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Abstract— This research aims to identify and recognize the OpenMV Camera H7. In this research, all tests were carried out using Deep 

Machine Learning and applied to several functions, including Face Recognition, Facial Expression Recognition, Detection and 

Calculation of the Number of Objects, and Object Depth Estimation. Face Expression Recognition was used in the Convolutional Neural 

Network to recognize five facial expressions: angry, happy, neutral, sad, and surprised. This allowed the use of a primary dataset with 

a 48MP resolution camera. Some scenarios are prepared to meet environment variability in the implementation, such as indoor and 

outdoor environments, with different lighting and distance. Most pre-trained models in each identification or recognition used 

mobileNetV2 since this model allows low computation cost and matches with low hardware specifications. The object detection and 

counting module compared two methods: the conventional Haar Cascade and the Deep Learning MobileNetV2 model. The training 

and validation process is not recommended to be carried out on OpenMV devices but on computers with high specifications. This 

research was trained and validated using selected primary and secondary data, with 1500 image data. The computing time required is 

around 5 minutes for ten epochs. On average, recognition results on OpenMV devices take around 0.3 - 2 seconds for each frame. The 

accuracy of the recognition results varies depending on the pre-trained model and the dataset used, but overall, the accuracy levels 

achieved tend to be very high, exceeding 96.6%. 
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I. INTRODUCTION

Minicomputers have gained popularity recently, offering a 

range of options for enthusiasts, students, and professionals to 

delve into embedded applications. The top choices in this 

category are the Raspberry Pi, Arduino, and OpenMV Cam. 

The Raspberry Pi, initially introduced by the UK-based 
Raspberry Pi Foundation in 2012, was conceived as an 

affordable and user-friendly computer for programming and 

electronics education. Over time, it has evolved, boasting 

features like a robust quad-core processor, up to 8GB of RAM, 

and 4K video support. In contrast, Arduino, created by an 

Italian team in 2005, is designed to simplify interactive 

projects and prototype development. It comprises a variety of 

microcontrollers, such as the well-known Arduino Uno and 

Arduino Nano, with an intuitive development environment. 

OpenMV Cam, introduced in 2015 by founders Kwabena 

Agyeman and Ibrahim Abdelkader, has emerged as a 
compelling player in the minicomputer landscape. It offers an 

affordable machine vision platform for the swift and 

straightforward development of embedded computer vision 

applications. OpenMV Cam, equipped with a potent 

microcontroller and a high-quality image sensor, facilitates 

coding and debugging in a Python-based development 

environment. It additionally supports a wide array of popular 

machine vision algorithms and libraries. One of OpenMV 

Cam's standout features is its user-friendliness. Its intuitive 

development environment and pre-built libraries expedite the 

initiation of computer vision projects with minimal hassle. 
Moreover, the platform provides many examples and 

tutorials to help users harness its potential effectively. 

OpenMV Cam excels in real-time machine vision processing, 

making it a favored choice for robotics, drones, and industrial 

automation applications. Its cost-effectiveness further extends 

its appeal, rendering it accessible to a broad user base. 

Furthermore, its compact physical dimensions make it 

particularly suitable for wearable devices. The OpenMV Cam 

H7 has an OV7725 image sensor that can capture images at a 
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resolution of 640x480 in 8-bit Grayscale or 16-bit RGB565 

format. It achieves a frame rate of 75 FPS for resolutions 

above 320x240 and 150 FPS for resolutions below 320x240. 

This limitation is entirely handled for implementing deep 

learning applications in computer vision since they only need 

a small image size resolution. 

The physical size of the OpenMV Cam depends on the 

specific model. The current iteration, the OpenMV Cam H7, 

measures approximately 45mm x 36mm x 25mm (1.8in x 

1.4in x 1in), making it a compact and portable device. It is 
small enough to fit in the palm and can be easily mounted on 

various robotic or other embedded platforms. Regarding 

technical specifications, the OpenMV Cam H7 is powered by 

an STM32H7 microcontroller running up to 480MHz. It 

features 512KB of RAM and 2MB of flash memory, which 

provides ample space for storing machine vision algorithms 

and other data. 

OpenMV Cam offers distinct advantages in computer 

vision over Raspberry Pi and Arduino. It features built-in 

hardware support for image processing, simplifying the 

development of computer vision applications. Additionally, 
the platform includes a range of pre-built machine vision 

algorithms, such as edge detection and color tracking, which 

can be easily employed and tailored to specific applications. 

However, it is worth noting that OpenMV Cam employs a 

lower-power microcontroller and offers less memory than 

Raspberry Pi, potentially limiting its performance for 

complex computer vision tasks. A comparative study also 

favors OpenMV Cam regarding technical specifications and 

features [1]. 

Some of the previous research in Computer Vision tasks 

for Raspberry Pi has been conducted. Research on using the 
Raspberry Pi 3 as an Object Detector on a Robot Boat was 

carried out and showed quite good responsiveness on boat 

devices [2]. In a study by Rosa Andrie et al. [3], an experiment 

was carried out to predict traffic density using a Raspberry Pi 

and added parallel computing capabilities using Intel NCS2. 

The Intel Neural Compute Stick 2 (NCS2) is a powerful, 

compact device designed for deep learning inference at the 

edge. In this study, an experiment was carried out using Jetson 

Nano, which was used for Deep Object Detection [4]. In the 

next study, an experiment was carried out using Face 

Recognition on the Raspberry Pi, but the recognition process 

was carried out on the Google Vision API [5]. Research 
related to portable sensors using the CC2650 sensor tag has 

been carried out to analyze the properties and behavior of 

portable sensors related to data communication, durability, 

and required power consumption [6], [7]. 

The implementation of this experimental study can become 

the basis for further research, especially research related to the 

design of wearable device prototypes for individuals with 

visual impairments. Several related studies include research 

[8] that encompasses the development of smart glasses for 

visually impaired users and the utilization of various methods, 

such as Support Vector Machine (SVM), Local Binary 
Patterns (LBP), Convolutional Neural Networks (CNN), and 

Deep Convolutional Neural Networks (DCNN), for facial 

expression recognition. LBP can improve classification 

accuracy, but in practice, it is challenging to implement in real 

time due to the associated time complexity [9]. The SVM 

method has a high level of accuracy; the more accurate the 

decision boundary used to classify data classes, the higher the 

accuracy. However, it is not easy to classify all data 

accurately, so some outliers are ignored [10]. The CNN 

method provides better accuracy than other facial expression 

recognition methods [11]. 

This study aims to conduct experiments using several 

Computer Vision Techniques on OpenMV cameras and see 

the possibility of their implementation in Assistive Devices 

for visually impaired Persons. The trial will show the 

performance of the computer vision technique on the 
OpenMV Camera and the camera's performance with these 

techniques. Some techniques that will be implemented 

include Face Expression Recognition, Deep Face 

Recognition, Deep Object Detection and Counting, Deep 

Depth Object Estimation, and Object Detection and Counting 

using CNN and HaarCascade [12]. The Face Expression 

Recognition used in the test will use the Convolutional Neural 

Network to recognize five facial expressions: angry, happy, 

neutral, sad, and surprised. The dataset was self-made using a 

48MP resolution camera. The Face Recognition used in the 

test will utilize MobileNetV2 [13] architecture as the pre-
trained model. The data used as a trial is data on 30 different 

face IDs. Object detection in testing uses two methods, 

namely Haarcascade and MobileNetV2, as the pre-trained 

model and uses CIFAR-100 [14] as the dataset. The final test 

is the estimation of object depth using CNN DenseNet-169 as 

the pre-trained model and tested on the NYU Depth V2 

Dataset. This Experimental study will also show the results of 

object detection and counting tests using Haar Cascade 

Classifier. 

This paper proposed some contributions as detailed: 

 Experiment results of Deep Learning techniques 
implemented in OpenMV Cam H7 device. 

 Analysis of the processing time and recommended 

technique used for OpenMV Cam. 

 Primary dataset development with some specific and 

unique conditions and taken using OpenMV Cam. 

II. MATERIALS AND METHOD 

Numerous studies on facial expressions have been 

conducted, including one by [15], which employed the DCNN 

method to enhance facial expression recognition accuracy. 

The study utilized the Kaggle FER2013 dataset for training 

and experimenting with the DCNN model. Similarly, [16] 

proposed using DCNN modeling to create a highly accurate 
facial expression recognition system. This approach involved 

deep DCNN modeling through Transfer Learning (TL), where 

a pre-trained DCNN model was adapted for facial emotion 

data by replacing its upper layer. The proposed facial 

expression recognition system was evaluated using eight 

different pre-trained CNN models (VGG-16, VGG-19, 

ResNet-18, ResNet-34, ResNet-50, ResNet-152, Inception-v3, 

and DenseNet-161) and the KDEF and JAFFE datasets. 

Subsequent research by Pranav et al. [17] introduced a 

convolutional network model with two layers for facial 

emotion recognition, incorporating dropouts after each 
convolution layer. The objective was to develop a Deep 

Convolutional Neural Network (DCNN) model to classify 

five distinct human facial emotions. Moreover, research 

conducted by [18] utilized DCNN for facial emotion 

recognition, employing two datasets—the Amsterdam 
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Dynamic Facial Expression Set-Bath Intensity Variations 

(ADFES-BIV) and the WSEFEP datasets. Notably, OpenMV 

Cam was also employed for model testing. Several studies 

have delved into object and face recognition using OpenMV 

Cam, with one such study [19] focusing on mask detection 

using OpenMV Cam H7. 

These studies serve as reference points in the realm of 

CNN-based facial recognition. For instance, a Smart 

Attendance Management System based on Facial Recognition 

utilized a custom CNN model to facilitate real-time student 
attendance using facial recognition. The proposed CNN 

consisted of 20 layers, encompassing a Two-Dimensional 

Convolutional Layer (Conv2D), Batch Normalization Layer, 

Max Pooling Layer, and Dense Layer, among others [20]. 

Another study explored an Android system for guest 

authorization, leveraging Google Cloud Service for the 

recognition process. This research incorporated ArcFace and 

FaceNet, CNN architectures used for facial recognition. It 

employed encoding via OpenCV, MTCNN, and RetinaFace, 

with ArcFace demonstrating superior facial recognition 

accuracy compared to Additionally, Rajput et al. introduced 
CNn-based low-resolution Facial Recognition Classification, 

highlighting the use of CNNs to overcome challenges in low-

light conditions and achieve accurate face recognition. The 

study employed Resnet18, consisting of 18 CNN-based layers 

with Rectified Linear Unit (ReLU) activation functions. This 

CNN classification concept enhanced recognition accuracy 

compared to traditional K Nearest Neighbor (KNN) based 

classifiers [21]. 

Numerous studies have investigated object detection and 

counting using CNN, yielding promising results [22], [23], 

[24], [25], [26], [27], [28], [29]. Detection and recognition of 
particular objects in the room using CNN is implemented in a 

support system for blind people. These objects include 

windows, notice boards, elevators, doors, electrical contacts, 

trash cans, stairs, tables, smoke detectors, and other objects. 

The accuracy achieved precision results reaching up to 73.19% 

[22] Romario et.al detected and counted human objects in 

crowds and conducted 10 tests with a total of 113 detections 

achieving an accuracy value of 63% using CNN [23]. This 

result lacks accuracy but considering that detection in a 

crowded atmosphere is full of challenges, it is understandable 

if the accuracy is not that high. Aich et al. employed Global 

Sum Pooling to enhance accuracy in detecting vehicle objects, 
crowd objects, and wheat plants, asserting the approach's 

superiority over existing methods [24]. The multilayer 

regression network (MRNet) is used as a counter object in 

crowds and was published in 2019 by Xin Tan et al. [25]. 

MRNet shows more reliability and higher accuracy in 

different crowd scenarios. Across the four crowd-counting 

datasets, MRNet provided competitive performance 

compared to other recent methods. Several other studies have 

used a different CNN architecture with varied claim results, 

such as Scale Pyramid Network [26], MCENet [27], and 

CentroidNetV2 [28]. 
Swaraja et al. [30] conducted experiments using 400 

homogeneous and 4600 heterogeneous images in object depth 

detection. The results indicated that EfficientNet exhibited 

lower object depth detection accuracy at higher input 

resolutions than ResNet50. Another research venture 

explored Recurrent CNN with sparse depth for 

implementation in SLAM, demonstrating its accuracy, real-

time capabilities, and suitability for precise localization and 

mapping [31]. Further studies showcased fast monocular 

depth estimation through sparse MobileNet and ASPP-

implemented CNNs on FPGAs, achieving high accuracy and 

real-time speed [32]. Additionally, Ibraheem et al. proposed a 

CNN for depth map estimation from a single RGB image, 

highlighting the potential of well-constructed encoders like 

DenseNet-169 and DenseNet-201 to produce higher-quality 
depth maps capturing object boundaries more precisely [33]. 

Five different methods were studied experimentally and 

applied to OpenMV Camera. The entire experiment uses the 

existing Net architecture. For data training, the experiments 

use primary and secondary datasets available. 

A. OpenMV Camera 

OpenMV stands out as a remarkably cost-effective and 

energy-efficient embedded intelligent camera platform that is 
purpose-built to cater to various applications within computer 

vision and wireless sensor networks. It is distinguished by its 

compatibility with Python 3 and the wealth of resources it 

brings. These include an expansive and versatile computer 

vision library, a user-friendly integrated development 

environment (IDE), and comprehensive preconfigured script 

examples. The central board is at the heart of the OpenMV 

ecosystem, compactly measuring 1.4' x 1.2'. This board serves 

as the core hub, housing crucial components such as a high-

quality image sensor MT9M114, a powerful microcontroller 

unit (MCU), an efficient power supply system, a micro-SD 

card slot for data storage, and expansion headers to facilitate 
hardware extensions and customizations. The MT9M114 

camera sensor initiates data processing by capturing light 

through its image sensor core, converting it into electrical 

signals, and then performing analog-to-digital conversion 

(ADC) to quantize these signals into digital values. 

Subsequently, digital signal processing (DSP) operations are 

applied for image enhancement, including tasks like white 

balance adjustments and noise reduction. The sensor formats 

the processed data into a suitable output format, often in the 

RGB or YUV color space, and transmits it through interfaces 

like MIPI CSI-2 or parallel connections to the host system. In 
the host system, further processing, such as compression or 

analysis, occurs before displaying, storing, or transmitting the 

final image, allowing control and configuration of sensor 

parameters as needed. OpenMV Cam H7 Device and the 

block diagram for MT9M114 are shown in Fig. 1 below. 

The OpenMV library, the backbone of its functionality, is 

meticulously developed in the C programming language, 

providing the foundation for seamless integration with Python 

scripts. Users gain access to a broad spectrum of fundamental 

image manipulation capabilities within this library. These 

include image loading and saving, precise cropping, flexible 
resizing, and versatile blending. Furthermore, the library 

extends its prowess to advanced image enhancement 

functions, including median filtering for noise reduction, 

midpoint adjustments for dynamic range enhancement, 

Gaussian smoothing for artifact removal, and histogram 

equalization for improved image quality. 
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Fig. 1  (Top) OpenMV Cam H7 Device; (Bottom) MT9M114 Schematic diagram 

 

Notably, OpenMV goes beyond the basics by offering a 

range of sophisticated image-processing libraries. These 

advanced capabilities empower users to tackle complex tasks 

with ease. OpenMV can proficiently handle tasks such as QR 

code recognition and decoding, ApriTags for precise 

localization and tracking, and various forms of facial and 

ocular recognition, enabling applications in fields as diverse 

as robotics, automation, and surveillance. Additionally, 
OpenMV excels in iris detection, allowing for biometric 

applications and enhanced security measures [1]. 

B. MobileNetV2 

MobileNetV2, purpose-built for efficient deep learning 

inference on mobile and embedded platforms, represents a 

cutting-edge neural network architecture. It builds upon the 

original MobileNet architecture by prioritizing resource 

efficiency while maintaining high performance. The key 

innovation lies in its use of depthwise separable convolutions, 
a combination of depthwise and pointwise convolutions that 

dramatically reduces parameters and computations while 

retaining the ability to capture complex features. 

For the regular convolutions using input 

��: ℎ���ℎ	�  
 ���	ℎ�  
 ��	ℎ�, implement filter kernel � ∈

�� � � � �� � ��  and giving output result 

��: ℎ���ℎ	�  
 ���	ℎ�  
 ��	ℎ� and having computational 

cost: 

 ℎ���ℎ	�  . ���	ℎ�  . ��	ℎ�  . ��	ℎ�  . � . � (1) 

while for depthwise separable convolution, the computational 

cost is: 

 ℎ���ℎ	�  . ���	ℎ�  . ��	ℎ���� �  ��	ℎ�� (2) 

The concept of inverted residuals enhances representation 

without inflating the model size. Furthermore, it balances 

computational efficiency and expressive power through 

linear bottlenecks, strategically applying nonlinear 

activations only where needed. MobileNetV2 offers 

architectural flexibility through width and resolution 
multipliers, enabling customization of model size and 

computational costs. This architecture finds applications in 

mobile and edge computing [34]. Depthwise separable 

convolutions, a combination of depthwise and pointwise 

convolutions, characterize the convolutional block. These 

significantly reduce model parameters and computational 

complexity while preserving the ability to capture intricate 

features. It also incorporates the concept of inverted 

residuals to improve feature representation without 

increasing the overall model size. Additionally, the block 

balances computational efficiency and expressive power 

through linear bottlenecks, applying nonlinear activations 
judiciously. Fig. 2 below shows the mobilenetV2 

convolutional block in detail. 
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Fig. 2  MobileNetV2 Convolutional Block 

 

The significance of MobileNetV2 lies in its capability to 

deploy advanced computer vision models on resource-

constrained devices. It adapts seamlessly to various tasks, 
including object recognition, semantic segmentation, and 

image classification, consistently delivering competitive 

accuracy within stringent resource constraints. It underscores 

the critical role of efficient neural network architecture in 

extending the boundaries of deep learning to edge devices, 

making it an indispensable tool for real-time on-device AI 

applications. 

C. DenseNet-169 

DenseNet-169, a highly regarded convolutional neural 

network (CNN) architecture renowned for its exceptional 
performance in tasks such as image classification and feature 

extraction, is a notable member of the DenseNet family. Its 

dense connectivity patterns set it apart, enabling 

unprecedented information transmission rates.  

 

In contrast to conventional CNNs, where each layer 

receives input solely from the previous layer, DenseNet-169 

fosters feature reuse by tightly connecting each layer to all 

subsequent levels. This innovation accelerates the training 

process and significantly reduces the number of parameters 

compared to networks of similar depth, thereby enhancing 
model efficiency. DenseNet-169 incorporates bottleneck 

layers and transition blocks to streamline the model further 

while preserving or improving accuracy, making it the 

preferred choice for precision-critical applications like 

computer vision, object detection, and image segmentation. 

Fig. 3 below shows the DenseNet-169 Architecture model and 

the comparison with another popular DenseNet model.  

 
Fig. 3  DenseNet-169 Compared to other DenseNet Layer Structure 

 

Networks consist of �  layers, in each implement ���. � 

nonlinear transformation, which �  is the layer indexes. 

Assumed that the output of the � ! layer is 
� , will give the 

layer transition: 

 
� "  ℎ��
�#$� (3) 

ResNet, on the other hand, will bypass the non-linear 

transformation: 

 
� "  ℎ��
�#$� � 
�#$ (4) 

The densenet will improve information flow from layer to 
layer using direct connection to all layers, where lth layer 

handles all feature maps from all previous layer x0,…, xl-1: 

 
� "  ℎ��%
&, 
$, … , 
�#$)� � 
�#$ (5) 

where %
&, 
$ , … , 
�#$) is the combination of feature maps 

from layers 0, … , � + 1 

The figure below shows the Layers of DenseNet-169 

compared to other DenseNet pre-trained models. The impact 

of DenseNet-169 extends beyond image classification, 

finding utility in diverse fields such as medical image analysis, 

where it has demonstrated advantages in tasks like organ 

segmentation and disease detection. The model converges 

faster and achieves superior performance thanks to its 

architectural features that encourage feature reuse, mitigate 

the vanishing gradient problem, and facilitate superior 
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gradient flow during training. While DenseNet-169 remains a 

remarkable architectural achievement, it is essential to 

acknowledge that deep learning has continued to evolve. 

Researchers are now exploring novel architectural concepts, 

regularization techniques, and optimization methods to push 

the boundaries of model effectiveness and performance [35], 

[36], [37]. A comparative study of various CNN architectures, 

including DenseNet, ResNet, Inception, and InceptionResNet, 

found that the DenseNet architecture outperformed the others 

with an impressive accuracy of 98.76% [38]. 

D. Face Expression and Face Recognition 

The data consists of facial images taken using an OpenMV 

device with Haarcascade as a method for face detection. 1560 

images comprised three categories: happy, sad, and neutral. 

Each label has 500 facial images with a .jpg extension as 

training data and 150 with a .jpg extension as testing data. 

Tests were carried out in eight scenarios: location 

(indoor/outdoor), lighting intensity, and the distance between 
the camera and the target's face. Four labels/classes were used 

for face recognition; each label consisted of 500 face images 

with the .jpg extension as training data, and 10 face images 

with the .jpg extension as test data. The same scenario is also 

used for face recognition experiments. Image augmentation 

used for the datasets is random contrast and random rotation. 

Table I below shows scenarios for the experiments and Fig. 4 

below shows some image examples in the face expression and 

face recognition primary dataset. 

TABLE  I 

EIGHT DIFFERENT SCENARIOS FOR FACE EXPRESSION AND RECOGNITION 

SYSTEM 

No 
Scenarios 

Environment Lightness Distance 

1 Indoor 30 Lux 30 cm 
2 Indoor 30 Lux 100 cm 

3 Indoor 100 Lux 30 cm 
4 Indoor 100 Lux 100 cm 
5 Outdoor 150 Lux 30 cm 
6 Outdoor 150 Lux 100 cm 
7 Outdoor 250 Lux 30 cm 
8 Outdoor 150 Lux 100 cm 

E. Object Detection and Counting Using HaarCascade and 

MobileNetV2 

Detecting and counting objects was a central focus of this 

experiment, involving applying different methods and 

datasets. The first method, Haarcascade, utilized primary and 

secondary research data. Primary data comprised digital 

images captured using the camera module of the openMV 
device, encompassing various locations such as the campus 

and laboratory. In contrast, secondary data was derived from 

images taken with cellphone cameras, DSLRs, and the Penn-

Fudan dataset. The secondary dataset assessed detection 

effectiveness, particularly for specific human body parts. The 

study categorized three distinct human body part datasets for 

detection purposes: 

 

 
 

 

 
Fig. 4  Image Sample on Primary Dataset Created 

 

 Images encompass the entire human body, from feet to 

head. 

 Images focus on the upper human body, from the waist 
to the head. 

 Images concentrate on the lower human body, ranging 

from the feet to the waist. 

After selecting the most influential dataset, the human body 

component dataset was employed for the human object 

detection process. The data underwent initial processing by 

converting RGB colors to grayscale. Subsequently, it 

progressed to classification using the Haar Cascade Classifier, 

involving accuracy assessment and cumulative evaluation of 

test results with consistent labeling. Once the grayscale 

conversion was accomplished, a cascade classifier was 

employed for image data processing. This classifier generated 
multiple weak classifiers, typically stored at nodes. These 

weak classifiers were combined into a filter chain to construct 

a robust classifier that recognizes the trained objects. Each 

filter possessed a dynamic threshold, facilitating the 

estimation of its weight and placement in the classification 

process. If any filter failed to determine that a particular 

component did not match the trained object, the object was 
classified as a non-object. The generic XML file containing 

these filters proved instrumental in identifying human objects 

within the system.  

The Haar cascade classifier computed results based on 

feature extraction outcomes, such as edges, lines, or square 

features. The filters trained in the earlier stages were utilized 

to ascertain the Haar-cascade detected area, utilizing the 

image integral. After classification completion, tests were 

conducted, focusing on two primary aspects: achieving the 

most accurate detection results in human object detection 

trials based on human body parts, using OpenCV, and 

assessing detection outcomes according to the type of human 
body parts, using training data stored in the XML file. 

Additionally, training and testing processes were carried out 

using openMV Cam. The dataset is obtained from CIFAR-
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100, and only some classes are taken. Images were taken with 

complex background and plain background images. 

F. Depth Object Estimation 

In the initial stage, after separating the video from the 

image input into the system, the input data is resized with 

dimensions of 640x480 to fit the size of the dataset used, 

which is dimensions of 640x480. The model will be loaded 
after the input image has been divided into numerous frames, 

and it will then be analyzed to determine an object's depth. 

This system uses a pre-trained model from Alhashim et al. 

[30], which was developed using the NYU v2 dataset and the 

DenseNet-169 architectural encoder. 

III. RESULTS AND DISCUSSION 

A. Face Expression Recognition using CNN 

Finding optimal hyperparameters (hyperparameter tuning 

or hypertuning) is needed to get a model with maximum 

performance. Hypertuning helps improve performance and 

reduce model complexity by removing unnecessary 

parameters. Table II below shows several experiments using 
different hyperparameters, epochs, and learning rates. In the 

first experiment, model training for machine learning used 

epochs of 10 with a learning rate 0.001. In the first experiment, 

the model learned image data on training data of 0.99 (99%) 

and showed a learning error (loss) on training data of 0.0415, 

while the error on data validation was 0.1216.  

TABLE  II 

 HYPERTUNING EXPERIMENT RESULT 

No. Epoch Learning Rate 
Accuracy Loss 

Gap Training - Validation 
Training Validation Training Validation 

1. 10 0.001 0.9992 0.9767 0.0415 0.1216 0.0801 
2. 10 0.0001 0.9350 0.8867 0.2932 0.3487 0.0555 
3. 10 0.0005 0.9883 0.9700 0.0898 0.1454 0.0556 
4. 30 0.001 1.0000 0.9600 0.0092 0.0900 0.0808 
5. 30 0.0001 0.9858 0.9400 0.1137 0.1966 0.0829 
6. 30 0.0005 1.0000 0.9533 0.0177 0.1035 0.0858 
7. 50 0.001 1.0000 0.9667 0.0037 0.0756 0.0719 
8. 50 0.0001 0.9992 0.1391 0.0547 0.9567 0.9002 

9. 50 0.0005 1.0000 0.9667 0.0078 0.0808 0.0703 

 

Fig. 5 below shows a graph of good Accuracy and Error 

identified by training loss and validation loss, which 
decreases to a point of stability with a minimum gap between 

the two final loss values so that experiment number 2 is the 

best result of the 9 experiments that have been carried out with 

a gap value of 0.0555. Table III below shows the results of the 

hypertuning experiment on MobileNetV2. Experiments were 

carried out using differences in epochs. A good model is 

identified by loss training and validation, which decreases to 

a point of stability with a minimal gap between the two final 

loss values. The loss of the model is almost always lower on 

the training dataset than on the validation dataset, which 

means there must be some gap between the learning curve loss 

between training and validation. This gap is referred to as the 
"generalization gap". The test results in Table III for 

MobileNetV2 show that with the addition of layers, the best 

model uses epoch 30 with a gap value of 0.0702.    
Fig. 5  Training and Validation Accuracy and Loss Experiment Results for 

Face Expression Recognition 

TABLE  III 

MOBILENETV2 EXPERIMENT RESULT WITH DIFFERENT EPOCH TRAINING 

No Epoch 
Training Validation 

Generalization Gap Time 
Loss Accuracy Loss Accuracy 

1. 10 0.9462 0.5533 0.8635 0.6087 0.0827 3min 16s 
2. 30 0.0083 1 0.0785 0.9767 0.0702 5min 85s 

3. 50 0.003 1 0.0755 0.9733 0.0725 17min 19s 

 
Tests were carried out on facial expressions using the CNN 

models, which have been converted and implemented on 

OpenMV Cam H7 Plus, to determine whether the model can 

run when performing classification using machine vision as 

shown on the Fig. 6 below. An example of the results of 

testing facial expressions using the CNN method can be seen 

in Figure 6. In the pre-trained model used, 8 tests were also 

carried out, of which 4 were carried out indoors, and the rest 

were carried out outdoors where each test had a lighting 

parameter (in LUX units) and the distance between the 

camera and the correspondent (in CM / M units). The testing 

results for all scenarios can be seen in Table IV, where the 

values for accuracy, precision, recall, and F1 Score displayed 
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are the average of the values obtained for happy, neutral, and 

sad expressions. 

 

 
Fig. 6  Face Expression Experiment Result using OpenMV 

There were 4 indoor and outdoor experiments where each 

test had a lighting parameter (in LUX units) and the distance 

between the camera and the correspondent (in CM / M units). 

The testing results for all scenarios can be seen in Table IV, 

where the values for accuracy, precision, recall, and F1 Score 

displayed are the average of the values obtained for happy, 

neutral, and sad expressions. From the results of Table IV 

below, the highest accuracy value is in the 6th scenario 

(outdoor environment, 150 Lux, and 100cm distance) 
achieving 72% classification accuracy. These results show 

that the model used can work with good accuracy on the 

OpenMV camera with computational costs that can also be 

accommodated well. The running time for each frame using 

this model is around 0.3 seconds on average. 

TABLE  IV 

ACCURACY, PRECISION, RECALL, AND F-1 SCORE FOR 8 DIFFERENT 

SCENARIOS 

Scenario Accuracy Precision Recall F-1 Score 

1 0.60 0.40 0.51 0.39 
2 0.62 0.43 0.61 0.39 
3 0.62 0.43 0.50 0.42 
4 0.62 0.43 0.45 0.36 
5 0.57 0.36 0.49 0.35 
6 0.72 0.58 0.75 0.55 

7 0.54 0.32 0.31 0.26 
8 0.46 0.18 0.12 0 

B. Face Recognition Using CNN 

To get a model with maximum performance, the process of 

finding optimal hyperparameters (hyperparameter tuning or 

hypertuning) is needed in machine learning. Hypertuning 

helps improve performance and reduce model complexity by 

removing unnecessary parameters. Table V below shows 

some experiments using different hypertuning parameters.  

TABLE  V 

HYPERTUNING EXPERIMENT TABLE 

No. Epoch 
Learning 

Rate 

Accuracy Loss 
Gap Train – Val 

Training Validation Training Validation 

1 10 0.001 1.0000 0.8500 0.0016 0.6082 0.6066 
2 10 0.0005 1.0000 0.8000 0.0084 0.4512 0.4428 
3 30 0.001 1.0000 0.8750 1.6517e-04 0.3897 0.389535 
4 30 0.0005 1.0000 0.8750 0.0014 0.4855 0.4841 
5 50 0.001 1.0000 0.8750 1.7187e-04 0.4121 0.411928 

6 50 0.0005 1.0000 0.8750 0.0011 0.4376 0.4365 
7 100 0.001 1.0000 0.9250 1.0895e-04 0.4137 0.413591 
8 100 0.0005 1.0000 0.8750 4.0342e-04 0.3550 0.354597 

 
A good model is identified by training loss and validation 

loss, which decreases to a point of stability with a minimum 

gap between the two final loss values so that experiment 

number 7 is the best result of the 8 experiments that have been 

carried out with a gap value of 0.413. The experiment results 

on Fig. 7 show excellent recognition, achieving 92.5% 

accuracy at around 0.354 seconds for each frame process. 

These results show that the model used can work with 

extremely good accuracy on the OpenMV camera. 

C. Depth Object Estimation using CNN 

Tests were carried out to find out whether the system 

worked properly or not when detecting the depth of objects in 

indoor and outdoor conditions with different lighting. The 

system's output is in the form of video with object depth 

detection, where the closer the object is detected, the darker it 

will be, and the deeper the object is detected, the brighter it 

will be. In the accuracy test, two frames are taken from each 

system output with different conditions and lighting, and each 

frame is given a bounding box randomly 

 

 
Fig. 7  Training and Validation Accuracy and Loss Experiment Results for 

Face Recognition 

 
Then, an assessment is made of whether the actual depth 

detection is appropriate. Another test was carried out to 
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determine how fast the system performs inference processing 

for each entered frame. Some examples of experimental 

results of object depth estimation accuracy can be seen in 

Table VI.  

TABLE  VI 

OBJECT DEPTH ESTIMATION ACCURACY EXAMPLE 

No. Experiment images 
Depth detection 

Correct Incorrect 

1 Indoor image with appropriate lighting 28 2 

2 Indoor image with dim lighting 29 1 

3 Outdoor image with appropriate lighting 19 11 

From all the experiments, the calculation of the results of 
the appropriate depth detection accuracy for each condition 

was carried out. The first condition produces an accuracy of 

96.6%, while for the second and third condition produces an 

accuracy of 73.3 and 63.3%. In addition to accuracy 

calculations, tests were also carried out to find out how fast 

the system was to process each frame on the DensNet 169 

model, and the results obtained were: 

 In the object depth detection process, every frame takes 

1.4 seconds for every frame or 0.6 FPS in every frame. 

 From the input process to combining frames or output, 

it takes 2.08 seconds or 0.5 FPS.  

D. Object Detection and Counting using CNN and Haar 

Cascade 

The object detection and calculation system were tested 

using the CNN method on 13 images that had been taken with 

OpenMV, where the 13 images consisted of 12 images with 

slightly complex background conditions and one image with 

a plain background. These images are taken under different 

conditions, for example, the number of more than one object, 

the distance between objects that are close together and 

distant, and background conditions that are plain and not plain. 
An example of the system testing results using the CNN 

method can be seen in Table VII. 
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TABLE  VII 

SYSTEM EXPERIMENT RESULTS PREVIEWS 

No. Experiment images 
Detection 

Real count result 
Count detection 

result Correct Incorrect 

1 2 1 Cup : 1 

Person : 2 

Person : 2 

2 

 

1 1 Chair : 1 

Bowl : 1 

Chair : 1 

3 

 

1 1 Cup : 1 

Person : 1 

Person : 1 

 
Based on these tests, it is difficult for OpenMV to detect 

objects in images with busy backgrounds, with the result that 

the number of objects detected is 13 out of 25 bounding boxes. 

Moreover, if the number of correct classifications is 

calculated based on the correctly detected objects, then of the 

13 detected objects, it can be classified correctly. Then, for 

counting detected objects, the correct count is 7 of 23 object 

counts. The overall system test results can be seen in Table 

VIII below.  

Based on Table VIII below, it was discovered that data with 

plain backgrounds had higher precision and accuracy values 

than data with complex backgrounds. Contrarily, complex 
backdrops performed better in categorization accuracy, recall, 

and precision than simple backgrounds. This is due to the 

identified item needing to be completely accurate; therefore, 

some background information is also classified in addition to 

classifying the object. In addition, the system uses the Otsu 

segmentation method and cannot alter image data.  

In addition to using the CNN method, a human object 

detection and calculation system was also developed using the 

Haar Cascade method. During the system testing process, 

various conditions and object positions, such as the effect of 

the distance between the object and the camera, the effect of 

the difference in color between the object and the background, 
the effect of object conditions, and the effect of lighting, were 

all taken into consideration. 

TABLE  VIII 

COMPARISON OF PLAIN BACKGROUND AND COMPLEX BACKGROUND TEST 

RESULTS 

 
Detection Classification 

Prec Rec Acc Prec Rec Acc Accuracy 

Non green 

screen 

background 

0.53 0.66 0.42 0.94 0.97 0.99 0.538 

Green 

screen 

Background 

0.55 0.46 0.44 0.92 0.82 0.97 0.687 

 

The experiment seeks to evaluate the effectiveness of 

human object detection under various image processing 

scenarios when utilizing the OpenMV tool. According to the 

tests, the maximum number of items that OpenMV can detect 

is four meters away from the camera, and the separation 

between the human object and the background has no bearing 

on the detection outcomes. Due to the limits of the Haar 
Cascade method, which can only detect stark color contrasts 

between objects and their surroundings, objects that are 

identical or nearly equal to the backdrop color are likely not 

detected by the system. 

The system can recognize and calculate human things by 

recognizing upper body components. So that even if other 

things cover the lower body, the system can still identify and 

calculate human objects. The device can also detect people in 
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three different lighting scenarios: bright inside lighting, bright 

lighting near a window, and bright lighting far from a window. 

In contrast, in strong light outdoors, the system cannot 

recognize and calculate human items. Table IX below 

displays the total test outcomes. The system can detect and 

calculate human objects by detecting upper body parts. So that 

the system can still detect and calculate human objects even 

if other objects cover the lower body. In addition, the system 

can detect human objects in three different light conditions: 

bright light indoors, bright light near a window, and bright 
light far from a window. Meanwhile, the system fails to detect 

and calculate human objects outdoors in bright light 

conditions.  

TABLE  IX 

EXTERNAL CONDITION AFFECTION ON ACCURACY 

No. Experiment 
Image 

Number 

Correctly 

Classified 

1 Distance affection 10 6 

2 
Object color 
difference 

10 9 

3 Object Condition 10 6 
4 Lighting 4 3 
Total 34 24  

Accuracy (correctly classified: image 

amount) 
71% 

 

In testing the detection and calculation of human objects 

using the Haar Cascade method with OpenMV processing, the 

correct percentage was obtained at 71%, while using CNN, 

the correct percentage was obtained at 66%. Test results found 

that the system tends not to detect and count objects with a 

low color difference or contrast with the background color. 

The system also fails to detect and count objects if other 
objects beyond the chest area block the human object. The test 

results show that implementing the haarcascade method in 

OpenMV is less accurate for detecting and calculating human 

objects in natural conditions. This is because the Haar 

Cascade algorithm works, which mainly uses the calculation 

of the difference in black and white pixel values in the image. 

So, optimal environmental conditions are needed to detect and 

count objects well. The optimal conditions required are: 
 The distance between human objects and the camera is not 

more than 3 meters and not less than 1 meter, 
 The distance between human objects is not too close, 
 The objects do not overlap, 
 Color the human object contrasts with the background color 

so that the object's body parts are precise, 

 The object's body in the image is not cut off, 
 The upper part of the human object's body, from the waist to 

the head, is not obstructed by other objects beyond the chest, 
 The human object's body does not face sideways from the 

camera's direction. 

Apart from that, based on the results of tests that have been 

carried out, the percentage rate of correct detection and 

calculation of human objects on OpenMV devices is lower 

than using OpenCV on PC devices. OpenMV devices have 

lower specifications than PC devices, using a 32-bit ARM 

cortex processor. The lower computing capability of 

OpenMV devices compared to PC devices is reinforced by the 

condition that OpenMV devices only support Micropython 
without OS (Operation System) support. With these 

specifications, the OpenMV device can only process images 

with a maximum resolution of 240p. If the OpenMV device is 

given an image with a resolution above 240p, OpenMV will 

crash. Apart from that, the camera module of the OpenMV 

device is only capable of capturing images with a half-quarter 

VGA resolution of 240x160 pixels, which needs attention. 

The images produced by OpenCV devices are less sharp than 

those produced by smartphones or DSLR cameras. Inaccuracy 

in positioning the camera and adjusting the object's distance 

from the camera will affect the results of object detection and 

calculation. The experiment results from Table IX shows 

good classification, achieving 71% accuracy on HaarCascade 
and 66% accuracy on CNN, giving a testing time of around 

0.4 second per frame. These results show that the model used 

can work with good accuracy on the OpenMV camera but 

with some limitations on the time process.  

IV. CONCLUSION 

The research proposed in this study is an experimental 

study using pre-trained Deep Learning models on the 
OpenMV Camera H7 device. As has been written, this camera 

focuses on developing systems that implement computer 

vision and wireless sensor networks. The pre-training used in 

this research is MobileNetV2 and DenseNet-169. Meanwhile, 

several computer vision implementations being tested include 

Face Recognition, Facial Expression Recognition, Detection 

and Calculation of the Number of Objects, and Object Depth 

Estimation. DenseNet-169 is used in Object Depth Estimation, 

while the others use MobileNetV2. This research tries to train 

and validate using selected primary and secondary data, with 

1500 image data. The computing time required is around 5-7 

minutes for every 10 epochs. The hyper tuning test results on 
facial expressions, as shown in Table II, give optimum results 

in the 10 epoch 0.001 learning rate with 97.67% validation 

accuracy, and the face recognition shown in Table V shows 

optimum results in the 100 epoch 0.001 learning rate with 

92.5% validation accuracy. This test shows that in facial 

expression recognition, overfitting of the training process 

occurs more quickly, and in the range of 10 epochs, it is 

recommended to stop the training process. Meanwhile, in face 

recognition, overfitting conditions occur around 100 epochs, 

so it is recommended to stop the training process at that epoch 

with a recommended learning rate of 0.001. 
For the face expression recognition result, as shown in 

Table IV, the highest accuracy value for the best hypertuning 

parameter applied is in the sixth scenario (outdoor 

environment, 150 Lux, and 100cm distance), achieving 72% 

classification accuracy and running time for each frame using 

this model is around 0.3 seconds on average. The experiment 

on the face recognition results shows excellent recognition, 

achieving 92.5% accuracy at around 0.354 seconds for each 

frame process. The experiment on depth object recognition 

using DenseNet169 achieved 96,6% accuracy in an indoor 

environment with proper lighting conditions, with a testing 
computation cost of around 1.4 seconds per frame. The 

experiment results from object detection and counting on 

Table IX show good classification, achieving 71% accuracy 

on HaarCascade and 66% on CNN and giving a testing time 

of around 0.4 seconds per frame. These results show that the 

model can work with reasonable accuracy on the OpenMV 

camera but with some limitations on the time process. From 

the results above, for several implementations such as Face 

Expression Recognition and Face Recognition, OpenMV 
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Camera is still applicable because the processing time is fast 

enough. It is quite suitable for Depth Object Estimation, 

Object Detection, and Counting in terms of accuracy. 

However, implementing it on an OpenMV Camera needs to 

be considered because the processing time of each frame is 

too high. 
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