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Abstract— Occluded ear recognition is a challenging task in biometric systems due to the presence of occlusions that can hinder accurate 

identification. There is still a research gap in enhancing the robustness of deep learning to handle severities of occlusions with different 

datasets. This research focuses on developing a robust occluded ear recognition system by implementing fine-tuning techniques on three 

popular pre-trained deep learning models, Residual Neural Network (ResNet-50), Visual Geometry Group (VGG-16), and EfficientNet. 

The system is evaluated on two manually occluded ear datasets, which are the AMI ear dataset and the IITD ear dataset. The experiment 

results showed the fine-tuned ResNet-50 model performs better than the fine-tuned VGG-16 model. The results indicate that the model's 

ability to accurately predict the classes or labels decreases as more data is occluded. Higher occlusion rates lead to a loss of important 

information, making it more challenging for the model to distinguish between different patterns and make accurate predictions. 

According to the findings, the amount of occlusion influenced the identification accuracy and worsened as the occlusion became larger. 

In the future, ear recognition systems will likely continue to improve in accuracy and be adopted by a wider range of organizations and 

industries. They may also be integrated with other biometric technologies and used for personalization purposes. However, ethical 

considerations related to the use of ear recognition systems will also need to be addressed. 
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I. INTRODUCTION

Since the beginning of time, humans have been able to 
identify other people based on identifying features of their 
bodies, such as faces and voices. The first record of a 
biometric identifying system was made in the 1800s in Paris, 
France. Alphonse Bertillon designed a system that relied on 
precise body measures to categorize and evaluate criminals 
effectively. Biometrics measurements are categorized into 
two types, which are physiological and behavioral [1]. The 
physiological measurement is further grouped into 
morphological (fingerprints, face, ear, iris, and retina) and 
biological (DNA, blood, saliva, and urine). Behavioral 
measurements are voice, signature traits, keystrokes, and 
gestures. The widespread collection of biometric data by law 
enforcement and other government organizations throughout 
the globe has resulted in the creation of massive legacy 
databases such as databases of driver's licenses and 
immigration information. 

It has been discovered that no two ears, not even those of 
identical twins, are equal [2]. Ear biometrics offers several 

advantages compared to other biometric modalities such as 
iris [3], [4], fingerprints, face, and retinal scans [5]. One 
advantage is that the ear is larger than the iris, fingerprint, 
making it easier to capture detailed images [6]. Furthermore, 
modern scanners allow ear scans to be conducted from a 
distance, enhancing convenience and efficiency. These 
factors make ear biometrics a promising option for automated 
human identification and verification systems. 

Ear recognition technologies present multiple advantages, 
such as capturing ear images from afar, a feature beneficial 
for security and surveillance applications [7]. Additionally, 
the ear's morphology remains largely stable throughout a 
person's lifetime and is not influenced by facial expressions, 
making it a viable option for non-contact biometric 
identification [8], [9]. This technology is also resilient to 
emotional states and changes in facial expressions, 
contributing to its reliability as a biometric measure. 
Furthermore, ear recognition has broad applicability across 
various sectors, including forensics, surveillance, identity 
verification, and device unlocking [10], [11]. For those with 
hearing loss, associated wireless technology can enhance 
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speech recognition performance in noisy settings, offering 
better auditory experiences than those with normal hearing 
under similar conditions [12], [13]. 

This remarkable ability has inspired computer vision 
researchers and led to the exploration of similar techniques in 
occluded ear recognition. Occluded ear recognition refers to 
the challenging task of identifying individuals based on their 
ear images, even when the ears are partially covered or hidden 
behind objects like hair, hats, or accessories. Just like the 
uniqueness of the fingerprints, the ears possess distinct 
features that can serve as a reliable biometric trait for 
identification. 

Unlike other biometric modalities, such as face recognition 
[14]  or fingerprinting [15], ear recognition offers certain 
advantages. The ear is relatively stable throughout a person's 
life and remains largely unaffected by aging or minor physical 
changes. Furthermore, unlike facial features, the shape and 
structure of the ear are less prone to alteration due to facial 
expressions, making it a potentially robust and reliable 
biometric identifier [16]. Fig. 1 shows the ear structure of a 
person. 

 
Fig. 1  Ear structure 

 

However, recognizing occluded ears presents unique 
challenges for computer vision systems. The variability in ear 
shape, texture, and appearance, combined with the occlusion 
caused by various factors, poses significant hurdles. 
Traditional approaches rely solely on local feature extraction 
or template matching and struggle to handle these 
complexities effectively. To address these challenges, the 
paper aims to apply deep learning techniques such as ResNet-
50 [17], VGG-16 [18], and EfficientNetB1 [19] for occluded 
ear recognition in two datasets which are AMI and IITD by 
implementing synthetic occlusion on ear images which has 
not been implemented before. By leveraging large-scale 
annotated datasets and pre-trained models, deep-learning 
models can learn intricate ear representations that are robust 
to occlusions and variations in appearance. 

Besides that, it is noteworthy that artificial occlusion has 
primarily been studied and applied in the USTB dataset, with 
limited attention given to its application in the AMI and IITD 
ear datasets. This research expands the scope of occlusion 
analysis by investigating the effects of artificial occlusion on 
these datasets, which adds a novel dimension to the field. By 
addressing the gap in artificial occlusion analysis in the AMI 
and IITD ear datasets and highlighting the variations in results 
across different datasets, this research contributes to a deeper 
understanding of the challenges and opportunities in occluded 
ear recognition. It underscores the importance of dataset 

diversity and dataset-specific analysis in developing robust 
and reliable occluded ear recognition systems. 

II. MATERIAL AND METHOD 

A. Impact of Covid-19 pandemic 
The COVID-19 pandemic has posed significant challenges 

to the effectiveness of face recognition systems, particularly 
in security surveillance and attendance tracking, due to the 
widespread use of face masks as mandated by organizations 
such as the World Health Organization [20], [21]. To adapt, 
researchers have developed mask-aware recognition systems 
and real-time mask position monitoring using YOLO models, 
among other innovations [22], [23]. In India, facial 
recognition is even being proposed to support vaccination 
campaigns by identifying non-vaccinated individuals through 
Aadhaar-based systems. Educational organizations are also 
leveraging this technology for academic processes like online 
exams and class attendance [24], [25].  

Despite these adaptations, ear recognition systems have 
emerged as a valuable supplementary technology. Ear 
recognition can effectively identify individuals even when 
face masks are worn, as the ear's structure remains visible and 
consistent over time. Moreover, ear recognition does not 
necessitate active participation from the subject, providing a 
robust alternative or supplement to face recognition, 
especially when other systems offer incomplete or inaccurate 
information [26]. 

The bulk of ear recognition studies, from the oldest to the 
most current, are based on built attributes such as local, 
holistic, and hybrids of the two. Researchers find statistical 
approaches to ear identification to be quite popular. In recent 
years, deep features have become increasingly important in 
ear recognition tasks because they include more concise and 
profound information than features generated by the machine 
learning approach. Deep neural networks, such as LeNet, 
AlexNet [27], ResNet, have been used for various biometric 
identification applications. 

B. Ear Recognition System 
Alshazly et al. [28] implemented Deep Residual Networks 

(ResNet) to distinguish between numerous databases of ear 
types. Multiple residual modules, in addition to typical 
convolution and pooling layers, are stacked to create a deep 
ResNet model. Ensemble approaches involve training 
multiple models to solve the same problem and then 
combining their predictions through techniques like 
averaging or voting. In this study, the authors created an 
ensemble of deep neural networks for ear identification, as 
shown in Fig. 2. They trained several individual networks 
with random starting points and then averaged their 
predictions. To initialize the network weights, the authors 
utilized pre-trained models on visual recognition tasks, 
explicitly training the fully connected layer on the ear 
identification task. Fine-tuning of all previously trained 
models was performed using a portion of each ear dataset. 

Additionally, the authors used well-tuned ResNet models' 
second-to-last layer output as feature extractors for SVM 
classifiers. The performance of the generated models was 
extensively evaluated using ear images captured under both 
defined and uncontrolled imaging conditions from the AMI, 
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AMIC, WPUT, and AWE databases. The ensemble of 
networks achieved recognition accuracies of 98.57%, 
97.85%, 81.89%, and 67.25% on the AMI, AMIC, WPUT, 

and AWE datasets, respectively, demonstrating the optimal 
performance. 

 

Fig. 2  Deep ResNet Ensemble Model 

 
In their study, Sharkas et al. [29] utilized three different 

architectures, namely AlexNet, GoogleNet, and ResNet-50, 
for classifying ear images in an ear identification system. 
AlexNet consists of five convolutional layers and three fully 
connected layers. GoogleNet, on the other hand, employed a 
deep CNN with 22 layers, reducing the number of parameters 
from 60 million to 4 million. ResNet-50 addressed the issue 
by introducing skip connections that bypass one or more 
layers, enabling identity mapping by combining the outputs 
of these connections with the stacked levels. The authors 
examined two ear datasets: the AMI ear database and the IIT 
Delhi database. In the first scenario, both databases consisted 
of 100 classes, each containing seven images, resulting in a 
total of 700 images. The IIT Delhi database had 125 classes, 
with a minimum of three images per class, totaling 493 
images. The results showed that ResNet-50 achieved the best 
performance on the AMI database, with an average mean 
accuracy of 94%. For the IIT Delhi segmented picture 
collection, both AlexNet and ResNet-50 performed similarly, 
with an accuracy of 62.86% for AlexNet and 59.29% for 
ResNet-50. 

Kadhim Zaidan et al. developed an ear identification 
system based on contrast-limited adaptive histogram 
equalization (CLAHE) and convolutional neural networks 
(CNN). CLAHE is one of the most effective image-
processing methods for enhancing picture contrast. CLAHE 
was created to address the shortcomings of adaptive 
histogram equalization, which tends to enhance noise in 
homogenous regions of the processed picture. CLAHE works 
on a small part of a picture instead of the whole picture to cut 
down on noise amplification. The suggested CNN technique 
has successfully obtained high accuracy in ear image 

classification, with an overall testing accuracy of 97.92% and 
a loss of 0.1254 across 45 epochs. 

C. Occluded Ear Recognition 

Wang et al. [30] classify occluded ear images using a 
Fisher Determination Dictionary Learning-based Sparse 
Representation Classifier (FDDL-based SRC). In SRC, 
signals may be represented with the fewest feasible atoms. 
The execution of sparse coding involves four main processes: 
input of dictionaries and feature extraction, solving sparse 
coding models, calculating residuals, and outputting 
classification results. The introduction of FDDL brings 
changes to the categorization process. Firstly, Adaptive 
Gamma Correction with Weighting Distribution (AGCWD) 
is applied to enhance the quality of the ear images. Secondly, 
a combination of DSIFT, Local Binary Pattern (LBP), and 
Histogram of Oriented Gradients (HoG) is utilized to extract 
features. Two feature selection methods based on robust 
sparse linear discriminant analysis (RSLDA) and inter-class 
sparsity-based discriminant least square regression (ICS-
DLSR) are employed to improve the calculation speed. 
Eventually, the two sets of selected features are categorized 
using an FDDL-based Sparse Representation Classifier 
(SRC). At the decision level, the classification results from 
both sets are combined to generate high-precision outputs. 
The selected database is USTB 1, and it may be used as a 
dataset in an occlusion experiment with little to no outside 
influence. In the experiment, 120 pictures were used for 
training, 60 photos were used for testing, and varying amounts 
of random occlusions (10%, 20%, 30%, 40%, and 50%) were 
introduced to the test set. According to an occlusion rate of 
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10%, the outcomes are 93.33%, 83.33%, 83.33%, 63.89%, 
and 47.78%. The sample occluded ear is illustrated in Fig. 3. 

 
Fig. 3  Occluded images from USTB 1 

 

Tian et al. [31] proposed a convolutional neural network 
that consists of an input layer, three convolutions, and two 
fully linked layers were suggested for a convolutional neural 
network. Each convolution layer was followed by a max-
pooling (MP) layer, and the input layer was linked to the 
convolution layer. The final fully connected layer was a soft-
max classifier with 79 categories. This classifier generated an 
output value representing the likelihood that an input fits into 
one of 79 categories. The author conducted an occlusion 
experiment using CNN on USTB III by splitting the ear 
pictures into random blocks with widths ranging from 5% to 
50% of the original image's width. The obtained sample ears 
are exhibited in Fig. 4. The results of the proposed method are 
98%, 96%, 95%, 88%, 74%, 60%, 58%, 41%, 30%, and 25% 
in the range of 5% occlusion rate until 50% occlusion rate at 
a 5% of increment. 

 
Fig. 4  Sample occluded ear images 

 
Sultana et al. [32] presented a novel index-based rank 

fusion method for occluded ear recognition. This method 
grouped uncovered ear samples and assigned them a unique 
number. Each block's features were indexed and stored in a 
database of feature descriptors. The percentage of visible ear 
area was initially determined in the identifying process. If 
more than 60% of the ear canal was blocked, the sample was 
thrown out, and a reacquisition request may be made. The 
suggested technique collected features from the uncovered 
part and their related indices when the occlusion was less than 
60%. The characteristics of the test and the enrolled samples 
were indexed, and nine corresponding scores were then 
derived. The author evaluated the synthetic occlusion USTB 
I methods and obtained 0.96%, 0.93%, 0.86%, 0.82%, 0.73%, 
and 0.62% correct recognition rate based on every 10% 
occlusion rate for USTB1 ear dataset. 

D. Model Structure 
Fine-tuning techniques on two popular deep learning 

models, VGG-16 and ResNet-50, are explored. Fine-tuning 
aims to utilize the learned representations from these pre-
trained models and adapt them to the ear dataset relevant to 
occluded ear recognition. By leveraging the information 
captured by these models on general image features, better 
performance and faster convergence can be achieved.  

During the fine-tuning process, certain layers of the pre-
trained models are selectively frozen while allowing others to 
be trained. The proposed model has frozen 21 layers in VGG-
16 and 143 layers in ResNet-50. This selective freezing helps 

to retain the learned representations in the earlier layers, 
which are more generic and transferable while allowing the 
later layers to be adapted to the specific dataset. This approach 
balances leveraging the pre-trained model's knowledge and 
tailoring it to the classification task. The fine-tuning of both 
VGG-16 and ResNet-50 models is implemented on the 
occluded dataset. By fine-tuning these models, the goal is to 
harness their powerful capabilities and achieve superior 
performance on the specific image classification task. 

E. Datasets 
Experiments involve two ear databases: the Mathematical 

Analysis of Images (AMI) dataset and the IIT Delhi (IITD) 
dataset [33]. AMI dataset contains information from 100 
people between the ages of 19 and 65. Seven photographs of 
each person were taken, including six of their right ears and 
one of their left ears. The era images are in jpg format, with 
dimensions of 492 by 702, and a unique identification number 
is issued to each of the 700 subjects in the dataset. Some of 
the examples from AMI are shown in Fig. 5.  

 
Fig. 5  Raw AMI ear samples 

All images in the AMI ear dataset were manually cropped, 
rotated to the same angle, and resized to a dimension of 100 
by 100. The dataset contains 700 images as the original 
dataset and is subjected to 107 classes. The cropped sample 
images are displayed in Fig. 6. 

 

 
Fig. 6  Cropped and rotated AMI ear samples 

The IITD dataset involves 222 people somewhere between 
14 and 58 years old. The image was taken in jpeg format and 
has a 50-pixel wide and 180-pixel high resolution. This 
dataset contains the unprocessed photo data and the cropped 
ear pictures. The selected ear database was already 
automatically cropped and standardized and contained 
information from 222 people, totaling 793 different ear 
photographs. The examples from IITD ear dataset are shown 
in Fig. 7. 

 
Fig. 7 Segmented IITD ear samples 

A black occluded block is created to cover some portion of 
the ear randomly on both AMI and IITD datasets. Image is 
loaded from the dataset, and the range and increment for the 
occlusion block size are defined, varying from 5% to 50% 
with a 5% increment. Next, iterate over each image in the 
dataset, and for each image, iterate over the range of occlusion 
sizes. After calculation, the dimensions of the occlusion block 
are based on the image size and occlusion percentage. Using 
these dimensions, a black block is created as an occlusion of 
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the image. The black block is positioned at a random location 
on the original image. Finally, the modified image is saved 
with the occlusion block in a separate directory or appended 
to a new dataset. This process ensures the systematic creation 
of occluded versions of the original images with varying 
degrees of black block occlusion. The black occluded block 
with varying sizes on both AMI and IITD datasets is exhibited 
in Fig. 8 and Fig. 9. 

 

 
Fig. 8  Samples occluded images with different occlusion percentages on the 
AMI dataset 

 

 
Fig. 9  Samples occluded images with different occlusion percentages on the 
IITD dataset 

III. RESULT AND DISCUSSION 

A. Evaluation Metric 
The accuracy score measures the experimental result. 

Accuracy is a metric used to evaluate the performance of a 
classification model. It is calculated by dividing the number 
of correct predictions by the total number of predictions made. 
This metric indicates the proportion of instances that were 
correctly classified out of the total number of instances in the 
dataset. The accuracy value is typically expressed as a 
percentage ranging from 0% to 100%, where a higher 
accuracy value indicates a better classification model 
performance. The formula for accuracy is shown in Equation 
1 below.  

Accuracy �
�	 
 ��

�	 
 �� 
 �	 
 ��
 (1) 

TP represents true positives, TN refers to true negatives, FP is 
false positives, and FN represents false negatives. 

B. Experiment Setup 
The setup for occluded AMI and IITD is completed using 

Google Colab. Google Colab provides GPU T4, 25.5GB 
system RAM, and 15GB GPU RAM. Both datasets are 

separated into 70% of the training set and 30% of testing sets 
and trained with ResNet-50, VGG-16, and EfficientNetB1, 
respectively.  

The VGG-16 model is trained on RMSprop optimizer with 
a learning rate from 0.00002 until 0.00001 when the error 
plateaus and freezes the first 21 layers of the model. The 
selected weight for the model is ImageNet and two fully 
connected layers with Rectified Linear Unit (ReLU) after the 
model, except IITD has only one fully connected layer. To 
avoid overfitting, a dropout layer with 0.5 value, a batch 
normalization layer on each fully connected layer, and early 
stopping are activated if the validation accuracy does not 
increase after 50 epochs. Fine-tune is set to 50 Epochs on AMI 
ear dataset and 100 Epochs on IITD ear dataset. After fine-
tuning, the dataset fits the model for 500 epochs for each 
dataset.  

For ResNet-50, the learning rate, optimizer, weight, fully 
connected layers, activation function, dropout, batch 
normalization, and early stopping are set as the same as VGG-
16 for AMI except the optimizer is Adam, and the learning 
rate set from 0.00001 to 0.000001. The first 143 layers of the 
model are frozen for fine-tuning purposes. 50 Epochs of fine-
tuning on AMI ear dataset and 100 epochs on IITD ear dataset 
will be trained for 500 epochs in ResNet-50. 

The last one is EfficientNetB1; the model is trained on 
Adam optimizer with a learning rate from 0.0001 until 
0.00001 when the error plateaus and freezes the first 200 
layers of the model. The selected weight for the model is 
ImageNet and one fully connected layer ReLU. A dropout 
layer with 0.5 value and batch normalization layer on each 
fully connected layer and early stopping is activated if the 
validation accuracy does not increase after 50 epochs. Fine-
tune is set to 50 epochs on both ear datasets. After fine-tuning, 
the dataset fits the model for 500 epochs for each dataset.  

TABLE I 
EXPERIMENT SETUP ON AMI AND IITD  

 Setup of AMI Setup of IITD 
Model VGG-

16 
ResNet-
50 

EfficientNet
B1 

VGG-
16 

ResNet
-50 

EfficientNet
B1 

Freeze 
Layer 

21 143 200 21 143 200 

Weight ImageN
et 

ImageN
et 

ImageNet ImageN
et 

ImageN
et 

ImageNet 

Fully 
Connected 
Layer 

2 2 1 1 2 1 

Activation 
Function 

ReLU ReLU ReLU ReLU ReLU ReLU 

Fine-Tune 50 
epochs 

50 
epochs 

50  
epochs 

100 
epochs 

100 
epochs 

50  
epochs 

Optimizer RMSpr
op 

RMSpr
op 

Adam RMSpr
op 

Adam Adam 

Learning 
Rate 

0.00002 
– 
0.00001 

0.00002 
– 
0.00001 

0.0001-
0.00001 

0.00002 
– 
0.00001 

0.00001 
– 
0.00000
1 

0.0001-
0.00001 

Dropout 0.5 0.5 0.5 0.5 0.5 0.5 
Batch 
Normalizati
on 

Yes Yes Yes Yes Yes Yes 

Early 
Stopping 

50 
epochs 

50 
epochs 

50  
epochs 

50 
epochs 

50 
epochs 

50  
epochs 
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C. Data Augmentation Setting 
The occluded images are randomly rotated by up to 20 

degrees, except the IITD ear dataset is rotated up to 10 degrees 
and randomly shifts images horizontally and vertically by up 
to 5% of the image width and height. The brightness range is 
set from 80% darker and 50% brighter. The images randomly 
zoom in and out of images by up to 5% and randomly flip 
images horizontally. The gaps in the image fill with the 
nearest pixel. The setup of data augmentation is illustrated in 
Table 2. 

TABLE II 
DATA AUGMENTATION SETTING 

 AMI IITD 

Rotate Angle 20% 10% 
Width Shift 5% 5% 
Height Shift 5% 5% 
Brightness 0.8-1.5 0.8-1.5 
Zoom 5% 5% 
Horizontal Flip True True 
Gap Fill Nearest Pixel Nearest Pixel 

D. Evaluation Results 
The experiment involved evaluating the performance of 

ResNet-50, VGG-16, and EfficientNetB1 on two occluded ear 
recognition datasets, AMI and IITD, with varying levels of 
occlusion rates, as shown in Fig. 10, Fig. 11, and Fig. 12. The 
results revealed interesting trends in accuracy as the occlusion 
rate increased. The overall result for the occluded AMI ear 
dataset is better than the occluded IITD ear dataset for both 
models. It was discovered, during the process of experimental 
assessment on a dataset of occluded ear pictures, that the 
performance of the identification system changed depending 
on the degree to which the ear was concealed. The ear images, 
as illustrated in Fig. 8 and Fig. 9, show a black block that acts 
as occlusion with size increasing gradually, beginning with a 
coverage of 5% and rising by 5% increments up to 50%.  
 

 
Fig. 10  Result of ResNet-50 for occluded ear from the AMI and IITD datasets 

For Fig. 10, at an occlusion rate of 0%, where no occlusion 
is applied, the fine-tune ResNet-50 model achieves high 
accuracies for both occluded AMI (0.93333) and occluded 
IITD (0.95378). As the occlusion rate increases, the accuracy 
gradually declines for both datasets. At an occlusion rate of 
5%, the model maintains relatively high accuracies for both 
datasets; the accuracy for AMI and IITD is at 0.93330 and 
0.82773. However, as the occlusion rate increases, the 
accuracies decline more noticeably. When the occlusion rate 
reaches 25%, the model's accuracy decreases further. The 
results obtained for AMI and IITD are 0.81905 and 0.58824, 

respectively. This trend continues as the occlusion rate 
reaches 50%, where the accuracies further drop; the accuracy 
for AMI is 0.75714, and IITD only has 0.51261. 

The fine tune VGG-16 model, as displayed in Fig. 11, when 
starting with an occlusion rate of 0%, where no occlusion is 
applied, the model achieves a high accuracy of 0.9905 for the 
occluded AMI ear dataset and 0.95378 for the occluded IITD 
ear dataset. As the occlusion rate increases, the accuracy score 
for both datasets drops. At an occlusion rate of 5%, the 
accuracy values decrease to 0.94762 for the AMI dataset and 
0.80672 for the IITD dataset. As the occlusion rate increases 
to 10%, 15%, and 20%, the accuracy values decrease for both 
datasets. At an occlusion rate of 25%, the model achieves an 
accuracy of 0.76667 and 0.4538 for AMI and IITD ear dataset. 
As the occlusion rate increases to 30%, 35%, and 40%, the 
accuracy values remain relatively stable, but the IITD ear 
dataset is at lower levels than the AMI ear dataset. Continuing 
to higher occlusion rates of 45% and 50%, the model's 
accuracies decrease, with 0.69524 and 0.6619 for the AMI ear 
dataset and 0.4623 and 0.4244 for the IITD ear dataset. 

 
Fig. 11  Result of VGG-16 for occluded ear from the AMI and IITD datasets 

 

For Fig. 12, the EfficientNetB1 model showcased strong 
performance across different occlusion rates on the AMI 
dataset. At 0% and 5% lower occlusion rates, the model 
achieved high accuracies of 0.9429 and 0.9238, respectively. 
As the occlusion rate increased to 10% and 15%, the model's 
accuracy declined slightly to 0.8619 and 0.8476, respectively. 
However, the model demonstrated a notable improvement in 
accuracy at an occlusion rate of 20%, reaching 0.8905. 
Beyond 20% occlusion, the accuracy experienced 
fluctuations, indicating a more challenging recognition task as 
the occlusion rate increased.  

Fig. 12  Result of EfficientNetB1 for occluded ear from the AMI and IITD 
datasets  
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In contrast, the performance of the EfficientNetB1 model 
on the IITD dataset showed a different trend. The model 
exhibited relatively high accuracies at lower occlusion rates 
(0% to 15%) ranging from 0.9412 to 0.8193. However, as the 
occlusion rate increased to 20% and beyond, the model's 
accuracy experienced a significant drop. At 20% occlusion, 
the accuracy was 0.7185, and as the occlusion rate further 
increased, the accuracy continued to decline, reaching 0.5756 
at a 50% occlusion rate. 

The results indicate that the model's ability to accurately 
predict the classes or labels decreases as more data is 
occluded. Higher occlusion rates lead to a loss of important 
information, making it more challenging for the model to 
distinguish between different patterns and make accurate 
predictions. According to the findings, the amount of 
occlusion influenced the identification accuracy and 
worsened as the occlusion became larger. This demonstrates 
the difficulties that may be caused by occlusion in ear 
recognition systems, as well as the need to develop efficient 
methods for dealing with occlusion. 

From the result for both models, the accuracy of the 
occluded IITD ear dataset is overall poorer than the occluded 
AMI ear dataset. This is because the IITD dataset is a 
grayscale image dataset, and it performs relatively poorly 
when using pre-trained models like VGG-16, ResNet-50, and 
EfficientNetB1 compared to the performance on color RGB 
images of the AMI dataset. As these models are trained on 
ImageNet, a large-scale color image dataset, these models 
have learned to extract features from color images, including 
patterns and structures that are indicative of the object classes. 
The color information is lost by converting the images to 
grayscale, negatively impacting the model's ability to 
distinguish between objects or classes.  

Furthermore, while using a pre-trained model like VGG-
16, ResNet-50, and EfficientNetB1, it is generally beneficial 
to have images with similar dimensions to the ones the model 
was trained on. In the case of VGG-16, it was trained on 
ImageNet with input images of size 224x224 pixels. The 
occluded AMI dataset in Fig. 8 with images of dimensions 
100x100 is more likely to obtain a better result when using the 
pre-trained model. This is because the images in this dataset 
are closer to the expected input size of the model, and the 
model can process them without significant distortion or loss 
of information. The aspect ratio 1:1 in the 100x100 dataset 
also aligns better with the original aspect ratio used during 
training. On the other hand, the occluded IITD dataset in Fig. 
9 with images of dimensions 180x50 has a different aspect 
ratio, which is not well-matched with the original input size 
of the pre-trained model. Resizing these images to fit the input 
size of the model would result in distortion and potential loss 
of information, which can negatively impact the model's 
performance. 

From the experimental evaluation of occluded ear images 
from the two datasets, the recognition system's performance 
varied depending on the extent of occlusion. Occlusions such 
as black blocks were systematically applied to the images, 
starting from 5% coverage and increasing in increments of 5% 
up to 50%. The recognition accuracy is assessed at each level 
of occlusion to understand the system's robustness to 
occluded ear images. 

IV. CONCLUSION 
Recognizing an ear that is covered is a difficult but crucial 

part of biometric systems [34]. The procedure requires 
locating and identifying ear pictures when they are covered 
somehow. Experiment results demonstrated that as the level 
of occlusion increased, the recognition accuracy decreased. 
This highlights the challenges occlusion poses in ear 
recognition systems and the need for effective occlusion 
handling techniques. However, even with significant 
occlusion, the system showed promising performance, 
indicating its potential for real-world applications. It is worth 
noting that research into obstructed ear identification is still in 
its infancy, so there is room for improvement in the system's 
precision and dependability. Improving identification 
accuracy may require trying out new techniques for feature 
extraction, creating more advanced occlusion detection 
algorithms, or using deep learning methods. More work is 
needed to improve biometric systems and make them work 
reliably in the real world, where occlusion is a widespread 
problem. 

In this regard, future research could explore more detailed 
and fine-grained models that can accurately identify and 
analyze the precise structure and parts of the ear. Fine-grained 
models can potentially improve recognition performance by 
capturing more discriminative information by considering the 
complex details of the ear's structure features, such as the 
helix, earlobe, tragus, and antitragus. Furthermore, the 
integration of advanced techniques, such as attention 
mechanisms or graph convolutional networks, could be 
explored to model the relationships and dependencies among 
different ear structures and parts effectively. This would 
enable the development of more sophisticated and context-
aware recognition models, enhancing the accuracy and 
robustness of occluded ear recognition systems. 
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