
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

An Experimental Study on Deep Learning Technique Implemented on

Low Specification OpenMV Cam H7 Device

Rosa Andrie Asmara a, Ulla Delfana Rosiani a, Mustika Mentari a, Arie Rachmad Syulistyo a,

Milyun Ni’ma Shoumi a, Mungki Astiningrum a
a Information Technology Department, State Polytechnic of Malang, Lowokwaru, Malang, Indonesia

Corresponding author: *rosa.andrie@polinema.ac.id

Abstract— This research aims to identify and recognize the OpenMV Camera H7. In this research, all tests were carried out using Deep

Machine Learning and applied to several functions, including Face Recognition, Facial Expression Recognition, Detection and

Calculation of the Number of Objects, and Object Depth Estimation. Face Expression Recognition was used in the Convolutional Neural

Network to recognize five facial expressions: angry, happy, neutral, sad, and surprised. This allowed the use of a primary dataset with

a 48MP resolution camera. Some scenarios are prepared to meet environment variability in the implementation, such as indoor and

outdoor environments, with different lighting and distance. Most pre-trained models in each identification or recognition used

mobileNetV2 since this model allows low computation cost and matches with low hardware specifications. The object detection and

counting module compared two methods: the conventional Haar Cascade and the Deep Learning MobileNetV2 model. The training

and validation process is not recommended to be carried out on OpenMV devices but on computers with high specifications. This

research was trained and validated using selected primary and secondary data, with 1500 image data. The computing time required is

around 5 minutes for ten epochs. On average, recognition results on OpenMV devices take around 0.3 - 2 seconds for each frame. The

accuracy of the recognition results varies depending on the pre-trained model and the dataset used, but overall, the accuracy levels

achieved tend to be very high, exceeding 96.6%.

Keywords—Deep learning; face recognition; face expression recognition; depth estimation; object detection; object counting; CNN.

Manuscript received 29 Oct. 2023; revised 5 Dec. 2023; accepted 13 Jan. 2023. Date of publication 31 May 2024.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Minicomputers have gained popularity recently, offering a

range of options for enthusiasts, students, and professionals to

delve into embedded applications. The top choices in this

category are the Raspberry Pi, Arduino, and OpenMV Cam.

The Raspberry Pi, initially introduced by the UK-based
Raspberry Pi Foundation in 2012, was conceived as an

affordable and user-friendly computer for programming and

electronics education. Over time, it has evolved, boasting

features like a robust quad-core processor, up to 8GB of RAM,

and 4K video support. In contrast, Arduino, created by an

Italian team in 2005, is designed to simplify interactive

projects and prototype development. It comprises a variety of

microcontrollers, such as the well-known Arduino Uno and

Arduino Nano, with an intuitive development environment.

OpenMV Cam, introduced in 2015 by founders Kwabena

Agyeman and Ibrahim Abdelkader, has emerged as a
compelling player in the minicomputer landscape. It offers an

affordable machine vision platform for the swift and

straightforward development of embedded computer vision

applications. OpenMV Cam, equipped with a potent

microcontroller and a high-quality image sensor, facilitates

coding and debugging in a Python-based development

environment. It additionally supports a wide array of popular

machine vision algorithms and libraries. One of OpenMV

Cam's standout features is its user-friendliness. Its intuitive

development environment and pre-built libraries expedite the

initiation of computer vision projects with minimal hassle.
Moreover, the platform provides many examples and

tutorials to help users harness its potential effectively.

OpenMV Cam excels in real-time machine vision processing,

making it a favored choice for robotics, drones, and industrial

automation applications. Its cost-effectiveness further extends

its appeal, rendering it accessible to a broad user base.

Furthermore, its compact physical dimensions make it

particularly suitable for wearable devices. The OpenMV Cam

H7 has an OV7725 image sensor that can capture images at a

1017

JOIV : Int. J. Inform. Visualization, 8(2) - May 2024 1017-1029

resolution of 640x480 in 8-bit Grayscale or 16-bit RGB565

format. It achieves a frame rate of 75 FPS for resolutions

above 320x240 and 150 FPS for resolutions below 320x240.

This limitation is entirely handled for implementing deep

learning applications in computer vision since they only need

a small image size resolution.

The physical size of the OpenMV Cam depends on the

specific model. The current iteration, the OpenMV Cam H7,

measures approximately 45mm x 36mm x 25mm (1.8in x

1.4in x 1in), making it a compact and portable device. It is
small enough to fit in the palm and can be easily mounted on

various robotic or other embedded platforms. Regarding

technical specifications, the OpenMV Cam H7 is powered by

an STM32H7 microcontroller running up to 480MHz. It

features 512KB of RAM and 2MB of flash memory, which

provides ample space for storing machine vision algorithms

and other data.

OpenMV Cam offers distinct advantages in computer

vision over Raspberry Pi and Arduino. It features built-in

hardware support for image processing, simplifying the

development of computer vision applications. Additionally,
the platform includes a range of pre-built machine vision

algorithms, such as edge detection and color tracking, which

can be easily employed and tailored to specific applications.

However, it is worth noting that OpenMV Cam employs a

lower-power microcontroller and offers less memory than

Raspberry Pi, potentially limiting its performance for

complex computer vision tasks. A comparative study also

favors OpenMV Cam regarding technical specifications and

features [1].

Some of the previous research in Computer Vision tasks

for Raspberry Pi has been conducted. Research on using the
Raspberry Pi 3 as an Object Detector on a Robot Boat was

carried out and showed quite good responsiveness on boat

devices [2]. In a study by Rosa Andrie et al. [3], an experiment

was carried out to predict traffic density using a Raspberry Pi

and added parallel computing capabilities using Intel NCS2.

The Intel Neural Compute Stick 2 (NCS2) is a powerful,

compact device designed for deep learning inference at the

edge. In this study, an experiment was carried out using Jetson

Nano, which was used for Deep Object Detection [4]. In the

next study, an experiment was carried out using Face

Recognition on the Raspberry Pi, but the recognition process

was carried out on the Google Vision API [5]. Research
related to portable sensors using the CC2650 sensor tag has

been carried out to analyze the properties and behavior of

portable sensors related to data communication, durability,

and required power consumption [6], [7].

The implementation of this experimental study can become

the basis for further research, especially research related to the

design of wearable device prototypes for individuals with

visual impairments. Several related studies include research

[8] that encompasses the development of smart glasses for

visually impaired users and the utilization of various methods,

such as Support Vector Machine (SVM), Local Binary
Patterns (LBP), Convolutional Neural Networks (CNN), and

Deep Convolutional Neural Networks (DCNN), for facial

expression recognition. LBP can improve classification

accuracy, but in practice, it is challenging to implement in real

time due to the associated time complexity [9]. The SVM

method has a high level of accuracy; the more accurate the

decision boundary used to classify data classes, the higher the

accuracy. However, it is not easy to classify all data

accurately, so some outliers are ignored [10]. The CNN

method provides better accuracy than other facial expression

recognition methods [11].

This study aims to conduct experiments using several

Computer Vision Techniques on OpenMV cameras and see

the possibility of their implementation in Assistive Devices

for visually impaired Persons. The trial will show the

performance of the computer vision technique on the
OpenMV Camera and the camera's performance with these

techniques. Some techniques that will be implemented

include Face Expression Recognition, Deep Face

Recognition, Deep Object Detection and Counting, Deep

Depth Object Estimation, and Object Detection and Counting

using CNN and HaarCascade [12]. The Face Expression

Recognition used in the test will use the Convolutional Neural

Network to recognize five facial expressions: angry, happy,

neutral, sad, and surprised. The dataset was self-made using a

48MP resolution camera. The Face Recognition used in the

test will utilize MobileNetV2 [13] architecture as the pre-
trained model. The data used as a trial is data on 30 different

face IDs. Object detection in testing uses two methods,

namely Haarcascade and MobileNetV2, as the pre-trained

model and uses CIFAR-100 [14] as the dataset. The final test

is the estimation of object depth using CNN DenseNet-169 as

the pre-trained model and tested on the NYU Depth V2

Dataset. This Experimental study will also show the results of

object detection and counting tests using Haar Cascade

Classifier.

This paper proposed some contributions as detailed:

 Experiment results of Deep Learning techniques
implemented in OpenMV Cam H7 device.

 Analysis of the processing time and recommended

technique used for OpenMV Cam.

 Primary dataset development with some specific and

unique conditions and taken using OpenMV Cam.

II. MATERIALS AND METHOD

Numerous studies on facial expressions have been

conducted, including one by [15], which employed the DCNN

method to enhance facial expression recognition accuracy.

The study utilized the Kaggle FER2013 dataset for training

and experimenting with the DCNN model. Similarly, [16]

proposed using DCNN modeling to create a highly accurate
facial expression recognition system. This approach involved

deep DCNN modeling through Transfer Learning (TL), where

a pre-trained DCNN model was adapted for facial emotion

data by replacing its upper layer. The proposed facial

expression recognition system was evaluated using eight

different pre-trained CNN models (VGG-16, VGG-19,

ResNet-18, ResNet-34, ResNet-50, ResNet-152, Inception-v3,

and DenseNet-161) and the KDEF and JAFFE datasets.

Subsequent research by Pranav et al. [17] introduced a

convolutional network model with two layers for facial

emotion recognition, incorporating dropouts after each
convolution layer. The objective was to develop a Deep

Convolutional Neural Network (DCNN) model to classify

five distinct human facial emotions. Moreover, research

conducted by [18] utilized DCNN for facial emotion

recognition, employing two datasets—the Amsterdam

1018

Dynamic Facial Expression Set-Bath Intensity Variations

(ADFES-BIV) and the WSEFEP datasets. Notably, OpenMV

Cam was also employed for model testing. Several studies

have delved into object and face recognition using OpenMV

Cam, with one such study [19] focusing on mask detection

using OpenMV Cam H7.

These studies serve as reference points in the realm of

CNN-based facial recognition. For instance, a Smart

Attendance Management System based on Facial Recognition

utilized a custom CNN model to facilitate real-time student
attendance using facial recognition. The proposed CNN

consisted of 20 layers, encompassing a Two-Dimensional

Convolutional Layer (Conv2D), Batch Normalization Layer,

Max Pooling Layer, and Dense Layer, among others [20].

Another study explored an Android system for guest

authorization, leveraging Google Cloud Service for the

recognition process. This research incorporated ArcFace and

FaceNet, CNN architectures used for facial recognition. It

employed encoding via OpenCV, MTCNN, and RetinaFace,

with ArcFace demonstrating superior facial recognition

accuracy compared to Additionally, Rajput et al. introduced
CNn-based low-resolution Facial Recognition Classification,

highlighting the use of CNNs to overcome challenges in low-

light conditions and achieve accurate face recognition. The

study employed Resnet18, consisting of 18 CNN-based layers

with Rectified Linear Unit (ReLU) activation functions. This

CNN classification concept enhanced recognition accuracy

compared to traditional K Nearest Neighbor (KNN) based

classifiers [21].

Numerous studies have investigated object detection and

counting using CNN, yielding promising results [22], [23],

[24], [25], [26], [27], [28], [29]. Detection and recognition of
particular objects in the room using CNN is implemented in a

support system for blind people. These objects include

windows, notice boards, elevators, doors, electrical contacts,

trash cans, stairs, tables, smoke detectors, and other objects.

The accuracy achieved precision results reaching up to 73.19%

[22] Romario et.al detected and counted human objects in

crowds and conducted 10 tests with a total of 113 detections

achieving an accuracy value of 63% using CNN [23]. This

result lacks accuracy but considering that detection in a

crowded atmosphere is full of challenges, it is understandable

if the accuracy is not that high. Aich et al. employed Global

Sum Pooling to enhance accuracy in detecting vehicle objects,
crowd objects, and wheat plants, asserting the approach's

superiority over existing methods [24]. The multilayer

regression network (MRNet) is used as a counter object in

crowds and was published in 2019 by Xin Tan et al. [25].

MRNet shows more reliability and higher accuracy in

different crowd scenarios. Across the four crowd-counting

datasets, MRNet provided competitive performance

compared to other recent methods. Several other studies have

used a different CNN architecture with varied claim results,

such as Scale Pyramid Network [26], MCENet [27], and

CentroidNetV2 [28].
Swaraja et al. [30] conducted experiments using 400

homogeneous and 4600 heterogeneous images in object depth

detection. The results indicated that EfficientNet exhibited

lower object depth detection accuracy at higher input

resolutions than ResNet50. Another research venture

explored Recurrent CNN with sparse depth for

implementation in SLAM, demonstrating its accuracy, real-

time capabilities, and suitability for precise localization and

mapping [31]. Further studies showcased fast monocular

depth estimation through sparse MobileNet and ASPP-

implemented CNNs on FPGAs, achieving high accuracy and

real-time speed [32]. Additionally, Ibraheem et al. proposed a

CNN for depth map estimation from a single RGB image,

highlighting the potential of well-constructed encoders like

DenseNet-169 and DenseNet-201 to produce higher-quality
depth maps capturing object boundaries more precisely [33].

Five different methods were studied experimentally and

applied to OpenMV Camera. The entire experiment uses the

existing Net architecture. For data training, the experiments

use primary and secondary datasets available.

A. OpenMV Camera

OpenMV stands out as a remarkably cost-effective and

energy-efficient embedded intelligent camera platform that is
purpose-built to cater to various applications within computer

vision and wireless sensor networks. It is distinguished by its

compatibility with Python 3 and the wealth of resources it

brings. These include an expansive and versatile computer

vision library, a user-friendly integrated development

environment (IDE), and comprehensive preconfigured script

examples. The central board is at the heart of the OpenMV

ecosystem, compactly measuring 1.4' x 1.2'. This board serves

as the core hub, housing crucial components such as a high-

quality image sensor MT9M114, a powerful microcontroller

unit (MCU), an efficient power supply system, a micro-SD

card slot for data storage, and expansion headers to facilitate
hardware extensions and customizations. The MT9M114

camera sensor initiates data processing by capturing light

through its image sensor core, converting it into electrical

signals, and then performing analog-to-digital conversion

(ADC) to quantize these signals into digital values.

Subsequently, digital signal processing (DSP) operations are

applied for image enhancement, including tasks like white

balance adjustments and noise reduction. The sensor formats

the processed data into a suitable output format, often in the

RGB or YUV color space, and transmits it through interfaces

like MIPI CSI-2 or parallel connections to the host system. In
the host system, further processing, such as compression or

analysis, occurs before displaying, storing, or transmitting the

final image, allowing control and configuration of sensor

parameters as needed. OpenMV Cam H7 Device and the

block diagram for MT9M114 are shown in Fig. 1 below.

The OpenMV library, the backbone of its functionality, is

meticulously developed in the C programming language,

providing the foundation for seamless integration with Python

scripts. Users gain access to a broad spectrum of fundamental

image manipulation capabilities within this library. These

include image loading and saving, precise cropping, flexible
resizing, and versatile blending. Furthermore, the library

extends its prowess to advanced image enhancement

functions, including median filtering for noise reduction,

midpoint adjustments for dynamic range enhancement,

Gaussian smoothing for artifact removal, and histogram

equalization for improved image quality.

1019

Fig. 1 (Top) OpenMV Cam H7 Device; (Bottom) MT9M114 Schematic diagram

Notably, OpenMV goes beyond the basics by offering a

range of sophisticated image-processing libraries. These

advanced capabilities empower users to tackle complex tasks

with ease. OpenMV can proficiently handle tasks such as QR

code recognition and decoding, ApriTags for precise

localization and tracking, and various forms of facial and

ocular recognition, enabling applications in fields as diverse

as robotics, automation, and surveillance. Additionally,
OpenMV excels in iris detection, allowing for biometric

applications and enhanced security measures [1].

B. MobileNetV2

MobileNetV2, purpose-built for efficient deep learning

inference on mobile and embedded platforms, represents a

cutting-edge neural network architecture. It builds upon the

original MobileNet architecture by prioritizing resource

efficiency while maintaining high performance. The key

innovation lies in its use of depthwise separable convolutions,
a combination of depthwise and pointwise convolutions that

dramatically reduces parameters and computations while

retaining the ability to capture complex features.

For the regular convolutions using input

��: ℎ���ℎ	�
 ���	ℎ�
 ��	ℎ�, implement filter kernel � ∈

�� � � � �� � �� and giving output result

��: ℎ���ℎ	�
 ���	ℎ�
 ��	ℎ� and having computational

cost:

 ℎ���ℎ	� . ���	ℎ� . ��	ℎ� . ��	ℎ� . � . � (1)

while for depthwise separable convolution, the computational

cost is:

 ℎ���ℎ	� . ���	ℎ� . ��	ℎ���� � ��	ℎ�� (2)

The concept of inverted residuals enhances representation

without inflating the model size. Furthermore, it balances

computational efficiency and expressive power through

linear bottlenecks, strategically applying nonlinear

activations only where needed. MobileNetV2 offers

architectural flexibility through width and resolution
multipliers, enabling customization of model size and

computational costs. This architecture finds applications in

mobile and edge computing [34]. Depthwise separable

convolutions, a combination of depthwise and pointwise

convolutions, characterize the convolutional block. These

significantly reduce model parameters and computational

complexity while preserving the ability to capture intricate

features. It also incorporates the concept of inverted

residuals to improve feature representation without

increasing the overall model size. Additionally, the block

balances computational efficiency and expressive power

through linear bottlenecks, applying nonlinear activations
judiciously. Fig. 2 below shows the mobilenetV2

convolutional block in detail.

1020

Fig. 2 MobileNetV2 Convolutional Block

The significance of MobileNetV2 lies in its capability to

deploy advanced computer vision models on resource-

constrained devices. It adapts seamlessly to various tasks,
including object recognition, semantic segmentation, and

image classification, consistently delivering competitive

accuracy within stringent resource constraints. It underscores

the critical role of efficient neural network architecture in

extending the boundaries of deep learning to edge devices,

making it an indispensable tool for real-time on-device AI

applications.

C. DenseNet-169

DenseNet-169, a highly regarded convolutional neural

network (CNN) architecture renowned for its exceptional
performance in tasks such as image classification and feature

extraction, is a notable member of the DenseNet family. Its

dense connectivity patterns set it apart, enabling

unprecedented information transmission rates.

In contrast to conventional CNNs, where each layer

receives input solely from the previous layer, DenseNet-169

fosters feature reuse by tightly connecting each layer to all

subsequent levels. This innovation accelerates the training

process and significantly reduces the number of parameters

compared to networks of similar depth, thereby enhancing
model efficiency. DenseNet-169 incorporates bottleneck

layers and transition blocks to streamline the model further

while preserving or improving accuracy, making it the

preferred choice for precision-critical applications like

computer vision, object detection, and image segmentation.

Fig. 3 below shows the DenseNet-169 Architecture model and

the comparison with another popular DenseNet model.

Fig. 3 DenseNet-169 Compared to other DenseNet Layer Structure

Networks consist of � layers, in each implement ���. �

nonlinear transformation, which � is the layer indexes.

Assumed that the output of the � ! layer is
� , will give the

layer transition:

� " ℎ��
�#$� (3)

ResNet, on the other hand, will bypass the non-linear

transformation:

� " ℎ��
�#$� �
�#$ (4)

The densenet will improve information flow from layer to
layer using direct connection to all layers, where lth layer

handles all feature maps from all previous layer x0,…, xl-1:

� " ℎ��%
&,
$, … ,
�#$)� �
�#$ (5)

where %
&,
$, … ,
�#$) is the combination of feature maps

from layers 0, … , � + 1

The figure below shows the Layers of DenseNet-169

compared to other DenseNet pre-trained models. The impact

of DenseNet-169 extends beyond image classification,

finding utility in diverse fields such as medical image analysis,

where it has demonstrated advantages in tasks like organ

segmentation and disease detection. The model converges

faster and achieves superior performance thanks to its

architectural features that encourage feature reuse, mitigate

the vanishing gradient problem, and facilitate superior

1021

gradient flow during training. While DenseNet-169 remains a

remarkable architectural achievement, it is essential to

acknowledge that deep learning has continued to evolve.

Researchers are now exploring novel architectural concepts,

regularization techniques, and optimization methods to push

the boundaries of model effectiveness and performance [35],

[36], [37]. A comparative study of various CNN architectures,

including DenseNet, ResNet, Inception, and InceptionResNet,

found that the DenseNet architecture outperformed the others

with an impressive accuracy of 98.76% [38].

D. Face Expression and Face Recognition

The data consists of facial images taken using an OpenMV

device with Haarcascade as a method for face detection. 1560

images comprised three categories: happy, sad, and neutral.

Each label has 500 facial images with a .jpg extension as

training data and 150 with a .jpg extension as testing data.

Tests were carried out in eight scenarios: location

(indoor/outdoor), lighting intensity, and the distance between
the camera and the target's face. Four labels/classes were used

for face recognition; each label consisted of 500 face images

with the .jpg extension as training data, and 10 face images

with the .jpg extension as test data. The same scenario is also

used for face recognition experiments. Image augmentation

used for the datasets is random contrast and random rotation.

Table I below shows scenarios for the experiments and Fig. 4

below shows some image examples in the face expression and

face recognition primary dataset.

TABLE I

EIGHT DIFFERENT SCENARIOS FOR FACE EXPRESSION AND RECOGNITION

SYSTEM

No
Scenarios

Environment Lightness Distance

1 Indoor 30 Lux 30 cm
2 Indoor 30 Lux 100 cm

3 Indoor 100 Lux 30 cm
4 Indoor 100 Lux 100 cm
5 Outdoor 150 Lux 30 cm
6 Outdoor 150 Lux 100 cm
7 Outdoor 250 Lux 30 cm
8 Outdoor 150 Lux 100 cm

E. Object Detection and Counting Using HaarCascade and

MobileNetV2

Detecting and counting objects was a central focus of this

experiment, involving applying different methods and

datasets. The first method, Haarcascade, utilized primary and

secondary research data. Primary data comprised digital

images captured using the camera module of the openMV
device, encompassing various locations such as the campus

and laboratory. In contrast, secondary data was derived from

images taken with cellphone cameras, DSLRs, and the Penn-

Fudan dataset. The secondary dataset assessed detection

effectiveness, particularly for specific human body parts. The

study categorized three distinct human body part datasets for

detection purposes:

Fig. 4 Image Sample on Primary Dataset Created

 Images encompass the entire human body, from feet to

head.

 Images focus on the upper human body, from the waist
to the head.

 Images concentrate on the lower human body, ranging

from the feet to the waist.

After selecting the most influential dataset, the human body

component dataset was employed for the human object

detection process. The data underwent initial processing by

converting RGB colors to grayscale. Subsequently, it

progressed to classification using the Haar Cascade Classifier,

involving accuracy assessment and cumulative evaluation of

test results with consistent labeling. Once the grayscale

conversion was accomplished, a cascade classifier was

employed for image data processing. This classifier generated
multiple weak classifiers, typically stored at nodes. These

weak classifiers were combined into a filter chain to construct

a robust classifier that recognizes the trained objects. Each

filter possessed a dynamic threshold, facilitating the

estimation of its weight and placement in the classification

process. If any filter failed to determine that a particular

component did not match the trained object, the object was
classified as a non-object. The generic XML file containing

these filters proved instrumental in identifying human objects

within the system.

The Haar cascade classifier computed results based on

feature extraction outcomes, such as edges, lines, or square

features. The filters trained in the earlier stages were utilized

to ascertain the Haar-cascade detected area, utilizing the

image integral. After classification completion, tests were

conducted, focusing on two primary aspects: achieving the

most accurate detection results in human object detection

trials based on human body parts, using OpenCV, and

assessing detection outcomes according to the type of human
body parts, using training data stored in the XML file.

Additionally, training and testing processes were carried out

using openMV Cam. The dataset is obtained from CIFAR-

1022

100, and only some classes are taken. Images were taken with

complex background and plain background images.

F. Depth Object Estimation

In the initial stage, after separating the video from the

image input into the system, the input data is resized with

dimensions of 640x480 to fit the size of the dataset used,

which is dimensions of 640x480. The model will be loaded
after the input image has been divided into numerous frames,

and it will then be analyzed to determine an object's depth.

This system uses a pre-trained model from Alhashim et al.

[30], which was developed using the NYU v2 dataset and the

DenseNet-169 architectural encoder.

III. RESULTS AND DISCUSSION

A. Face Expression Recognition using CNN

Finding optimal hyperparameters (hyperparameter tuning

or hypertuning) is needed to get a model with maximum

performance. Hypertuning helps improve performance and

reduce model complexity by removing unnecessary

parameters. Table II below shows several experiments using
different hyperparameters, epochs, and learning rates. In the

first experiment, model training for machine learning used

epochs of 10 with a learning rate 0.001. In the first experiment,

the model learned image data on training data of 0.99 (99%)

and showed a learning error (loss) on training data of 0.0415,

while the error on data validation was 0.1216.

TABLE II

 HYPERTUNING EXPERIMENT RESULT

No. Epoch Learning Rate
Accuracy Loss

Gap Training - Validation
Training Validation Training Validation

1. 10 0.001 0.9992 0.9767 0.0415 0.1216 0.0801
2. 10 0.0001 0.9350 0.8867 0.2932 0.3487 0.0555
3. 10 0.0005 0.9883 0.9700 0.0898 0.1454 0.0556
4. 30 0.001 1.0000 0.9600 0.0092 0.0900 0.0808
5. 30 0.0001 0.9858 0.9400 0.1137 0.1966 0.0829
6. 30 0.0005 1.0000 0.9533 0.0177 0.1035 0.0858
7. 50 0.001 1.0000 0.9667 0.0037 0.0756 0.0719
8. 50 0.0001 0.9992 0.1391 0.0547 0.9567 0.9002

9. 50 0.0005 1.0000 0.9667 0.0078 0.0808 0.0703

Fig. 5 below shows a graph of good Accuracy and Error

identified by training loss and validation loss, which
decreases to a point of stability with a minimum gap between

the two final loss values so that experiment number 2 is the

best result of the 9 experiments that have been carried out with

a gap value of 0.0555. Table III below shows the results of the

hypertuning experiment on MobileNetV2. Experiments were

carried out using differences in epochs. A good model is

identified by loss training and validation, which decreases to

a point of stability with a minimal gap between the two final

loss values. The loss of the model is almost always lower on

the training dataset than on the validation dataset, which

means there must be some gap between the learning curve loss

between training and validation. This gap is referred to as the
"generalization gap". The test results in Table III for

MobileNetV2 show that with the addition of layers, the best

model uses epoch 30 with a gap value of 0.0702.
Fig. 5 Training and Validation Accuracy and Loss Experiment Results for

Face Expression Recognition

TABLE III

MOBILENETV2 EXPERIMENT RESULT WITH DIFFERENT EPOCH TRAINING

No Epoch
Training Validation

Generalization Gap Time
Loss Accuracy Loss Accuracy

1. 10 0.9462 0.5533 0.8635 0.6087 0.0827 3min 16s
2. 30 0.0083 1 0.0785 0.9767 0.0702 5min 85s

3. 50 0.003 1 0.0755 0.9733 0.0725 17min 19s

Tests were carried out on facial expressions using the CNN

models, which have been converted and implemented on

OpenMV Cam H7 Plus, to determine whether the model can

run when performing classification using machine vision as

shown on the Fig. 6 below. An example of the results of

testing facial expressions using the CNN method can be seen

in Figure 6. In the pre-trained model used, 8 tests were also

carried out, of which 4 were carried out indoors, and the rest

were carried out outdoors where each test had a lighting

parameter (in LUX units) and the distance between the

camera and the correspondent (in CM / M units). The testing

results for all scenarios can be seen in Table IV, where the

values for accuracy, precision, recall, and F1 Score displayed

1023

are the average of the values obtained for happy, neutral, and

sad expressions.

Fig. 6 Face Expression Experiment Result using OpenMV

There were 4 indoor and outdoor experiments where each

test had a lighting parameter (in LUX units) and the distance

between the camera and the correspondent (in CM / M units).

The testing results for all scenarios can be seen in Table IV,

where the values for accuracy, precision, recall, and F1 Score

displayed are the average of the values obtained for happy,

neutral, and sad expressions. From the results of Table IV

below, the highest accuracy value is in the 6th scenario

(outdoor environment, 150 Lux, and 100cm distance)
achieving 72% classification accuracy. These results show

that the model used can work with good accuracy on the

OpenMV camera with computational costs that can also be

accommodated well. The running time for each frame using

this model is around 0.3 seconds on average.

TABLE IV

ACCURACY, PRECISION, RECALL, AND F-1 SCORE FOR 8 DIFFERENT

SCENARIOS

Scenario Accuracy Precision Recall F-1 Score

1 0.60 0.40 0.51 0.39
2 0.62 0.43 0.61 0.39
3 0.62 0.43 0.50 0.42
4 0.62 0.43 0.45 0.36
5 0.57 0.36 0.49 0.35
6 0.72 0.58 0.75 0.55

7 0.54 0.32 0.31 0.26
8 0.46 0.18 0.12 0

B. Face Recognition Using CNN

To get a model with maximum performance, the process of

finding optimal hyperparameters (hyperparameter tuning or

hypertuning) is needed in machine learning. Hypertuning

helps improve performance and reduce model complexity by

removing unnecessary parameters. Table V below shows

some experiments using different hypertuning parameters.

TABLE V

HYPERTUNING EXPERIMENT TABLE

No. Epoch
Learning

Rate

Accuracy Loss
Gap Train – Val

Training Validation Training Validation

1 10 0.001 1.0000 0.8500 0.0016 0.6082 0.6066
2 10 0.0005 1.0000 0.8000 0.0084 0.4512 0.4428
3 30 0.001 1.0000 0.8750 1.6517e-04 0.3897 0.389535
4 30 0.0005 1.0000 0.8750 0.0014 0.4855 0.4841
5 50 0.001 1.0000 0.8750 1.7187e-04 0.4121 0.411928

6 50 0.0005 1.0000 0.8750 0.0011 0.4376 0.4365
7 100 0.001 1.0000 0.9250 1.0895e-04 0.4137 0.413591
8 100 0.0005 1.0000 0.8750 4.0342e-04 0.3550 0.354597

A good model is identified by training loss and validation

loss, which decreases to a point of stability with a minimum

gap between the two final loss values so that experiment

number 7 is the best result of the 8 experiments that have been

carried out with a gap value of 0.413. The experiment results

on Fig. 7 show excellent recognition, achieving 92.5%

accuracy at around 0.354 seconds for each frame process.

These results show that the model used can work with

extremely good accuracy on the OpenMV camera.

C. Depth Object Estimation using CNN

Tests were carried out to find out whether the system

worked properly or not when detecting the depth of objects in

indoor and outdoor conditions with different lighting. The

system's output is in the form of video with object depth

detection, where the closer the object is detected, the darker it

will be, and the deeper the object is detected, the brighter it

will be. In the accuracy test, two frames are taken from each

system output with different conditions and lighting, and each

frame is given a bounding box randomly

Fig. 7 Training and Validation Accuracy and Loss Experiment Results for

Face Recognition

Then, an assessment is made of whether the actual depth

detection is appropriate. Another test was carried out to

1024

determine how fast the system performs inference processing

for each entered frame. Some examples of experimental

results of object depth estimation accuracy can be seen in

Table VI.

TABLE VI

OBJECT DEPTH ESTIMATION ACCURACY EXAMPLE

No. Experiment images
Depth detection

Correct Incorrect

1 Indoor image with appropriate lighting 28 2

2 Indoor image with dim lighting 29 1

3 Outdoor image with appropriate lighting 19 11

From all the experiments, the calculation of the results of
the appropriate depth detection accuracy for each condition

was carried out. The first condition produces an accuracy of

96.6%, while for the second and third condition produces an

accuracy of 73.3 and 63.3%. In addition to accuracy

calculations, tests were also carried out to find out how fast

the system was to process each frame on the DensNet 169

model, and the results obtained were:

 In the object depth detection process, every frame takes

1.4 seconds for every frame or 0.6 FPS in every frame.

 From the input process to combining frames or output,

it takes 2.08 seconds or 0.5 FPS.

D. Object Detection and Counting using CNN and Haar

Cascade

The object detection and calculation system were tested

using the CNN method on 13 images that had been taken with

OpenMV, where the 13 images consisted of 12 images with

slightly complex background conditions and one image with

a plain background. These images are taken under different

conditions, for example, the number of more than one object,

the distance between objects that are close together and

distant, and background conditions that are plain and not plain.
An example of the system testing results using the CNN

method can be seen in Table VII.

1025

TABLE VII

SYSTEM EXPERIMENT RESULTS PREVIEWS

No. Experiment images
Detection

Real count result
Count detection

result Correct Incorrect

1 2 1 Cup : 1

Person : 2

Person : 2

2

1 1 Chair : 1

Bowl : 1

Chair : 1

3

1 1 Cup : 1

Person : 1

Person : 1

Based on these tests, it is difficult for OpenMV to detect

objects in images with busy backgrounds, with the result that

the number of objects detected is 13 out of 25 bounding boxes.

Moreover, if the number of correct classifications is

calculated based on the correctly detected objects, then of the

13 detected objects, it can be classified correctly. Then, for

counting detected objects, the correct count is 7 of 23 object

counts. The overall system test results can be seen in Table

VIII below.

Based on Table VIII below, it was discovered that data with

plain backgrounds had higher precision and accuracy values

than data with complex backgrounds. Contrarily, complex
backdrops performed better in categorization accuracy, recall,

and precision than simple backgrounds. This is due to the

identified item needing to be completely accurate; therefore,

some background information is also classified in addition to

classifying the object. In addition, the system uses the Otsu

segmentation method and cannot alter image data.

In addition to using the CNN method, a human object

detection and calculation system was also developed using the

Haar Cascade method. During the system testing process,

various conditions and object positions, such as the effect of

the distance between the object and the camera, the effect of

the difference in color between the object and the background,
the effect of object conditions, and the effect of lighting, were

all taken into consideration.

TABLE VIII

COMPARISON OF PLAIN BACKGROUND AND COMPLEX BACKGROUND TEST

RESULTS

Detection Classification

Prec Rec Acc Prec Rec Acc Accuracy

Non green

screen

background

0.53 0.66 0.42 0.94 0.97 0.99 0.538

Green

screen

Background

0.55 0.46 0.44 0.92 0.82 0.97 0.687

The experiment seeks to evaluate the effectiveness of

human object detection under various image processing

scenarios when utilizing the OpenMV tool. According to the

tests, the maximum number of items that OpenMV can detect

is four meters away from the camera, and the separation

between the human object and the background has no bearing

on the detection outcomes. Due to the limits of the Haar
Cascade method, which can only detect stark color contrasts

between objects and their surroundings, objects that are

identical or nearly equal to the backdrop color are likely not

detected by the system.

The system can recognize and calculate human things by

recognizing upper body components. So that even if other

things cover the lower body, the system can still identify and

calculate human objects. The device can also detect people in

1026

three different lighting scenarios: bright inside lighting, bright

lighting near a window, and bright lighting far from a window.

In contrast, in strong light outdoors, the system cannot

recognize and calculate human items. Table IX below

displays the total test outcomes. The system can detect and

calculate human objects by detecting upper body parts. So that

the system can still detect and calculate human objects even

if other objects cover the lower body. In addition, the system

can detect human objects in three different light conditions:

bright light indoors, bright light near a window, and bright
light far from a window. Meanwhile, the system fails to detect

and calculate human objects outdoors in bright light

conditions.

TABLE IX

EXTERNAL CONDITION AFFECTION ON ACCURACY

No. Experiment
Image

Number

Correctly

Classified

1 Distance affection 10 6

2
Object color
difference

10 9

3 Object Condition 10 6
4 Lighting 4 3
Total 34 24

Accuracy (correctly classified: image

amount)
71%

In testing the detection and calculation of human objects

using the Haar Cascade method with OpenMV processing, the

correct percentage was obtained at 71%, while using CNN,

the correct percentage was obtained at 66%. Test results found

that the system tends not to detect and count objects with a

low color difference or contrast with the background color.

The system also fails to detect and count objects if other
objects beyond the chest area block the human object. The test

results show that implementing the haarcascade method in

OpenMV is less accurate for detecting and calculating human

objects in natural conditions. This is because the Haar

Cascade algorithm works, which mainly uses the calculation

of the difference in black and white pixel values in the image.

So, optimal environmental conditions are needed to detect and

count objects well. The optimal conditions required are:
 The distance between human objects and the camera is not

more than 3 meters and not less than 1 meter,
 The distance between human objects is not too close,
 The objects do not overlap,
 Color the human object contrasts with the background color

so that the object's body parts are precise,

 The object's body in the image is not cut off,
 The upper part of the human object's body, from the waist to

the head, is not obstructed by other objects beyond the chest,
 The human object's body does not face sideways from the

camera's direction.

Apart from that, based on the results of tests that have been

carried out, the percentage rate of correct detection and

calculation of human objects on OpenMV devices is lower

than using OpenCV on PC devices. OpenMV devices have

lower specifications than PC devices, using a 32-bit ARM

cortex processor. The lower computing capability of

OpenMV devices compared to PC devices is reinforced by the

condition that OpenMV devices only support Micropython
without OS (Operation System) support. With these

specifications, the OpenMV device can only process images

with a maximum resolution of 240p. If the OpenMV device is

given an image with a resolution above 240p, OpenMV will

crash. Apart from that, the camera module of the OpenMV

device is only capable of capturing images with a half-quarter

VGA resolution of 240x160 pixels, which needs attention.

The images produced by OpenCV devices are less sharp than

those produced by smartphones or DSLR cameras. Inaccuracy

in positioning the camera and adjusting the object's distance

from the camera will affect the results of object detection and

calculation. The experiment results from Table IX shows

good classification, achieving 71% accuracy on HaarCascade
and 66% accuracy on CNN, giving a testing time of around

0.4 second per frame. These results show that the model used

can work with good accuracy on the OpenMV camera but

with some limitations on the time process.

IV. CONCLUSION

The research proposed in this study is an experimental

study using pre-trained Deep Learning models on the
OpenMV Camera H7 device. As has been written, this camera

focuses on developing systems that implement computer

vision and wireless sensor networks. The pre-training used in

this research is MobileNetV2 and DenseNet-169. Meanwhile,

several computer vision implementations being tested include

Face Recognition, Facial Expression Recognition, Detection

and Calculation of the Number of Objects, and Object Depth

Estimation. DenseNet-169 is used in Object Depth Estimation,

while the others use MobileNetV2. This research tries to train

and validate using selected primary and secondary data, with

1500 image data. The computing time required is around 5-7

minutes for every 10 epochs. The hyper tuning test results on
facial expressions, as shown in Table II, give optimum results

in the 10 epoch 0.001 learning rate with 97.67% validation

accuracy, and the face recognition shown in Table V shows

optimum results in the 100 epoch 0.001 learning rate with

92.5% validation accuracy. This test shows that in facial

expression recognition, overfitting of the training process

occurs more quickly, and in the range of 10 epochs, it is

recommended to stop the training process. Meanwhile, in face

recognition, overfitting conditions occur around 100 epochs,

so it is recommended to stop the training process at that epoch

with a recommended learning rate of 0.001.
For the face expression recognition result, as shown in

Table IV, the highest accuracy value for the best hypertuning

parameter applied is in the sixth scenario (outdoor

environment, 150 Lux, and 100cm distance), achieving 72%

classification accuracy and running time for each frame using

this model is around 0.3 seconds on average. The experiment

on the face recognition results shows excellent recognition,

achieving 92.5% accuracy at around 0.354 seconds for each

frame process. The experiment on depth object recognition

using DenseNet169 achieved 96,6% accuracy in an indoor

environment with proper lighting conditions, with a testing
computation cost of around 1.4 seconds per frame. The

experiment results from object detection and counting on

Table IX show good classification, achieving 71% accuracy

on HaarCascade and 66% on CNN and giving a testing time

of around 0.4 seconds per frame. These results show that the

model can work with reasonable accuracy on the OpenMV

camera but with some limitations on the time process. From

the results above, for several implementations such as Face

Expression Recognition and Face Recognition, OpenMV

1027

Camera is still applicable because the processing time is fast

enough. It is quite suitable for Depth Object Estimation,

Object Detection, and Counting in terms of accuracy.

However, implementing it on an OpenMV Camera needs to

be considered because the processing time of each frame is

too high.

REFERENCES

[1] I. Abdelkader, Y. El-Sonbaty, and M. El-Habrouk, “Openmv: A

Python powered, extensible machine vision camera.” 2017.

[2] A. Aqthobilrobbany, A. N. Handayani, D. Lestari, Muladi, R. A.

Asmara, and O. Fukuda, “HSV Based Robot Boat Navigation System,”

2020 International Conference on Computer Engineering, Network,

and Intelligent Multimedia (CENIM), Nov. 2020,

doi:10.1109/cenim51130.2020.9297915.

[3] R. A. Asmara, B. Syahputro, D. Supriyanto, and A. N. Handayani,

“Prediction of Traffic Density Using YOLO Object Detection and

Implemented in Raspberry Pi 3b + and Intel NCS 2,” 2020 4th

International Conference on Vocational Education and Training

(ICOVET), Sep. 2020, doi: 10.1109/icovet50258.2020.9230145.

[4] A. N. Handayani, D. Lestari, Muladi, W. Ahmad, R. A. Asmara, and

O. Fukuda, “Cognitive Function Tools/Robot Design for Elderly

Using Image-Processing,” 2022 International Conference on Electrical

and Information Technology (IEIT), Sep. 2022,

doi:10.1109/ieit56384.2022.9967856.

[5] R. A. Asmara et al., “Face Recognition Using ArcFace and FaceNet in

Google Cloud Platform For Attendance System Mobile Application,”

Proceedings of the 2022 Annual Technology, Applied Science and

Engineering Conference (ATASEC 2022), pp. 134–144, 2022,

doi:10.2991/978-94-6463-106-7_13.

[6] R. A. Asmara, I. Siradjuddin, and R. D. Romadhona, “Android based

Wireless Sensor Network (WSN) mobile application on humidity and

temperature environmental monitor using CC2650 sensor tag,” IOP

Conference Series: Materials Science and Engineering, vol. 1073, no.

1, p. 012046, Feb. 2021, doi: 10.1088/1757-899x/1073/1/012046.

[7] Rafi Hanif Rahmadhani, Imam Fahrur Rozi, and Rosa Andrie Asmara,

“Live K-Means Clustering Pada Wireless Sensor Network

Menggunakan Google Maps API,” in Seminar Informatika Aplikatif

Polinema (SIAP) –2021, M. A. Hendrawan, H. E. Dien, S. E. Sukmana,

and M. Z. Abdullah, Eds., Malang: Information Technology

Department, State Polytechnic of Malang, Nov. 2021, pp. 46–52.

[8] O.-A. Schipor and A. Aiordachioae, “Engineering Details of a

Smartglasses Application for Users with Visual Impairments,” 2020

International Conference on Development and Application Systems

(DAS), May 2020, doi: 10.1109/das49615.2020.9108920.

[9] B. Niu, Z. Gao, and B. Guo, “Facial Expression Recognition with LBP

and ORB Features,” Computational Intelligence and Neuroscience,

vol. 2021, pp. 1–10, Jan. 2021, doi: 10.1155/2021/8828245.

[10] S.-H. Sung et al., “A Study on Facial Expression Change Detection

Using Machine Learning Methods with Feature Selection Technique,”

Mathematics, vol. 9, no. 17, p. 2062, Aug. 2021,

doi:10.3390/math9172062.

[11] I. M. Revina and W. R. S. Emmanuel, “A Survey on Human Face

Expression Recognition Techniques,” Journal of King Saud

University - Computer and Information Sciences, vol. 33, no. 6, pp.

619–628, Jul. 2021, doi: 10.1016/j.jksuci.2018.09.002.

[12] M. Mentari, R. Andrie Asmara, K. Arai, and H. Sakti Oktafiansyah,

“Detecting Objects Using Haar Cascade for Human Counting

Implemented in OpenMV,” Register, vol. 9, no. 2, pp. 122–133, Sep.

2023, doi: 10.26594/register.v9i2.3175.

[13] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural

Networks for Mobile Vision Applications,” Apr. 2017.

[14] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny

Images,” pp. 32–33, 2009, [Online]. Available:

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

[15] M. I. U. Haque and D. Valles, “A Facial Expression Recognition

Approach Using DCNN for Autistic Children to Identify Emotions,”

2018 IEEE 9th Annual Information Technology, Electronics and

Mobile Communication Conference (IEMCON), Nov. 2018,

doi:10.1109/iemcon.2018.8614802.

[16] M. A. H. Akhand, S. Roy, N. Siddique, M. A. S. Kamal, and T.

Shimamura, “Facial Emotion Recognition Using Transfer Learning in

the Deep CNN,” Electronics, vol. 10, no. 9, p. 1036, Apr. 2021,

doi:10.3390/electronics10091036.

[17] E. Pranav, S. Kamal, C. Satheesh Chandran, and M. H. Supriya,

“Facial Emotion Recognition Using Deep Convolutional Neural

Network,” 2020 6th International Conference on Advanced

Computing and Communication Systems (ICACCS), Mar. 2020,

doi:10.1109/icaccs48705.2020.9074302.

[18] W. H. Abdulsalam, R. S. Alhamdani, and M. N. Abdullah, “Facial

Emotion Recognition from Videos Using Deep Convolutional Neural

Networks,” International Journal of Machine Learning and Computing,

vol. 9, no. 1, pp. 14–19, 2019, doi: 10.18178/ijmlc.2019.9.1.759.

[19] P. Mohan, A. J. Paul, and A. Chirania, “A Tiny CNN Architecture for

Medical Face Mask Detection for Resource-Constrained Endpoints,”

Innovations in Electrical and Electronic Engineering, pp. 657–670,

2021, doi: 10.1007/978-981-16-0749-3_52.

[20] S. Kakarla, P. Gangula, M. S. Rahul, C. S. C. Singh, and T. H. Sarma,

“Smart Attendance Management System Based on Face Recognition

Using CNN,” 2020 IEEE-HYDCON, Sep. 2020,

doi:10.1109/hydcon48903.2020.9242847.

[21] S. S. Rajput and K. V. Arya, “CNN Classifier based Low-resolution

Face Recognition Algorithm,” 2020 International Conference on

Emerging Frontiers in Electrical and Electronic Technologies

(ICEFEET), Jul. 2020, doi: 10.1109/icefeet49149.2020.9187001.

[22] M. Afif, R. Ayachi, E. Pissaloux, Y. Said, and M. Atri, “Indoor objects

detection and recognition for an ICT mobility assistance of visually

impaired people,” Multimedia Tools and Applications, vol. 79, no. 41–

42, pp. 31645–31662, Aug. 2020, doi: 10.1007/s11042-020-09662-3.

[23] M. H. Romario, E. Ihsanto, and T. M. Kadarina, “Sistem Hitung dan

Klasifikasi Objek dengan Metode Convolutional Neural Network,”

Jurnal Teknologi Elektro, vol. 11, no. 2, p. 108, Jun. 2020,

doi:10.22441/jte.2020.v11i2.007.

[24] S. Aich and I. Stavness, “Global Sum Pooling: A Generalization Trick

for Object Counting with Small Datasets of Large Images,” IEEE

Computer Society Conference on Computer Vision and Pattern

Recognition Workshops, vol. 2019-June, pp. 73–82, May 2018,

Accessed: May 18, 2023. [Online]. Available:

https://arxiv.org/abs/1805.11123v2

[25] X. Tan, C. Tao, T. Ren, J. Tang, and G. Wu, “Crowd Counting via

Multi-layer Regression,” Proceedings of the 27th ACM International

Conference on Multimedia, Oct. 2019, doi: 10.1145/3343031.3350914.

[26] X. Chen, Y. Bin, N. Sang, and C. Gao, “Scale Pyramid Network for

Crowd Counting,” 2019 IEEE Winter Conference on Applications of

Computer Vision (WACV), Jan. 2019, doi: 10.1109/wacv.2019.00211.

[27] W. Kong, H. Li, X. Zhang, and G. Zhao, “A multi-context

representation approach with multi-task learning for object counting,”

Knowledge-Based Systems, vol. 197, p. 105927, Jun. 2020,

doi:10.1016/j.knosys.2020.105927.

[28] K. Dijkstra, J. van de Loosdrecht, W. A. Atsma, L. R. B. Schomaker,

and M. A. Wiering, “CentroidNetV2: A hybrid deep neural network

for small-object segmentation and counting,” Neurocomputing, vol.

423, pp. 490–505, Jan. 2021, doi: 10.1016/j.neucom.2020.10.075.

[29] H. Li, W. Kong, and S. Zhang, “Deeply scale aggregation network for

object counting,” Knowledge-Based Systems, vol. 210, p. 106485,

Dec. 2020, doi: 10.1016/j.knosys.2020.106485.

[30] K. Swaraja et al., “CNN Based Monocular Depth Estimation,” E3S

Web of Conferences, vol. 309, p. 01070, 2021,

doi:10.1051/e3sconf/202130901070.

[31] S. J. Lee, H. Choi, and S. S. Hwang, “Real-time Depth Estimation

Using Recurrent CNN with Sparse Depth Cues for SLAM System,”

International Journal of Control, Automation and Systems, vol. 18, no.

1, pp. 206–216, Sep. 2019, doi: 10.1007/s12555-019-0350-8.

[32] Y. Sada, N. Soga, M. Shimoda, A. Jinguji, S. Sato, and H. Nakahara,

“Fast Monocular Depth Estimation on an FPGA,” 2020 IEEE

International Parallel and Distributed Processing Symposium

Workshops (IPDPSW), May 2020,

doi:10.1109/ipdpsw50202.2020.00032.

[33] I. A. Kaust and P. Wonka, “High Quality Monocular Depth Estimation

via Transfer Learning,” Dec. 2018, Accessed: May 18, 2023. [Online].

Available: https://arxiv.org/abs/1812.11941v2

[34] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,

“MobileNetV2: Inverted Residuals and Linear Bottlenecks,” 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition,

Jun. 2018, doi: 10.1109/cvpr.2018.00474.

[35] P. Kumar and A. Shankar Hati, “Convolutional neural network with

batch normalisation for fault detection in squirrel cage induction

motor,” IET Electric Power Applications, vol. 15, no. 1, pp. 39–50,

Dec. 2020, doi: 10.1049/elp2.12005.

1028

[36] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,

“Densely Connected Convolutional Networks,” 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Jul.

2017, doi: 10.1109/cvpr.2017.243.

[37] I. Kouretas and V. Paliouras, “Simplified Hardware Implementation

of the Softmax Activation Function,” 2019 8th International

Conference on Modern Circuits and Systems Technologies

(MOCAST), May 2019, doi: 10.1109/mocast.2019.8741677.

[38] Q. Zhang, Y. Liu, C. Gong, Y. Chen, and H. Yu, “Applications of

Deep Learning for Dense Scenes Analysis in Agriculture: A Review,”

Sensors, vol. 20, no. 5, p. 1520, Mar. 2020, doi: 10.3390/s20051520.

1029

