning and

downstream tasks.

D. Graph Attention Network Techniques for Recommender

System

Graph Attention Networks (GAT) [21] introduce attention

mechanisms into Graph Neural Networks to discriminatively

learn the different importance and relevance of the nodes by

specifying arbitrary weights to the neighbors. For the social

recommender system, the user-item and social graphs provide

information about users and social interactions between users

from different perspectives. In [22], GraphRec is proposed to
capture the interactions with heterogeneous strength when

coherently modeling user-item graphs and social graphs.

Three different attention mechanisms (item attention α, social

attention β, and user attention) are introduced to extract the

users with the most critical influence and suitable for

characterizing users' social information.

In [23], a graph contextualized self-attention network (GC-

SAN) is proposed for the session-based recommendation.

They use all the historical session sequences to build a

directed graph. Knowledge Graph Attention Network

(KGAT) is proposed by Xiang et al. [24] to resolve the
challenges in high-order connectivity modeling

correspondingly. It is recursively embedding propagation. In

Snapchat, Sankar et al. [25] propose GraFRank (Graph

Attentional Friend Ranker) for multi-faceted friend ranking,

contributing significantly to friend recommendation. Users

can indirectly interact with friends by liking posts, or they can

directly communicate with friends by texting and exchanging

social content.

One of the impactful recommendation problems is the

next-item recommendation, which is trying to predict what

item the user will likely buy, and this will result in uplifting
business revenue if the recommender system can achieve

great recall. SequentiAl inTentiOn-aware Recommender

proposes the next-item recommendation based on a user

Interaction graph (Satori) in [26]. A user interaction graph is

constructed to model relations among users, items, and

categories. Next, user intention and user preference are the

significant factors that contribute to whether users will buy

the current item that is surfaced, so both are learned using

Graph Attention Network. Then, the embedding of user

intention is generated by feeding intention trajectory and

utilizing self-attention with positional encoding [27].

E. Proposed Methodology

Below is the proposed methodology for this paper.

1) GNN-based Recommender System:

This research of the recommender system begins with the

collection of data, including reviews and listings data. To

simulate real-world scenarios, a time-based train-test split is

performed on the review’s dataset based on the timestamps of

the reviews. This approach follows the principle of "training

on the past and predicting the future," adhering to the
limitation that the model can only access historical data. Next,

the training and test data will be transformed into their

respective heterogeneous bipartite graphs to capture the

relationships between reviewers and listings. When a review

is created, it signifies that a guest has rented an Airbnb listing

and provided a rating and feedback. This creates a relationship

between the reviewer and the listing. A heterogeneous

bipartite graph that connects listings and reviewers is

constructed by considering these relationships. In the next

step, this paper will train the GraphSAGE model on the

training graph, and the model will be optimized based on a

customized loss function. Once the model training is
completed, the best model with the most minor test loss is

chosen. The GraphSAGE model will generate the embeddings

for the nodes in the graph. Therefore, the recommender

system will generate the reviewers’ embeddings and listing’

embeddings, which are in the same dimensional space after

running model inference.

With the generated embeddings, the recommender system

will compute a recommendation list for every reviewer. There

are two ways of developing recommendations. The first is the

user-to-item (U2I) recommendation, as the recommendations

are ranked based on the similarity between the reviewer and
the listing. For each reviewer, the system retrieves the top K

listings most similar to the reviewer's embedding, measured

by cosine similarity. The value of K represents the

predetermined number of recommendations to be provided. A

ground truth list is created for each reviewer by extracting all

the listings the reviewer reviewed in the test data.

The second approach is known as item-to-item (I2I)

recommendation, where recommendations are ranked based

on the similarity between the reviewer's first-ever reviewed

listing and other listings. Item-to-item recommendation

suggests items to users based on their similarity to items they

have previously shown interest in or engaged with. Firstly, the
recommender system will filter out those reviewers who have

only reviewed once in the test data. This step ensures

sufficient test data is available for the evaluation stage. For

each remaining reviewer, the recommender system generates

recommendations by retrieving the top K listings that are most

similar to the embedding of the first-ever reviewed listing, as

measured by cosine similarity. A ground truth list is created

for each reviewer by including all the listings the reviewer has

reviewed, excluding the first-ever reviewed listing. The

recommendations will then be used for performance

evaluation.

249

2) GNN Modification and Improvement

GraphSAGE,, where the aggregation scheme uses mean,,

is selected as the central GNN architecture. The proposed

GraphSAGE is designed for homogeneous graphs where all
nodes and edges have the same type. However, the reviewer-

listing graph is heterogeneous, consisting of different kinds of

nodes (reviewers and listings). To address this challenge, this

paper utilizes one of the specialized functionalities offered by

the PyTorch Geometric (PyG) library to handle

heterogeneous graphs. This functionality ensures that the

message-passing formulation in GraphSAGE is adapted to the

heterogeneous nature of the graph. Specifically, the

computation of message passing, and update functions

considers the node or edge type.

In the original GraphSAGE paper, the model was designed
for graphs with binary edges. However, in the reviewer-listing

graph, it is necessary to consider weighted edges to capture

the strength of the connection, such as the rating given by the

reviewer to the listing. To address this, a modification is made

by incorporating a customized loss, namely Rating-Weighted

Triplet Ranking Loss, shown in Equation (1) below:

 � � ∑ max�0,
��
 , ��� � ��
 , ��� � �� � ����
,��� � (1)

Given that a user is reviewing a listing once, a weighted

edge between them exists in the graph where the rating

defines the weight. The concept behind this approach is to

ensure that the distance between the representations of user

node u and a negative node n (a listing that the user has not
reviewed) is larger than a certain margin compared to the

distance between the representations of the same node u and

a positive node l (a reviewed listing). A rating-weighted

mechanism is introduced to overcome the issue of treating

high-rating and low-rating edges interchangeably. The final

margin is determined by multiplying the margin constant Δ

with rating r. This results in a higher margin for higher-rating

edges, requiring a more significant difference between

positive and negative pairs within a triplet, as compared to

another triplet with the same user node and negative node but

a positive node with a lower rating. In latent space, the
positive node with a higher rating is pulled closer to the user

node than the positive node with a lower rating. However,

both positive nodes remain considerably closer to the user

node than the respective negative node [28]. This rating-

weighted approach captures the user's preference for listings,

allowing for personalized recommendations. The proposed

GNN is named Rating-Weighted GraphSAGE. For details of

model training, the number of hidden channels of the GNN

model is 64. Adam algorithm is implemented as the optimizer,

and the learning rate is set at 0.01. The number of epochs is

set as 300.

3) Offline Simulation of Continuous Training

The offline simulation begins when initializing a retraining

pipeline scheduled by a pipeline orchestration tool called

Prefect at a scheduled frequency. Note that the expected

frequency here is not precisely in accordance with the cadence
of periodic retraining; instead, it is set to automate the

retraining process. Then, the pipeline would connect with a

Weights & Biases platform, which is a machine learning

operations (MLOps) platform that would keep track of

everything in the model retraining, including artifacts,

datasets, codes, models, metrics, and so on. Each retraining

run will follow precisely how the model training is done

offline with the same model architecture, period of dataset

split, and so on.

In each iteration of retraining, throughout the epochs, each

model produced will be pushed to the model registry, which

versions and keeps track of all the models, while the model
that has the most minor test loss will be labeled as a contender

model. If no production model exists, the contender model

will be automatically pushed to production as if the data

scientist deploys the best model they could train with the data

up to the training time. The contender model will be

benchmarked against the production model in subsequent

runs. One of the crucial components of a CT pipeline of a

machine learning model is offline model evaluation, which

checks whether the contender model has outperformed the

production model and, if so, by how much. This evaluation is

essential in ensuring that the contender model meets
performance standards and is ready for deployment.

Fig. 1 Offline model evaluation

During the offline model evaluation phase, the production
and contender models are assessed using the test set. The

evaluation process follows the flow illustrated in Figure 1.

The test loss is considered the primary metric for evaluating

model performance, as it provides a simple measure. It is

assumed that test loss improvements strongly correlate with

recommendation metrics enhancements. If the contender

model fails to outperform the production model in model
metric evaluation, it is not advanced for further evaluation and

is instead archived. This stringent criterion ensures that only

high-quality models progress to the next stage and ultimately

get deployed, thereby maintaining the overall quality of the

recommender system. The primary recommendation metric

used is hit-rate@5. Similar to evaluating the model metric, if

250

the contender model fails to outperform the production model

in terms of the recommendation metric, it will be archived.

However, if the contender model surpasses the production

model in both the model metric evaluation and the

recommendation metric evaluation, it will be promoted as the

new production model. Technically, this "promotion"

involves updating the model version tag to "production" for

the contender model, which will be retrieved by the model

serving layer. It is important to note that the contender model,

which is determined to be superior to the production model
through offline evaluation, should ideally undergo online

evaluation, such as A/B Testing, before being deployed to

production.

III. RESULTS AND DISCUSSION

A. Dataset

Two datasets are utilized: the review dataset, containing

reviews provided by guests for Airbnb listings they have

rented, and the listing dataset, comprising rows of listing
details. Both datasets are obtained by scraping data from the

Airbnb website using Python libraries -- BeautifulSoup and

Selenium.

B. Evaluation of GNN-based Recommender System

1) Experimental Design: We compare the proposed GNN

with the unsupervised variant of GraphSAGE regarding

recommendation performance. A whole year of reviews from

24th October 2021 till 23rd October 2022 is mainly extracted

for the model training and evaluation, consisting of 408596

reviews. A time-based train-test split is done on the reviews
in the first place, where the first ten months of reviews are

used for training, while the reviews from the two months

following the split date are used for evaluating the

recommender system performance. To be precise, the

experiment will compute the K most relevant listings for each

user of the test set using the proposed model and the two ways

of generating recommendations: U2I recommendations and

I2I recommendations.

Subsequently, generated recommendations are evaluated

concerning the listings reviewed by each user during the first

two months following August 24th, 2022, using two standard

recommendation metrics: hit rate and coverage. The value of

K representing the predetermined number of

recommendations to be provided is set as 5. It is because the

average number of rented listings per reviewer in the test set

is 1, which is insufficient to amount to a decently good value

of K for precision@k and recall@k, let alone measuring
ranking quality.

2) Evaluation of Result: According to Table 1, Rating-

Weighted GraphSAGE demonstrated remarkable

improvements in U2I and I2I recommendations. In the

evaluation of the U2I recommendation, Rating-Weighted

GraphSAGE achieved a substantial increase of 99.88 points

in hit-rate@5 compared to Unsupervised GraphSAGE.

Regarding coverage, Rating-Weighted GraphSAGE

outperformed the unsupervised variant with a relative

increase of 446.5%. In the evaluation of the I2I

recommendation, although the differences in metrics were not
as significant as previously, Rating-Weighted GraphSAGE

still achieved a higher hit-rate@5 (5.15% increase) and higher

coverage (1.81% increase) compared to Unsupervised

GraphSAGE. This improvement is considered highly

significant, highlighting the superiority of the supervised

setting and the use of the ranking loss function. The difference

in performance between the two GraphSAGE models can be

explained by the nature of the loss functions they use.

In the case of the proposed GNN, Rating-Weighted Triplet

Ranking Loss is used to train the model to learn embeddings

that can clearly distinguish between positive and negative

examples. The loss function works by taking a triplet of

embeddings (anchor, positive, negative) and minimizing the

distance between the anchor and positive embeddings while

maximizing the distance between the anchor and negative

embeddings. This encourages the model to learn embeddings
that are close together for positive pairs and far apart for

opposing pairs [29]. This is well advocated in the

recommender system as the recommender system should

recognize well the user preferences, such as what the user

prefers and dislikes [30]. Rating-Weighted GraphSAGE has

likely captured the preference towards listings of the majority

of users during training.

On the other hand, an unsupervised loss function does not

rely on labeled data for training. Instead, it focuses on learning

representations that capture the underlying structure of the

data. In the case of the GraphSAGE model, an unsupervised

loss function is used to learn embeddings that capture the local
and global structure of the nodes with graph, assuming that

users and listings closer to each other would have shared

similar preferences. However, the significantly poor

recommendation performance doesn’t justify it. The reason

why the GraphSAGE model that uses a triplet ranking loss

outperforms the unsupervised variant substantially is that the

triplet ranking loss is specifically tailored to optimize for

predicting the listing nodes that are most likely rented by the

users. On the contrary, an unsupervised loss function may not

be as effective in optimizing for such an objective, since it

focuses on learning representations that capture the structure
of the nodes within graph, rather than explicitly distinguishing

between positive and negative examples. Overall, the choice

of loss function can significantly impact the performance of a

GNN model, and it is essential to choose a loss function that

is appropriate for the specific task at hand. In the case of the

GraphSAGE model, the triplet ranking loss is a better choice.

Table. 1 Result of recommender model performances

Type of

Recommendation
Model Used

Metric

Hit-

Rate@5

(%)

Coverage

(%)

U2I Rating-Weighted
GraphSAGE

99.88 98.15

Unsupervised
GraphSAGE

0.70 17.96

I2I Rating-Weighted
GraphSAGE

5.85 25.65

Unsupervised
GraphSAGE

0.70 23.84

As shown in Figure 2 and Figure 3, due to the limited

availability of ground truth data, the increase in K has

251

minimal impact on the hit rate. Hence, the difference in hit

rate between each K and the subsequent one is negligible for

both models. However, the same cannot be said for coverage.

Intuitively, an increase in K implies that the recommender

system has more opportunities to recommend additional

listings, thereby increasing the number of unique

recommended listings. In summary, Rating-Weighted

GraphSAGE consistently outperforms the unsupervised

variant regardless of the value of K.

Fig. 2 Recommendation metrics over K by different models using U2I

Recommendation

Fig. 3 Recommendation metrics over K by different models using I2I

Recommendation

C. Evaluation of Continuous Training of Recommender

System

1) Experimental Design: The offline simulation is set to

simulate periodic retraining that begins on October 23, 2016,

with subsequent retraining runs from the same date each year

until October 23, 2022. To evaluate the effectiveness of

Continuous Training, the experiment outcomes will be

illustrated and assessed by analyzing the performance of both
the production and contender models over time. The same

recommendations, metrics, and aspects are used here.

2) Evaluation of Result: In Figure 4, for U2I

recommendations, it is clearly seen that the performance of

the contender model is superior to the initial production model

most of the time. However, there is no comparability between

the contender model and production model in I2I

recommendations, as both perform similarly. Also, the

performance of the production model degrades over time,

which could be detrimental to the business as it could not

capture user preference, reducing the user retention rate.

Fig. 4 Recommendation metrics over the years by different models

252

One key advantage of Continuous Training is its ability to

leverage the latest data, allowing the model to learn and

improve its performance over time continuously. Unlike the

production model, which remains static and does not update

itself regularly, the contender model benefits from the

continuous inflow of fresh data. The recommender system

becomes more adaptable and responsive to evolving

conditions by incorporating Continuous Training. For

instance, if there is a sudden shift in user behavior or

preferences, the contender model can quickly fine-tune its
recommending capability based on the latest data.

IV. CONCLUSION

In conclusion, this paper incorporated a customized loss

named Rating-Weighted Triplet Ranking Loss into

GraphSAGE for the recommender system of Airbnb listings.

By employing the loss above function, the GraphSAGE

model can accommodate the bipartite graph made of user-
listing interactions and consider the weightage of different

ratings given by the user to curate personalized

recommendations for the users. It significantly outperforms

the unsupervised variant of GraphSAGE in both U2I

recommendations and I2I recommendations. For the

effectiveness of Continuous Training, an offline simulation is

conducted, and the result proves that the performance of the

contender model could outperform the production model most

of the time.

One limitation of the proposed GNN is that the new users

or new listings must have at least one interaction with others

to exist within the graph and be converted into embeddings
for downstream usage. This could be a significant drawback

of the proposed recommender system, which will be

ineffective when recommending listings to cold users. There

are approaches like link prediction, predicting cold user’s

embeddings by leveraging node embeddings, and so on,

which could potentially overcome the aforementioned

drawback. On the side of MLOps, a CI/CD system can be set

up in the Continuous Training pipeline to enable changes to

be tested and built, as well as deployment in the machine

learning systems in a timely, reproducible, and secure manner

by introducing automation into the lifecycle. This would then
help make the pipeline more robust, less prone to unexpected

error, and even reduce the time of delivery to iterate faster on

improvement on the overall system.

This paper drives the study towards a personalized

recommender system by incorporating users' preferences for

items into graph learning, which resembles how the level of

connectivity/relationship between entities correlates with the

closeness between items in the real world.

REFERENCES

[1] Y. F. Lim, S. C. Haw, and E. A. Anaam, “Hybrid-based Recommender

System for Online Shopping: A Review,” Journal of Engineering

Technology and Applied Physics, vol. 5, no. 1, pp. 12–34, 2023, doi:

10.33093/jetap.2023.5.1.

[2] S. C. Haw, L. J. Chew, K. Ong, K. W. Ng, P. Naveen, and E. A.

Anaam, “Content-based Recommender System with Descriptive

Analytics,” Journal of System and Management Sciences, vol. 12, no.

5, pp. 105–120, 2022, doi: 10.33168/JSMS.2022.0507.

[3] J. Yu, H. Yin, X. Xia, T. Chen, J. Li, and Z. Huang, “Self-Supervised

Learning for Recommender Systems: A Survey,” Mar. 2022, [Online].

Available: http://arxiv.org/abs/2203.15876

[4] S. Munikoti, D. Agarwal, L. Das, M. Halappanavar, and B. Natarajan,

“Challenges and Opportunities in Deep Reinforcement Learning with

Graph Neural Networks: A Comprehensive Review of Algorithms and

Applications,” Jun. 2022, [Online]. Available:

http://arxiv.org/abs/2206.07922

[5] J. Chen, H. Dong, X. Wang, F. Feng, M. Wang, and X. He, “Bias and

Debias in Recommender System: A Survey and Future Directions,”

ACM Trans Inf Syst, vol. 41, no. 3, Feb. 2023, doi: 10.1145/3564284.

[6] P. Liu, L. Zhang, and J. A. Gulla, “Pre-train, Prompt, and

Recommendation: A Comprehensive Survey of Language Modelling

Paradigm Adaptations in Recommender Systems,” Feb. 2023,

[Online]. Available: http://arxiv.org/abs/2302.03735

[7] Z. Y. Poo, C. Y. Ting, Y. P. Loh, and K. I. Ghauth, “Multi-Label

Classification with Deep Learning for Retail Recommendation,”

Journal of Informatics and Web Engineering, vol. 2, no. 2, pp. 218-

232, 2023. https://doi.org/10.33093/jiwe.2023.2.2.16

[8] M. Casillo, F. Colace, D. Conte, M. Lombardi, D. Santaniello, and C.

Valentino, “Context-aware recommender systems and cultural

heritage: a survey,” J Ambient Intell Humaniz Comput, vol. 14, no. 4,

pp. 3109–3127, Apr. 2023, doi: 10.1007/s12652-021-03438-9.

[9] M. Asad, S. Shaukat, E. Javanmardi, J. Nakazato, and M. Tsukada, “A

Comprehensive Survey on Privacy-Preserving Techniques in

Federated Recommendation Systems,” Applied Sciences

(Switzerland), vol. 13, no. 10, May 2023, doi: 10.3390/app13106201.

[10] C. Gao et al., “A Survey of Graph Neural Networks for Recommender

Systems: Challenges, Methods, and Directions,” ACM Transactions

on Recommender Systems, vol. 1, no. 1, pp. 1–51, Mar. 2023, doi:

10.1145/3568022.

[11] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive Representation

Learning on Large Graphs,” Jun. 2017, [Online]. Available:

http://arxiv.org/abs/1706.02216

[12] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J.

Leskovec, “Graph convolutional neural networks for web-scale

recommender systems,” in Proceedings of the ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining,

Association for Computing Machinery, Jul. 2018, pp. 974–983. doi:

10.1145/3219819.3219890.

[13] J. Wang, P. Huang, H. Zhao, Z. Zhang, B. Zhao, and D. L. Lee,

“Billion-scale commodity embedding for E-commerce

recommendation in Alibaba,” in Proceedings of the ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining,

Association for Computing Machinery, Jul. 2018, pp. 839–848. doi:

10.1145/3219819.3219869.

[14] C.-M. Chen, C.-J. Wang, M.-F. Tsai, and Y.-H. Yang, “Collaborative

Similarity Embedding for Recommender Systems,” Feb. 2019,

[Online]. Available: http://arxiv.org/abs/1902.06188

[15] J. Sun et al., “Multi-Graph Convolution Collaborative Filtering,” Jan.

2020, [Online]. Available: http://arxiv.org/abs/2001.00267

[16] H. Wang, D. Lian, and Y. Ge, “Binarized Collaborative Filtering with

Distilling Graph Convolutional Networks,” Jun. 2019, [Online].

Available: http://arxiv.org/abs/1906.01829

[17] K. Liu, F. Xue, X. He, D. Guo, and R. Hong, “Joint Multi-grained

Popularity-aware Graph Convolution Collaborative Filtering for

Recommendation,” Oct. 2022, doi: 10.1109/tcss.2022.3151822.

[18] M. Zhang and Y. Chen, “Inductive Matrix Completion Based on

Graph Neural Networks,” Apr. 2019, [Online]. Available:

http://arxiv.org/abs/1904.12058

[19] A. Pande, K. Ni, and V. Kini, “SWAG: Item Recommendations using

Convolutions on Weighted Graphs,” Nov. 2019, doi:

10.1109/BigData47090.2019.9005633.

[20] A. Saravanou, F. Tomasi, R. Mehrotra, and M. Lalmas, “Multi-Task

Learning of Graph-Based Inductive Representations of Music

Content,” 2021. [Online]. Available: https://www.spotify.com

[21] P. Veličkovi´veličkovi´c, G. Cucurull, A. Casanova, A. Romero, P. Lì,

and Y. Bengio, “Graph Attention Networks,” 2017.

[22] W. Fan et al., “Graph neural networks for social recommendation,” in

The Web Conference 2019 - Proceedings of the World Wide Web

Conference, WWW 2019, Association for Computing Machinery, Inc,

May 2019, pp. 417–426. doi: 10.1145/3308558.3313488.

[23] C. Xu et al., “Graph Contextualized Self-Attention Network for

Session-based Recommendation,” 2019.

[24] X. Wang, X. He, Y. Cao, M. Liu, and T. S. Chua, “KGAT: Knowledge

graph attention network for recommendation,” in Proceedings of the

ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, Association for Computing Machinery, Jul. 2019,

pp. 950–958. doi: 10.1145/3292500.3330989.

253

[25] A. Sankar, Y. Liu, J. Yu, and N. Shah, “Graph neural networks for

friend ranking in large-scale social platforms,” in The Web Conference

2021 - Proceedings of the World Wide Web Conference, WWW 2021,

Association for Computing Machinery, Inc, Apr. 2021, pp. 2535–

2546. doi: 10.1145/3442381.3450120.

[26] J. Chen, Y. Cao, F. Zhang, P. Sun, and K. Wei, “Sequential Intention-

aware Recommender based on User Interaction Graph,” in ICMR 2022

- Proceedings of the 2022 International Conference on Multimedia

Retrieval, Association for Computing Machinery, Inc, Jun. 2022, pp.

118–126. doi: 10.1145/3512527.3531390.

[27] K.-M. Kim et al., “Tripartite Heterogeneous Graph Propagation for

Large-scale Social Recommendation,” Jul. 2019, [Online]. Available:

http://arxiv.org/abs/1908.02569

[28] C. Park, D. Kim, J. Han, and H. Yu, “Unsupervised Attributed

Multiplex Network Embedding,” Nov. 2019, [Online]. Available:

http://arxiv.org/abs/1911.06750

[29] S. Wang et al., “Graph Learning based Recommender Systems: A

Review,” May 2021, [Online]. Available:

http://arxiv.org/abs/2105.06339

[30] A. J. Bose, A. Jain, P. Molino, and W. L. Hamilton, “Meta-Graph: Few

Shot Link Prediction via Meta-Learning,” Dec. 2019, [Online].

Available: http://arxiv.org/abs/1912.09867.

254

