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Abstract— Mangroves are a type of vegetation that can absorb carbon and have an essential role in controlling CO2 levels in the 

atmosphere. Mangroves can absorb carbon better than terrestrial ecosystems because of their ability to bury carbon in sediment. This 

research aims to compare and measure the carbon stock content above the surface of mangroves in the field using multi-spatial 

resolution imagery, namely, Landsat 8 OLI, Sentinel 2A, and Planetscope. Field carbon calculations were carried out using the 

allometric method based on mangrove species. The calculation results are then linked through regression analysis with the vegetation 

index Difference Vegetation Index (DVI) results. The total carbon obtained from PlanetScope imagery was 535.27 tons, Sentinel 2A 

imagery was 549.23 tons, and Landsat 8 OLI imagery was 533.57 tons. Among the three images used, based on Sentinel 2A statistical 

analysis reflects the possibility of overfitting or the best with higher r and R2 values in the calculations. However, based on SE 

accuracy tests, PlanetScope has better accuracy than the other two images. Apart from that, the accuracy test results using a 1:1 

goodness of fit plot for each image, the distribution pattern of mangrove carbon stock estimates shows that the entire model in 

mapping mangrove carbon stocks is over-estimated. The overestimated results are possible because more objects around the 

mangrove, especially canopy density, are recorded by remote sensing sensors compared to tree diameter as input for field carbon 

results. 
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I. INTRODUCTION

Vegetation plays a vital role in absorbing carbon in the 

atmosphere. Apart from that, vegetation also plays a crucial 

role in maintaining global climate stability [1]. Apart from 

the terrestrial role of forests as carbon sinks, new evidence 

shows that carbon can be stored in the biomass and sediment 

of vegetation in tidal swamp ecosystems such as mangroves 

and seagrass beds [2]. This coastal vegetation carbon stock is 

called blue carbon [3]. Carbon stocks stored in vegetation, 

especially trees, are essential for environmental harmony 
from excessive emissions because trees and other photo-

autotrophic organisms undergo photosynthesis during the 

day. This process requires an essential component of CO2 

from the atmosphere. Carbon Stock Mapping availability is 

critical for supporting land use planning, such as 

understanding the consequences of replacing mangrove 

ecosystems and their ecological services [4], [5]. 
Mangroves are a type of vegetation that can absorb carbon 

and have an essential role in controlling CO2 levels in the 

atmosphere. Mangroves can absorb carbon better than 

terrestrial ecosystems because of their ability to bury carbon in 

sediment. As an ecosystem, mangroves are a place for various 

types of biotas to live. Besides that, mangrove forests function 

as providers of environmental services because they are the 

most effective blue carbon sinks. Mangrove forests are one of 

the most diverse ecosystems on Earth and deliver numerous 

provisioning, regulating, cultural, and supporting services that 

benefit coastal and inland communities [6]–[8]. Damaged 

mangrove forests will affect the ability of mangrove forests to 
absorb carbon. The existence of mangroves must continue to 

be preserved and improved, as well as both the quality and 
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quantity of the forest so that they function well in reducing 

global warming. The conversion of mangrove forests for 

aquaculture, tourism, and agricultural purposes has disrupted 

ecosystem stability and reduced physical and biological 

mangrove functions, affecting the existence of vulnerable 

mangrove species that are rare or limited [9]. Previous studies 

have shown that mangrove conversion to shrimp ponds 

generates substantial losses of biomass and soil carbon stocks 

[10]–[13]. This research used multi-spatial resolution images, 

including Landsat 8 OLI, Sentinel 2A, and Planetscope, each of 
which has a different spatial resolution, namely 30 m, 10 m, and 

3 m. According to Planet Labs' data about product 

specifications, the advantages of PlanetScope's imagery are 

having a speedy iteration time (i.e., for 1 day), carrying four 

spectral bands (blue, green, red, and near-infrared), and high 

spatial resolution (3 m). A fast temporal resolution is expected 

to be able to describe the information in actual relation between 

the imagery recording date and in-situ measurements [14]. The 

varying characteristics of multispectral satellite images and 

incredibly different image spatial resolution sizes will produce 

different levels of information detail. This research aims to 
assess the ability of several images with different spatial 

resolutions to estimate above-surface carbon stocks in the Bedul 

Mangrove Area, Banyuwangi. Carbon stocks are closely related 

to biomass. Biomass can be highlighted from spectral 

transformations related to vegetation, often known as the 

vegetation index. While spectral bands are commonly used in 

remote sensing-based AGB estimation, studies have shown that 

the inclusion of vegetation indices and texture variables can 

significantly improve results, particularly in dense tropical 

forests [15], [16]. The vegetation index is a form of spectral 

transformation of multispectral images to highlight aspects of 
vegetation density or things related to vegetation density, such 

as biomass. 

II. MATERIALS AND METHOD

A. Research Site

This research will be carried out in the Blok Bedul

Mangrove Forest area. This forest area is included in the 

Alas Purwo National Park area in Bloksolo Hamlet, 

Sumberasri Village, Purwoharjo District, Banyuwangi 

Regency. The Alas Purwo National Park area, based on the 
minutes of measurement dated 27 May 1983, has an area of 

43,420 ha. The lowland tropical rainforest ecosystem is the 

primary ecosystem type in the Alas Purwo National Park 

area. In contrast, the mangrove forest in the Alas Purwo 

National Park area has an area of 1,200 ha. 

Fig. 1  Research site 

B. Image Dataset

Landsat 8 OLI in this study carried out radiometric

corrections for converting Digital Number (DN) values to 

Top of Atmosphere (TOA) solar angle reflectance. Apart 
from that, atmospheric correction was also carried out using 

Dark Object Subtraction (DOS). The Landsat 8 OLI image is 

radiometrically calibrated, geometrically co-registered, and 

orthorectified [17]. This DOS was chosen because the field 

data parameters for image correction were unknown. Also, 

no known atmospheric effects model could assume the 

atmospheric conditions when the image data was recorded. 

In this study, sentinel 2A carried out atmospheric 

correction using the DOS method because the Sentinel 2A 

image has been radiometrically corrected in the form of 

TOA reflectance. So, the following correction process is an 
atmospheric correction. 

Planetscope images are available in images corrected to 

Surface Reflectance and have undergone previous 

radiometric correction. Apart from that, geometric correction 

was not carried out in this research because the Planetscope 

image used had undergone a geometric correction process, 

so this Planetscope image was not subjected to radiometric 

correction or geometric correction. 

The vegetation index is an optical measurement of the 

greenness of the vegetation canopy, the composite nature of 

leaf chlorophyll, leaf area, structure, and vegetation canopy 

cover. The aim of using this vegetation index is to determine 
the level of accuracy of estimates and determine an accurate 

vegetation index in calculating the AGB of mangrove forests 

[18]. The vegetation index used in this research is DVI 

(Difference Vegetation Index). The relationship between 

field carbon values and DVI index values is vital. DVI has 

the highest AGC estimation accuracy as compared to EVI 

and NDVI [19]. 

C. Field Sampling

Sampling uses several plots. The plots are square, and the

plot size to be used is 20 x 20 m divided into three parts, 

namely 20 x 20 m, 10 x 10 m, and 5 x 5 m, adjusted to the 

spatial resolution of each image used. Each plot size is used 

to measure different tree diameters. A plot measuring 20 x 

20 m is used to measure trees with a diameter > 20 cm, a 

plot measuring 10 x 10 m is used to measure trees with a 

diameter of 10 – 20 cm, and a plot measuring 5 x 5 m is used 

for measure trees < 10 cm in diameter (SNI 7724:2011) [20]. 

D. AGC Estimation and Mapping

The biomass calculated in this research is the biomass

above the ground surface. Mangrove biomass was calculated 

using the allometric method based on the mangrove species 

in the Bedul Mangrove Area, Banyuwangi. This research 

uses allometric equations which refer to the allometric 

equations of Komiyama [21], because this equation is used 

for Asian mangroves. The allometric equations produced the 

AGB value rather than directly creating the AGC value [22]. 

Above-surface carbon stock values are obtained from the 

above-surface biomass value approach. The rules used are 
based on SNI 7724:2011, calculating carbon from biomass. 

The normality test tests data to see whether the residual 

values are normally distributed. Normally distributed data 

will reduce the possibility of bias. In this study, to determine 
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the normality of data distribution using the Kolmogorov-

Smirnov Test, the Dn value must not exceed the 

Kolmogorov-Smirnov table value limit. Correlation analysis 

is used to find the degree of relationship between variables. 

The correlation coefficient is the measure used to determine 

the degree of relationship. 

The results of carbon stock estimation in the field are then 

seen in relation to inputs that can pass the significance limit 

of the correlation test. The amount of carbon stock is usually 

represented in units of tons/ha. Regression analysis was 
carried out to build an equation for biomass content using 

fieldwork data as the dependent variable (Y) with input that 

could pass the significance limit of the correlation test as the 

dependent variable (X). The regression results with the 

highest correlation will be transformed to produce a carbon 

estimation map. 

Analyzing the comparative results of estimates of above-

ground carbon stocks in mangrove forests using multi-spatial 

resolution imagery requires accuracy tests. The accuracy test 

uses the Standard Error of Estimate (SEE) method, which in 

its formula uses the carbon value calculated in the field with 
the carbon value resulting from the regression equation from 

the input, which can pass the significance limit of the 

correlation test used on different types of images. The better 

the level of accuracy is indicated by the lower the value 

obtained from the standard error of the estimate. The 

formula equation for the accuracy test in this research is as 

follows: 

SEE = �∑(����)²
	�
 (1) 

Information: 

�′ = predicted carbon value in the field (tons/ha) 

� = carbon value in the field (tons/ha) 

n = number of samples 

Apart from SEE, the accuracy test for estimating carbon 

stocks above the mangrove surface was carried out using a 

1:1 goodness of fit plot. The function of this accuracy 

method is to try to see whether the estimated data pattern 

and whether the accuracy test sample has an overestimated 

or underestimated pattern by looking at the slant of the linear 

line of the sample plot, which is bounded by the red line as 

the ideal value of 1:1 between the field value and the 

estimate[23]. If the distribution of the linear plot is biased 

toward the image estimation data, then overestimation 

occurs, and underestimation occurs when the linear plot is 

biased toward field data. 

III. RESULT AND DISCUSSION

A. Field Data and Carbon Stocks

Field data collected during fieldwork includes mangrove

species, tree DBH, tree height, hemisphere photos to 

determine canopy density, and photos of the situation around 

the sample point. Tree height data and hemisphere photos 

are additional data used if needed when using the allometry 

formula. Technical fieldwork at each sample point begins 

with stretching a rope 20x20 meters long. After that, the 

mangrove species in the sample plot will be identified. A 
size of 20x20 meters is used to collect data on mangrove tree 

categories. The size of 10x10 meters is used to collect data 

on pole-category mangroves. The length of 5x5 meters is 

used to collect data on the mangrove sapling category. In the 

category of each sample point, DBH and tree height are 

measured, which are then filled in in the field worktable 

provided. 

Based on the identification results carried out by Alas Purwo 

National Park researchers, 27 true mangroves were found. Of 

the 27 species, 24 types around the Segara Anak River are 

dominated by Rhizophora mucronata, Ceriops tagal, and 

Bruguiera gymnorhiza. The results of the research that was 
carried out show that 14 species of mangroves were found 

around the Segara Anak River. The measurement results based 

on the parameters used in this research show different results at 

each observation location point. The parameters used include 

average tree diameter, tree height, canopy cover, and dominant 

species at each observation sample point.  

TABLE I 

FIELD DATA

Point Number 
Coordinate 

Average tree diameter (cm) Average tree height (m) Fcover Dominant Species 
X Y 

1 -8.596 114.257 27.75 10.85 0.40 R. Mucronata

2 -8.595 114.267 29.27 11.74 0.34 E. Agallocha
3 -8.598 114.273 40.93 14.59 0.33 R. Mucronata
4 -8.598 114.273 54.77 23.06 0.14 R. Mucronata
5 -8.597 114.273 39.18 17.64 0.18 R. Mucronata
6 -8.599 114.277 45.00 13.68 0.22 A. Officinalis
7 -8.599 114.277 40.88 18.98 0.21 R. Apiculata
8 -8.600 114.277 50.58 18.85 0.09 R. Apiculata
9 -8.600 114.280 47.85 11.91 0.05 R. Apiculata

10 -8.601 114.279 47.05 23.36 0.21 R. Apiculata
11 -8.592 114.270 38.46 15.96 0.31 R. Mucronata
12 -8.592 114.270 28.17 8.21 0.18 C. Decandra
13 -8.592 114.268 36.31 14.13 0.29 S. Alba
14 -8.590 114.265 22.57 5.72 0.09 C. Tagal
15 -8.598 114.282 48.83 19.54 0.20 R. Apiculata
16 -8.597 114.282 48.20 16.73 0.17 R. Apiculata
17 -8.597 114.278 41.30 19.06 0.15 S. Alba

18 -8.595 114.276 34.23 16.12 0.27 S. Alba
19 -8.593 114.272 35.34 10.83 0.15 S. Alba
20 -8.592 114.273 22.78 5.96 0.18 C. Decandra

1120



This research obtained information about mangrove 

biomass content using the allometric method. The allometric 

formula used is not separated into formulas for leaves, twigs, 

and stems like in previous studies. However, it uses an 

allometric formula based on mangrove species. The 

allometric formula used is quite diverse because 14 

mangrove species have been obtained during fieldwork. The 

mangrove canopy is also not counted in biomass and carbon 

calculations because the allometry method only uses data on 

tree diameter at breast height (DBH). 
Mangrove biomass can be calculated using variables such 

as tree diameter and height data. In this research, the 

calculation of mangrove tree biomass data was not carried 

out destructively but using a tree diameter at breast height 

(DBH) data approach, which was then entered into the 

allometric equation. The largest carbon storage on land is 

generally found in the tree component. Different soil 

conditions between sites might impact this carbon stock 

discrepancy [24]. 

TABLE II 

BIOMASS AND CARBON STOCK

No 

Titik 

Biomass 

(ton/ha) 

Carbon 

(ton/ha) 

Dominant Species 

1 193.53 90.96 R. Mucronata
2 114.18 53.66 E. Agallocha

3 210.71 99.03 R. Mucronata
4 242.75 114.09 R. Mucronata
5 121.23 56.98 R. Mucronata
6 123.41 58.00 A. Officinalis
7 109.09 51.27 R. Apiculata
8 133.77 62.87 R. Apiculata
9 113.95 53.56 R. Apiculata
10 137.76 64.75 R. Apiculata
11 108.16 50.84 R. Mucronata

12 45.35 21.32 C. Decandra
13 63.94 30.05 S. Alba
14 27.36 12.86 C. Tagal
15 234.01 109.98 R. Apiculata
16 154.00 72.38 R. Apiculata
17 69.58 32.70 S. Alba
18 53.01 24.92 S. Alba
19 70.73 33.24 S. Alba

20 38.10 17.91 C. Decandra

B. AGC Estimation and Mapping

To minimize any suspicion from the processing results, a

normality test was carried out to determine the 

appropriateness of the data used in further analysis, namely 

correlation and regression. The requirement for parametric 

statistical analysis, namely regression, is that the data must 

be normally distributed. Table III shows the result of the 

normality test processing. The input data used is 20 data 

based on the number of samples that have been obtained. 

Normal or abnormal data can be determined from the values 

in the Dn and KS Tables. If the Dn value is more than the 
KS Table, namely 0.30, the data is considered abnormal, 

conversely, if the Dn value is less than 0.30, the data is 

considered normal, and further statistical analysis can be 

carried out. Based on these results, all input data produces 

Dn < KS Table values so that the 20 data used for further 

analysis have fulfilled the assumptions in parametric 

statistics-based research. From the results of the normality 

test processing, it can be concluded that the data that has 

been obtained is suitable for use in statistical analysis. 

TABLE III 

NORMALITY TEST 

Image Input 

Statistic 

Sample Mean StDev Dn 
KS 

Table 

Carbon 

Observed 

20 55.37 29.94 0.13 0.30 

Planetscope DVI 20 0.18 0.03 0.10 0.30 

Sentinel 2A DVI 20 0.17 0.04 0.16 0.30 

Landsat 8 

OLI 

DVI 20 0.20 0.03 0.10 0.30 

The correlation test is a statistical analysis technique used 

to find the relationship between two quantitative variables. 

This research examines the relationship between carbon 

values in the field and the vegetation index values used. The 

correlation coefficient (r) is a variable that can show the 

closeness of the relationship between two or more variables 

concerning the dependent variable. The significance level 

used in this research is 95% using the Pearson Product 

Moment correlation method. Correlation analysis was 

carried out to determine the relationship between vegetation 

index values and field carbon values. Input values that can 

pass the significance limit of the r value for the number of 
samples (n) and have a significant relationship with field 

carbon are used as input in empirical modeling through 

regression analysis. 

TABLE IV 

CORRELATION TEST 

Image Input Normality Data R 

Planetscope DVI Normal 0.82 
Sentinel 2A DVI Normal 0.85 
Landsat 8 OLI DVI Normal 0.70 

The regression results from the three multi-resolution 

images used by the Sentinel 2A image had the highest 

regression value of 0.7244, which means that as much as 

72.44% of the variation in field carbon values can be 

explained by pixel values from the DVI transformation. The 

equation that shows the relationship between the DVI index 
and carbon value is y = 1641.8x – 241.46. The Planetscope 

image has a regression value of 0.6732 with the equation y = 

1513x – 229.5, and the Landsat 8 OLI image has a 

regression value of 0.4905 with the equation y = 707.82x – 

84.84 (see Fig. 2). 

The carbon stock information obtained is the carbon value 

derived from the results of the previous regression equation 

from the vegetation index input used in each of the three 

images so that the pixel values in the image are the carbon 

value information itself. Based on this equation, the 

vegetation index pixel values that reflect vegetation, 

especially mangroves, are then added up to obtain biomass 
information at the research location. Thus, the carbon stock 

information obtained is a carbon value from pixel values. 

The number of pixel values that appear at the research 

location is information that contains carbon values. The 

resulting maps have different carbon stock levels, so the 

spatial distribution of carbon stock in each image is also 

different. 

1121



Fig. 2  (a) Planetscope; (b) Sentinel 2A; and (c) Landsat 8 OLI 

The spatial distribution resulting from PlanetScope 

images appears smoother than Sentinel 2A and Landsat 8 

OLI images because the spatial resolution of PlanetScope 

images is relatively high, namely 3 meters (See Fig. 3). 

Based on the carbon stock map that has been produced, the 

southern or lower part of the mangrove area has a higher 

carbon stock and is dominated by blue. This is possible 

because the vegetation index value of the mangrove area in 
the southern part is higher than the northern part. 

Meanwhile, the carbon stock of the south of the mangrove 

area tends to vary, shown in red, green, and blue, but is 

dominated by green. 

Fig. 3  Spatial distribution of carbon stocks PlanetScope imagery 

Like PlanetScope imagery, the spatial distribution map of 

carbon stocks in Sentinel 2A imagery is obtained from the 

DVI index. Apart from that, the spatial distribution of carbon 

stocks in the Sentinel 2A image is not too different from 

PlanetScope. The southern or lower mangrove area has 

higher carbon stocks and is dominated by blue. Meanwhile, 
carbon stocks in the southern mangrove area tend to vary, 

shown in red, green to blue. Differences in carbon stocks in 

the southern and northern mangrove areas are possible due 

to differences in the resulting vegetation index values. 

Based on the spatial distribution map created, the Landsat 

8 OLI image looks rougher than the other images used. This 

is because the spatial resolution of the Landsat 8 OLI image 

is relatively low, namely 30 meters. However, The temporal 

and spatial amplitude of spectral data from sensors, such as 

those from the Landsat series, allows the modeling of forest 

biomass and carbon with a resolution of up to 30 m [25]–
[27]. The spatial distribution of carbon stocks produced in 

the southern and northern mangrove areas is not too 

different. The map shows that the mangrove areas in the 

south and north have high carbon stocks, as shown in blue. 

This is possible because the resulting vegetation index value 

is higher, which can influence the estimated value of 

mangrove carbon stocks. 

Fig. 4  Spatial distribution of carbon stocks Sentinel 2A imagery 

Fig. 5  Spatial distribution of carbon stocks Landsat 8 OLI imagery 

The total carbon stock estimation results were obtained 

from the best regression equation. So, the estimate of total 

carbon stock results from adding 10 points is used in 

regression analysis or carbon stock modeling. From these 
results, the estimate of the total carbon stock for each image 

is different. 
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TABLE V 

COMPARISON OF TOTAL ESTIMATION RESULTS 

No Planetscope Sentinel 2A Landsat 8 OLI 

1 66.58 58.67 64.86 
2 68.70 60.70 70.88 
3 50.57 58.90 50.05 
4 57.98 64.83 61.49 
5 25.05 48.63 51.55 
6 61.26 57.40 61.15 

7 48.77 48.31 43.43 
8 55.54 50.43 51.20 
9 44.01 49.66 22.74 
10 56.82 51.70 56.23 

535.27 ton 549.23 ton 533.57 ton 

Based on the table above, it can be seen that the estimated 

total carbon stock value in the Landsat 8 OLI image has the 

lowest total estimate. In contrast, the Sentinel 2A image has 

the highest total estimate. This is because the carbon stock 

value in PlanetScope imagery has a range of between 25 – 

68 tons/ha, Sentinel 2A imagery has a range of 48 – 64 

tons/ha, and Landsat 8 OLI imagery has a range of between 

22 – 70 tons/ha. Even though the maximum value of the 

carbon stock range in the Landsat 8 OLI image is higher 

than the other two images, the Sentinel 2A image has a 

carbon value for each point greater than the other images 

used in this research. Higher mangrove species diversity in 

rehabilitated mangroves may support higher productivity and 

biomass carbon stocks [28], [29]. 

C. Accuracy

Mapping of mangrove carbon stocks in the Bedul

Mangrove Area, Banyuwangi Regency produced three maps 

from each image used in this research, which are estimates 

or estimates. This requires an accuracy test to see the 

accuracy of carbon stock estimates from the three images 

that depict the carbon stock information produced. accuracy 

assessment is often discussed because it determines model 

reliability [30]The accuracy test process uses 10 sample 

points taken during fieldwork, which are not the sample 

points used to build the regression equation. The accuracy 

test results of the input vegetation index in each image 
produce different SEE values. 

TABLE VI 

ACCURACY TEST 

No Field Carbon (y) 
Planetscope Sentinel 2A Landsat 8 OLI 

Carbon prediction (y‘) (y-y‘)2 Carbon prediction (y‘) (y-y‘)2 Carbon prediction (y‘) (y-y‘)2 

1 99.03 43.41 3093.61 26.01 5332.64 21.89 5950.44 
2 62.87 64.66 3.19 58.67 17.62 69.30 41.35 
3 32.70 56.90 585.35 46.08 546.72 57.25 602.71 
4 24.92 57.34 1051.08 60.01 1231.89 52.97 787.29 

5 53.66 59.54 34.48 54.47 0.65 62.48 77.73 
6 56.98 49.53 55.45 51.50 30.08 48.86 65.98 
7 58.00 53.86 17.22 52.81 26.96 45.25 162.78 
8 51.27 37.69 184.55 34.57 279.00 36.98 204.45 
9 53.56 67.78 202.34 60.38 46.54 70.93 301.89 
10 12.86 64.50 2666.58 60.36 2255.77 61.67 2391.32 

31.41 34.94 36.38 

Based on the SEE accuracy test results of the three 

images, the PlanetScope image has the lowest SEE value 

compared to other images. The SEE value for PlanetScope 

imagery is 31.41 tones/ha, Sentinel 2A imagery 34.94 

tons/ha, and Landsat 8 OLI imagery 36.38 tons/ha. From 

these results, the PlanetScope image has a lower value than 

the three images. This reflects that the PlanetScope image 

has the highest accuracy or has good accuracy compared to 

other images that have been tested. These findings align with 
previous studies that reported similar performance of 

PlanetScope imagery in estimating forest AGB [31] while 

the Landsat 8 OLI image has the lowest accuracy value 

because the SEE value of this image is the highest compared 

to other images. The best AGC empirical model was 

obtained from PlanetScope and the PlanetScope model 

contributed the most to improving the accuracy of AGB 

estimates [32], [33]. The range of predicted carbon values in 

PlanetScope imagery ranges between 37.69 – 67.78, Sentinel 

2A imagery between 26.01 – 60.38, and Landsat 8 OLI 

imagery between 21.89 – 70.93. In addition to the accuracy 

test using SE, in this study, the accuracy test used to estimate 
carbon stocks on the surface of mangroves was carried out 

using a 1:1 goodness of fit plot. The function of this 

accuracy method is to try to see whether the estimated data 

pattern and whether the accuracy test sample has an 

overestimated or underestimated pattern by looking at the 

slant of the linear line of the sample plot, which is bounded 

by the red line as the ideal value of 1:1 between the field 

value and the estimate. If the distribution of the linear plot is 

biased toward the image estimation data, then overestimation 

and underestimation occur when the linear plot is biased 

toward field data. 
Based on the results of accuracy tests using a 1:1 

goodness of fit plot for each image, the distribution pattern 

of mangrove carbon stock estimates shows that the entire 

model in mapping mangrove carbon stocks is over-

estimated. This can be seen from the distribution of points, 

which tend to be above the line. The overestimated results 

are possible because more objects around the mangrove, 

especially canopy density, are recorded by remote sensing 

sensors compared to tree diameter as input for field carbon 

results. In the accuracy test results of the 1:1 goodness of fit 

plot, the R2 value is very low compared to the R2 value for 

the carbon stock model. A low R2 value indicates that some 
plots with high vegetation index values do not always have 

high carbon stocks (See Fig.6). 
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Fig. 6  Plot goodness of fit 1:1 from (a) Planetscope; (b) Sentinel 2A; and (c) Landsat 8 OLI 

The composition of mangrove species dramatically 

influences the relationship between these two parameters. 

Morphologically, the size of mangroves varies between types, 

causing carbon stocks to vary. Thus, the dominant mangrove 
type dramatically determines the size of carbon stocks. 

IV. CONCLUSION

The total carbon obtained from PlanetScope imagery was 

535.27 tonnes, Sentinel 2A imagery was 549.23 tonnes, and 

Landsat 8 OLI imagery was 533.57 tonnes. Among the three 

images used, based on Sentinel 2A statistical analysis 

reflects the possibility of overfitting or the best with higher r 
and R2 values in the calculations. However, based on SE 

accuracy tests, PlanetScope has better accuracy than the 

other two images. Apart from that, the accuracy test results 

using a 1:1 goodness of fit plot for each image, the 

distribution pattern of mangrove carbon stock estimates 

shows that the entire model in mapping mangrove carbon 

stocks is over-estimated.  
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