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Abstract—Agriculture faces challenges in achieving high-yield production while minimizing the use of chemicals. The excessive use of 

chemicals in agriculture poses many problems. Accurate disease diagnosis is crucial for effective plant disease detection and treatment. 

Automatic identification of plant diseases using computer vision techniques offers new and efficient approaches compared to traditional 

methods. Transformers, a type of deep learning model, have shown great promise in computer vision, but as the technology is still new, 

many vision transformer models struggle to identify diseases by examining the entire leaf. This paper aims to utilize the vision 

transformer model in analyzing and identifying common diseases that hinder the growth and development of plants through the plant 

leave images. Besides, it aims to improve the model's stability by focusing more on the entire leaf than individual parts and generalizing 

better results on leaves not in the image center. Added features such as Shift Patch Tokenization, Locality Self Attention, and Positional 

Encoding help focus on the whole leaf. The final test accuracy obtained is 89.58%, with relatively slight variances in precision, accuracy, 

and F1 score across classes, as well as satisfactory model robustness towards changes in leaf orientation and position within the image. 

The model's effectiveness shows the vision transformer's potential for automated plant disease diagnosis, which can help farmers take 

timely measures to prevent losses and ensure food security. 
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I. INTRODUCTION

Modern agriculture faces challenges like excessive 
chemicals to be used for high yield and pest control, which 
necessitates prompt and accurate disease diagnosis [1], [2]. 
Due to the industry's growth, traditional methods of 
diagnosing diseases based on farming expertise or 
professional advice are no longer sufficient. A novel approach 
involves automatic plant disease identification using machine 
vision techniques, where disease symptoms like changes in 
leaf shape, color, and texture provide crucial data [3], [4]. 
Differences in these characteristics within images can help 
classify and determine the disease afflicting the plant. 
Recently, transformer models in deep learning have shown 
remarkable results, surpassing convolutional neural networks 
(CNN) in many complex tasks, including computer vision. 
[5], [6]. They are more accurate, finely tuned, robust, and 
better at handling imperfections [7]. This paper uses the 
transformer model to analyze plant diseases, identifying 
common diseases that stress plants via leaf images [8]. 

Studies by [9], [10] and [11] employed visual transformers 
(ViT) to weed and crop classification using Unmanned Aerial 

Vehicles (UAV) images. Their application used the self-
attention mechanism on the transformer model. It showed 
promising performance, particularly in situations with fewer 
training samples. The Swin Transformer by [12] 
demonstrated reduced computational complexity and 
increased accuracy but required large-scale datasets. Hybrid 
models, combining CNNs with ViTs, proposed by [6] and 
[13], improved the model speed and reduced the complexity 
while maintaining the model's accuracy. 

Convolutional Neural Networks (CNN) models are the 
most widely used due to their suitability for real-time 
detection, albeit with lower accuracy than other models. 
Innovative CNN studies like [14] and [15] proposed different 
techniques to improve the performance of CNNs, including 
optimizing parameter count and computational efficiency and 
incorporating other methodologies like transformers. Another 
study by [16] focused on individual lesion examination for 
leaf disease identification, boosting accuracy but potentially 
losing some contextual information from the original images. 
Meanwhile, [17] and [18] used CNN to address false positives 
and class imbalances in tomato disease identification. 

You Only Look Once (YOLOv4) algorithm proposed by 
[19] and the multi-granularity feature extraction model based
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on ViT by [20] represent unique approaches that do not fit 
neatly into the previous categories, offering innovations in 
feature learning ability, detection procedure accuracy, and 
disease classification accuracy [21], [22]. In summary, 
ongoing research in plant disease identification using 
computer vision is dynamic, with different methodologies 
having their unique strengths and weaknesses, often 
influenced by the trade-offs between accuracy, complexity, 
and speed. 

II. MATERIAL AND METHOD 

A. Data Preprocessing 
Before training begins, the Keras Sequential model is used 

to preprocess and augment the training dataset. The purpose 
of this is to increase the diversity and size of the training 
dataset as well as to standardize the input data for the model. 
The Normalization layer scales input values to the range [-1, 
1], with a mean of 0 and a standard deviation of 1. This is 
achieved by subtracting the mean and dividing by the standard 
deviation of the dataset. The train dataset's mean and standard 
deviation are calculated using Keras's adapt () function. 
Normalization helps the model converge faster during 
training and prevents training optimization from getting stuck 
due to uneven distribution. 

The Resizing layer scales the images to have a fixed 
size.[23]. This is done because deep learning models like 
Vision Transformers require input size to be consistent. [24], 
[25]. The size chosen is typically based on what works best 
for the model architecture, computational efficiency, and the 
task at hand. Here, the resized image size was set to 72x72 for 
quicker computation. 

The following three layers introduce slight edits to the 
input images into the training dataset. This helps to increase 
the diversity of the data and reduces the model's dependency 
on the orientation of the objects in the images, making the 
model more robust to orientation changes in unseen data. The 
RandomFlip layer randomly flips the input images 
horizontally, the RandomRotation layer applies a small 
random rotation to the input images, whereas the 
RandomZoom layer applies a small zooming-in or zooming-
out effect to the input images. 

B. Model Construction and Evaluation 
The PlantVillage dataset was chosen from Kaggle to 

demonstrate the implementation of the proposed method. The 
PlantVillage dataset consisted of Tomato leaf images (16018 
images), Potato leaf images (2152 images), and Pepper leaf 
images (2475 images). The Tomato dataset was chosen for 
having the most images, though the number of images was 
reduced to 12239 for a faster training time. In Figure 1, data 
preprocessing was performed before training began. The 
training dataset was standardized via normalization and 
resizing. Then, it was augmented by randomly flipping, 
rotating, and zooming in or out on the images to promote 
dataset diversity and to increase model robustness to changes 
in leaf orientation. 

 
Fig. 1  Flowchart of Vision Transformer Model 

 
Firstly, a set of labeled leaf images is received from the 

Tomato dataset and then prepared by preprocessing the 
images to make them more accessible for the model, such as 
resizing the images to a smaller resolution. After configuring 
the model's hyperparameters, Shift Patch Tokenization will be 
implemented (this process will be further explained later), and 
then the patches will be visualized to ensure the process was 
implemented successfully.  

When it is completed, the patch encoding layer is employed 
to add positional information to the patches, while the locality 
self-attention module (the process would be explained later) 
is applied to add attention weights to local maximums, which 
helps the model learn the inter-token relations within the 
patches. Next, the Multi-Layer Perceptron (MLP) neural 
network, which is the basis for the model's machine learning 
process, is applied [26]. Finally, all the components are 
combined to form the Vision Transformer model. After 
compiling the code, it proceeds to train the model and 
evaluate its performance for its accuracy and loss across the 
training process. The results of the model are shown then. 

In Figure 2, the Shift Patch Tokenization starts with an 
image already preprocessed to fit the model’s image size 
requirements. Firstly, the image is shifted in the four diagonal 
directions as well as the four orthogonal directions (top left, 
top right, bottom left, bottom right, left, right, top, bottom), 
leaving empty space where the image was shifted from, before 
concatenating the four shifted images with the original image 
into arrays. Then, small image patches are extracted from the 
array of concatenated images before the spatial dimensions of 
the extracted patches are flattened into one-dimensional 
arrays for easier processing during model training, producing 
the tokens of the image. Finally, layer normalization is 
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performed on the tokens to translate the range of the token 
values to a range between 0 and 1. This aims to help the model 
reach convergence faster during training and help the model 
generalize better on unseen images. The tokens are then 
visualized to ensure the process was performed without issue.  
 

 
Fig. 2  Flowchart of Shift Patch Tokenization 

 
In Figure 3, the Locality Self Attention (LSA) module is a 

modified version of the regular self-attention module that is 
typically used in transformers. First, the module obtains the 
queries, keys, and values from the input tokens, which are the 
tokens of the patches that were extracted earlier during the 
patch encoding process. To explain what queries, keys, and 
values are: in general, for attention modules, a query 
represents the token of data currently being focused on during 
the calculation process, while keys represent all the tokens of 
data, and values represent the information held within the 
tokens of data. 

In Figure 4, each query is multiplied by each key to obtain 
an attention score consisting of an array of values representing 
relationships between tokens (a.k.a. inter-token relations). 
Multiplication is performed via dot product, which is the 
multiplication of two vector matrices to obtain a final product 
of a single number. Then, the attention score is scaled by 
hyperparameters known as temperature for controlling the 
randomness of the predictions and for sharper differences in 
attention score values, which helps in finding inter-token 
relations. The temperature can be adjusted by 
backpropagation during the learning process. However, when 
using self-attention, the query, key, and value come from one 
input source, which can cause the attention score to focus on 
intra-token relations (relationships between the values within 
the same token) rather than inter-token relations. To prevent 
this from affecting the attention score, a mask that multiplies 
zero on diagonal terms is used, thus removing them from 
consideration in calculating the attention score, as a diagonal 
term is created when a token is multiplied by itself.  

 

 
Fig. 3  Flowchart of Locality Self Attention Module 
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Fig. 4  Description for Query, Key and Value in Calculated in Attention Score 

 
After that, a SoftMax function is applied as an activation 

function to normalize the values within the attention score 
into probabilities ranging from 0 to 1. This final attention 
score is then multiplied with the input values via dot product 
to obtain the output of the self-attention module, which is then 
used to help the model learn the inter-token relations. The 
PositionalEncoding class starts by receiving the model 
dimensions (d_model) and the maximum sequence length 
(maximum_position_encoding) as input, as stated in Figure 5.  

 

 
Fig. 5  Flowchart of Positional Encoding Module 

 

It initializes a matrix of shape (1, 
maximum_position_encoding, d_model) with zeros, which 
will store the positional encoding information. The class 
calculates the angle (i / 10000^(2*d/d_model)) for each 
position (i) in the sequence and each dimension (d) in the model 
and stores these angles in a matrix called angle_rads. The sine 
function is applied to the even indices (2i) of angle_rads, and 
the cosine function is applied to the odd indices (2i+1) of 
angle_rads. The resulting matrix contains the positional 
encoding values, which are then assigned to the positional 
encoding matrix initialized earlier. This matrix is now the 
pos_encoding attribute of the PositionalEncoding class. 

When the PositionalEncoding layer is called, it takes the 
input tokens as input and adds the positional encoding matrix 
(pos_encoding) element-wise to these input tokens. The 
resulting tensor contains both the original input tokens and the 
positional information, which is then returned as the output of 
the PositionalEncoding layer. 

C. Dataset Training 
The dataset used for training the proposed model is the 

PlantVillage dataset (sources from Kaggle). Initially, it 
consisted of a total of 16012 images from the Tomato part of 
the dataset, with ten classes in total. All the images within the 
dataset have a size of 256x256 pixels. After deleting some 
images from the dataset to cut down on training time, the 
Tomato dataset was chosen, with 12239 images and ten 
classes, with 9791 training images and 2448 testing images. 

The dataset was first read in to initiate the training, and 
some preprocessing was used to prepare the training images. 
Only training data was preprocessed, whereas testing data 
remained untouched because the preprocessing methods are 
used to help the model learn better and more efficiently, thus 
reaching convergence faster. Having the testing data undergo 
the preprocessing is unnecessary as it would only slow down 
the testing process. The images were read in an 64x64-pixel 
RGB format, with a corresponding label to each image. The 
images and their labels were then inserted into their respective 
arrays. 

Then, the image array and the label array were each split 
into training and testing data: x_train and y_train being the 
training images and their respective labels, as well as x_test 
and y_test being the testing images and their respective labels 
as stated in Figure 6. The images were saved in 4-dimensional 
arrays, whereas the labels were saved in 1-dimensional arrays. 

 
Fig. 6  x_train shape, y_train shape and x_test shape, y_test shape 
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After that, the Shifted Patch Tokenization, Patch Encoder, 
and Positional Encoding modules were constructed. The 
Shifted Patch Tokenization module shifts the images by the 
size of half a patch in each of the four directions: left-up, left-
down, right-up, and right-down. (The Shift Patch 
Tokenization module does not create the patches but merely 
gives information on the size of the patches.) It does this by 
first cropping the images to the section opposing the intended 
shift direction, then creating black padding for the images to 
replace the cropped section, but towards the shift direction 
instead of opposing it. It then adds the information from the 
additional images to the original patches. 

On the other hand, the Patch Encoder creates the patches 
and then encodes the positional information to the patches 
relative to each other. Then, it calculates the positional data 
and adds it to the encoded patches, also known as the input 
tokens. Positional Encoding also adds spatial information in 
the form of sine and cosine angles to the input tokens created 
by the Patch Encoder module. 

Next, the transformer block was built. The Multi-Head 
Attention with LSA, and MLP modules were first built 
separately. Then, the modules were put together to create the 
transformer. The transformer block consists of 8 layers, with 
each layer being a preprocessing normalization layer, a Multi 
Head Attention with LSA module to calculate attention 
scores, a function to add the attention score to the encoded 
patches, another preprocessing normalization layer, an MLP 
module, then finally another function to add the classification 
tokens from the MLP to the encoded patches [27]. 

Finally, the rest of the model was built, and all of the 
components were compiled together for training. A 
WarmUpCosine module and an Adam optimizer module were 
created to help accelerate the learning process of the model. 
The model was then compiled together, with the Shift Patch 
Tokenization module being first, followed by the Patch 
Encoder, and then finally the transformer block with the 
WarmUpCosine and Adam optimizer modules incorporated 
into the block. The model was then trained to fit the training 
data, using 30 epochs to train the model, with a batch size of 
256 images per batch and a 90:10 validation split, with the 
10% split of the data used to validate the model after each 
training epoch. Two callback functions are used: one to record 
the time used for each epoch and another for early stopping to 
prevent overfitting. This model was trained for 19 epochs 
before the early stopping callback was activated to stop the 
training process. 

III. RESULT AND DISCUSSION 
In Figure 7, the final training accuracy of the model was 

95.03%, with the final validation accuracy being 74.77%. The 
training accuracy quickly raised from 38.74% to 85.15% 
within the first ten epochs before slowing down, whereas the 
validation accuracy raised from 63.36% to 85.40% within 
eight epochs before vacillating somewhat between 85% and 
90% for the rest of the training. 
 

 
Fig. 7  Model Accuracy 

 
In Figure 8, the final training loss of the model was 0.2236, 

with the final validation loss being 0.3500. The loss quickly 
dropped from 2.8832 to 0.7212 within the first 5 epochs 
before slowing down. On the other hand, the validation loss 
only dropped from 1.1317 to 0.5264 at around 5 epochs, then 
leveled off around 0.35 starting from the 10th epoch for the 
remainder of the training. 

 
Fig. 8  Model Loss 

 
In Figure 9, the final top-5 training accuracy of the model 

was 99.89%, with the final top-5 validation accuracy being 
99.79%. The top-5 training accuracy rose from 81.09% to 
98.47% within the first 5 epochs, then slowed down and 
leveled off around 99.80% at the 10th epoch until the end of 
the training. Meanwhile, the top-5 validation accuracy rose 
from 96.63% to 99.18% within 5 epochs, then slowed down 
and leveled off around 99.70% at the 8th epoch until the end 
of the training. 

After the training, a final test was done to evaluate the 
model on unseen data, as stated in Figure 10. The testing 
accuracy was 89.58%, which is fairly lower when compared 
to the training accuracy but still within an acceptable range, 
as it is close to the validation accuracy. Moreover, the testing 
top-5 accuracy was 98.61%, which means that the model is 
still reasonably accurate overall, with slight imperfections 
sometimes causing the correct classification to fall somewhat 
below the most likely class within the model. 
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Fig. 9 Top-5-Accuracy 

 
Fig. 10  Model Accuracy 

A. Accuracy Comparison with Other Models in Prior 

Research 
Table 1 shows that the accuracy score of the proposed 

vision transformer was significantly improved over the 
traditional vision transformer, as well as various models in 
prior research, such as the ones by [28] and [29]. 

TABLE I 
ACCURACY COMPARISON BETWEEN DIFFERENT CLASSIFICATION MODELS 

Study Classification Model Accuracy Score (%) 

This study Traditional Vision 
Transformer 

81.86 

This study Proposed Vision 
Transformer 

90.00 

[12] Inception-V3 77.50 
[13] Mobilenet 88.40 
[12] Mobilenet 82.60 

 
Even so, there was limited computing power, which 

restricted the input size of the vision transformers during the 
training process. As a result, the 64x64-pixel RGB input 
format was chosen instead of the typical 128x128-pixel RGB 
or 256x256-pixel RGB formats, which would have improved 
the quality and accuracy of the model, as the model would be 
able to consider a larger area of the image per token, and thus 
can better describe the image in its trained weights.[30] 
Despite that, the fact that the proposed vision transformer still 
managed to obtain an accuracy of nearly 90% under these 
harsh conditions shows that the proposed model has much 
potential for improvement when given better computing 
power and, thus, better-quality training. 

B. Experiment Setting 
There are a total of 10 classes within the dataset. The labels 

of the classes are denoted with integers ranging from 0 to 9. 
Listed in order of the integers, the classes are named as: 
Tomato__Target_Spot, Tomato__Tomato_mosaic_virus, 
Tomato__Tomato_YellowLeaf__Curl_Virus, 
Tomato_Bacterial_spot, Tomato_Early_blight, 
Tomato_healthy, Tomato_Late_blight, Tomato_Leaf_Mold, 
Tomato_Septoria_leaf_spot, 
Tomato_Spider_mites_Two_spotted_spider_mite. 

Two test images from different dataset classes were 
randomly selected for a small test run: one from the 
Tomato__Tomato_YellowLeaf__Curl_Virus set and one 

from the Tomato_healthy set. These images were labeled as 
yellowleaf1 and healthy1, respectively. Copies of the two 
images were then given a random rotation (labeled as 
yellowleaf2, healthy2) and slightly cropped (labeled as 
yellowleaf3, healthy3), respectively, giving a total of 6 test 
images (Figure 11 referred). This was to test the algorithm's 
robustness to the leaf's orientation and position within the 
image. 
 

 
yellowleaf1 

 
yellowleaf2 

 
yellowleaf3 

 
healthy1 

 
healthy2 

 
healthy3 

Fig. 11  The 5 test images, manually chosen at random 

 
After loading the test images, the model was used to 

attempt a classification of the images, and the output was 
compared to the actual classes of the images. The model 
correctly classified all the test images. Thus, this small-scale 
experiment proves that this model can identify plant diseases 
regardless of leaf position and orientation. A classification 
report is used to analyze the test data results more finely. The 
overall precision, recall, F1 score and support, and the 
separate statistics for each test data class are illustrated in 
Figure 12 below.  

In precision, Tomato_healthy (class 5) has relatively low 
precision (74%), meaning that this class has a lot of false 
positives during classification, with Tomato__Target_Spot 
(class 0), Tomato_Early_blight (class 4) and 
Tomato_Spider_mites_Two_spotted_spider_mite (class 9) 
having mediocre precision (81%, 82% and 85% respectively). 
On the other hand, 
Tomato__Tomato_YellowLeaf__Curl_Virus (class 2) has 
particularly high precision (99%), with 
Tomato_Bacterial_spot (class 3) and Tomato_Late_blight 
(class 6) also having relatively high precision (both 96%).  

As for the recall, Tomato__Target_Spot (class 0) has the 
worst recall (72%), with Tomato_Early_blight (class 4) and 
Tomato_Late_blight (class 6) having mediocre precision 
(81% and 85%, respectively). Meanwhile, Tomato_healthy  
(class 5) has the highest recall (100%), with the next highest 
being Tomato_Leaf_Mold (class 7, at 97%). 

The F1 score of the class represents its overall score, 
combining the scores of precision and recall into a single 
category. Thus, using this metric, the class with the overall 
worst performance is Tomato__Target_Spot (class 0), 
whereas the class with the overall best performance is 
Tomato__Tomato_YellowLeaf__Curl_Virus (class 2). Other 
notable classes are Tomato_healthy (class 5), with low 
precision but high recall; Tomato_Early_blight (class 4), 
which was mediocre in both precision and recall; as well as 
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Tomato_Late_blight  (class 6) for having high precision but 
mediocre recall. 
 

 
Fig. 12  Model precision, recall, F1 Score, and support, evaluated for each 
class 

 
Finally, for support, Tomato__Tomato_mosaic_virus 

(class 1) has the lowest support, whereas 
Tomato__Tomato_YellowLeaf__Curl_Virus (class 2) has the 
highest support. This is explained by the difference in number 
of images within the classes, with 373 images for 
Tomato__Tomato_mosaic_virus (class 1) as compared to 
2081 images for 
Tomato__Tomato_YellowLeaf__Curl_Virus (class 2). This 
roughly explains the high F1 score of 
Tomato__Tomato_YellowLeaf__Curl_Virus (class 2). 
However, despite this, Tomato__Tomato_mosaic_virus 
(class 1) and Tomato_Leaf_Mold (class 7) still have F1 scores 
of over 90%. Thus, low support is not a major factor in 
determining low F1 scores, though it still has a noticeable 
effect. However, interestingly, Tomato__Target_Spot (class 
0) has a low F1 score despite having relatively high support. 
This is presumably due to difficulties in differentiating class 
0 from the other classes, as shown by its low precision and 
recall. 

Figure 13 is the model's confusion matrix, which specifies 
each class's precision and recall. First, a fair number of images 
were falsely labeled as Tomato_healthy (class 5), and to a 
lesser extent Tomato__Target_Spot (class 0), 
Tomato__Early_blight (class 4) as well as 
Tomato_Spider_mites_Two_spotted_spider_mite (class 9). 
Classes 0, 4 and 9 were visually similar to healthy leaves. 
However, only class 5 falls under 80% precision, which 
means 9 out of 10 classes are still decently trustworthy. 

 

 
Fig. 13  Confusion Matrix in Multiclass Label 

 

As for recall, despite the relatively low precision of 
Tomato_healthy (class 5), all images from this class were 
predicted correctly. Thus, it can be deduced from the results 
that the model has learned what a healthy leaf looks like, but 
it has defined it too broadly. Conversely, the images from 
Tomato__Target_Spot (class 0), Tomato_Early_blight (class 
4), and Tomato_Late_blight (class 6) had more false 
predictions, with most of the false predictions being from 
class 0. Interestingly, most of the false predictions in class 6 
fell under class 4. This is an acceptable outcome because both 
classes predict the same disease at different stages. Only class 
0 falls below a recall of 80%, meaning that for 9 out of 10 
classes, the model is decently sensitive to the respective 
predictions. 

IV. CONCLUSION 
Vision Transformer is selected to be the classification 

model for detecting plant disease. It is effective in image 
recognition and can learn the detailed features in the input on 
its own with minimal manual processing. The model can 
identify plant diseases regardless of leaf position within the 
image. An application was developed using the transformer 
model. It is evaluated using accuracy, precision, recall, and F1 
score to comprehend its effectiveness more effectively. The 
transformer model is enhanced by adding the Shift Patch 
Tokenization, Positional Encoding, Multi-head Attention, and 
Locality Self Attention modules. It achieved a final test 
accuracy of 90%, with a significant reduction in variance for 
accuracy, precision, recall, and F1 score across different 
dataset classes, thus resulting in more accurate and consistent 
identification.  

However, it is limited by dataset availability, as some of 
the classes have lower accuracy or F1 scores because of 
having a small number of images and the limited computing 
power for model training. While data augmentation can 
alleviate some of the effects of the small dataset size, it is 
undeniable that expanding the size and quality of the available 
datasets would be immensely helpful in improving model 
performance. Improvements in computing power would also 
result in better-quality model training. Moreover, given that 
Vision Transformer research is still relatively new, the 
features and variables within the additional modules used in 
the proposed model could still be further improved in future 
research, giving opportunities to refine further and enhance 
methods of plant disease identification, thus giving the 
agricultural industry better tools for effective plant disease 
treatment. 
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