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Abstract—The maintenance of large-scale photovoltaic (PV) power plants has long been a challenging task. Currently, monitoring is 

carried out using electrical performance measurements or image processing, which have limited ability to detect faults, are time-

consuming and costly, and cannot pinpoint the defect's precise location quickly. To address these challenges, this research focused on 

using deep learning techniques to classify defect and non-defect PV panels. The application provided deep learning algorithms capable 

of image classification in various classifiers. The image dataset was carefully curated and split into training and development datasets 

during the training model to ensure the highest accuracy for the prediction of the presence or absence of defects on the PV panel. 

Statistical measures, which are the average accuracy for the training model and average prediction, were employed to evaluate the 

classification performance of the defect PV panel model. The results demonstrated a remarkable total accuracy of model 99.9% for 

each class, and prediction results showed that almost 70% of defect PV panels were detected from the testing dataset. Furthermore, a 

comparative analysis was conducted to benchmark the findings against other algorithms. The practical implications of this research 

are significant, showcasing the effectiveness of deep learning algorithms and their compatibility with machine vision applications for 

the classification of defect PV panel images. By leveraging these techniques, solar farm operators can significantly improve maintenance 

management, thereby enhancing the efficiency and reliability of solar power generation and potentially saving significant costs. 
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I. INTRODUCTION

Over the past decade, solar PV energy, a clean and 

sustainable energy source, has garnered significant attention 

and experienced substantial global development, driven by 

escalating environmental pollution and the energy crisis. [1]. 

As stated in [2], in many nations, photovoltaic power 

generation has rapidly advanced to become a clean, low-
carbon energy source with excellent price competitiveness. 

Ensuring the reliability of PV panels is essential for 

optimizing energy output and reducing maintenance costs. 

[3]. The intensity of the incoming solar radiation, surrounding 

temperatures, the PV panel's tilt, wind speed, the panel's 

mounting configuration, partial shading, dust buildup, and 

fault situations in the panels all affect the condition of the PV 

Panel. [4]  

However, manual visual inspection of PV panels is time-

consuming and prone to inaccuracy. According to the 

International Energy Agency (IEA), the capacity of all 

renewable energy sources will increase by 50% globally 

between 2019 and 2024, with solar PV making up 60% of the 

capacity. To solve this issue, machine vision and deep 

learning algorithms have gained importance in automating the 

detection and categorization of defects in PV panel images 

[5]. This study aims to investigate the classification of defect 

PV panel images using advanced technology deep learning 

algorithms, thereby leading to more efficient and accurate 

inspection processes [6]. By that, defects can be spotted early 

using machine vision and intelligent models. 
Two primary approaches are utilized to detect the invisible 

defect types. They consist of manual electrical testing, which 

includes current-voltage (IV) curve analysis at the module and 

string levels, and aerial and ground-based infrared 

thermography (IRT) imaging examinations [7]. Photovoltaic 

modules may acquire faults that, if found in time, can be 

corrected; however, this can significantly reduce energy 

1528

JOIV : Int. J. Inform. Visualization, 8(3-2): IT for Global Goals: Building a Sustainable Tomorrow - November 2024 1528-1535



production and occasionally even safety concerns. 

Localization, online issue detection, and fault diagnosis 

during field operations are significant challenges, particularly 

for large-scale systems [8]. 

Photovoltaic panels (PV) may have several defects which 

could affect their effectiveness and durability. The formation 

of cracks and fractures in the PV panel's cells or modules, 

which can be caused by mechanical stress, temperature 

cycles, or external impacts, is one frequent problem [9]. 

Another problem with PV panels is delamination, which 
happens when layers inside the module separate and hurt 

electrical performance [9]. There were also defect PV panels 

when they got hot spots. The localized areas with higher 

temperatures inside the solar cells often come on by shading 

or cell mismatch, and they can result in cell deterioration and 

decreased overall panel performance [10]. There are several 

reports in the literature regarding the severe environmental 

conditions that can severely affect the PV modules’ 

performance. Among all the environmental conditions, 

humidity, heat, extreme weather, dust, and cloud shading 

affect the PV modules’ performance drastically and may 
degrade their lifetime [10,11,12,13]. It is also reported that 

snail trails due to water vapor [14] can be the cause of 

discolorations on solar cells and indicators of cell cracks. 

Another issue with PV panels is potential-induced 

degradation (PID), which develops because of voltage stress 

between the solar cells and the ground and results in 

performance degradation over time [12]. 

Another defect that affects PV panels is back sheet 

degradation since it shields the modules from the elements. Its 

deterioration may result in moisture infiltration and 

subsequent cell deterioration [13]. When solar cells are first 
exposed to sunlight, they experience light-induced 

degradation (LID), which temporarily affects their 

performance but recovers over time. It results from boron-

oxygen-related flaws [14]. Both defects may affect the 

performance of PV panels. 

Cracking on PV panels may also affect their performance 

in power consumption and thermal effects, destructing their 

module and reducing their life reliability [15]. In addition, as 

seen in [16], defect detection is made by using Ghost 

convolution with Bottleneck CSP module as the hot spot is 

one of the common defects and got a higher percentage, 

followed by scratch, black border, broken and no electricity. 
Referring to most of the defects in PV panel images, this paper 

focuses on crack and scratch defects as they concern the most 

common defects and affect the functionality of PV panels. 

Besides all the types of defect PV panels, many ways have 

been used to classify defect or non-defect ones. One of them 

is convolutional neural networks (CNNs), which have 

emerged as powerful algorithms for distinguishing defect and 

undamaged photovoltaic (PV) panels [17]. By learning 

hierarchical patterns and features directly from images, CNNs 

excel at image classification tasks. A CNN is trained on a 

sizable dataset of labeled images to classify PV panels, 
including defect and non-defect panels. 

Next, an efficient Real-Time Multi Variant Deep Learning 

Model (RMVDM) to address the issue of detecting the faulty 

PV Panel is introduced [18]. The approach detects and 

localizes faults, including spotlights, cracks, dust, and micro-

cracks. The preprocessed images are then used with the Grey 

Scale Quantization Algorithm (GSQA) to extract features. In 

contrast, the extracted characteristics are learned using a Multi 

Variant Deep Learning model, which consists of multiple 

layers from various neural classes. Each class neuron is 

designed to assess Defect Class Support (DCS).  

The network gains the ability to distinguish between the 

visual characteristics of defects and non-defects, enabling it 

to categorize PV panels as either defect or non-defect. This 

automated approach has benefits, such as improved 

productivity, scalability for industrial applications, and 
flexibility for various defect kinds and image changes [19]. 

This approach is based on deep learning, specifically CNNs, 

and has been used to classify defects in PV panels, 

documented in scientific literature. 

One intriguing method for pretraining CNNs without the 

need for human annotations is self-supervised learning. Based 

on [20]. It includes contrastive learning, rotation prediction, 

and pretext tasks based on spatial context prediction. Self-

supervised learning techniques such as SimCLR++ and 

SwAV-ResNet showed remarkable improvements in 

classification accuracy by utilizing large-scale unlabeled 
datasets, even outperforming supervised methods in some 

cases.  

Another detection of PV defect is done by [21] based on a 

multi-spectral deep convolutional neural network (CNN). The 

light spectrum properties of the solar cell color image are 

analyzed, and the best CNN model structure is chosen. In 

various spectral bands, it was discovered that a range of flaws 

displayed distinctive traits that could be distinguished. 

Therefore, a multi-spectral CNN model was created to 

improve the model's ability to differentiate between 

complicated texture background features and fault features. 
As seen by [22], it includes two methods for automatically 

detecting these defects in a single image of a PV cell. The 

hardware requirements of the techniques differ, as determined 

by their different application contexts, so the more hardware-

efficient approach is based on hand-crafted features that are 

classified in a Support Vector Machine (SVM), and the more 

hardware-demanding approach uses an end-to-end deep CNN 

that runs on a Graphics Processing Unit (GPU). Both methods 

were trained using 1968 cells from high-resolution EL-

intensity pictures of monocrystalline and polycrystalline PV 

modules.  

Despite using the real image of the PV Panel, in [23], an 
Electroluminescence Image (EL) was used. It created a 

channel attention system and integrated both attention 

networks into a modified U-net architecture we call the multi-

attention U-net (MAU-net). As seen in [24], the EL image-

generating method blends GAN features with conventional 

image processing technology, and it can generate a sizable 

number of high-resolution EL picture samples. Then, a model 

based on a convolution neural network (CNN) for 

automatically classifying flaws in an EL image is explained. 

CNN has also been used in various research, especially for 

classification purposes. According to [25], it is used to 
automatically detect saw-mark defects in multi-crystalline 

solar wafers. A saw-mark defect is a serious fault in solar cell 

wafers that contains cutting tension that could lead to cracks 

in a thin silicon wafer. It also lowers the efficiency of power 

transmission, and as a result, early detection of saw-mark 
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faults in sliced solar wafers is critical in solar wafer 

manufacturing.  

Furthermore, reviewing the numerous leather flaws, their 

impact on leather quality, and advancements in visual 

inspection-based leather quality evaluation are other findings. 

It examines the most modern image analysis-based techniques 

for automatically identifying leather defects and weighs their 

advantages and disadvantages. This offers comprehensive 

advice for designing and implementing a machine vision-

based leather flaw detection system. On top of that, these 
recommendations were motivated by the success of recent 

deep learning-based systems for autonomous visual 

inspection in similar applications [26]. 

Next, according to [27], it presents a resource-constrained 

convolutional neural network (CNN) implementation in 

OpenMV Cam H7 Plus as an image detector that performs 

real-time plant disease classification. The images were trained 

on two distinct datasets for plant disease detection: the ESCA 

and Plant Village-augmented datasets. It was built with a 

Python-programmable machine vision camera for actual-time 

image acquisition and classification. It features an LCD to 
show the user the real-time classification response. 

As shown by Zhang et al. [28], hybrid convolutional neural 

networks (CNNs) are recommended to monitor the powder-

bed fusion (PBF) process. Based on the strengths of the CNN 

architecture, the suggested approach can automatically learn 

the spatial and temporal representative features from the raw 

images. The outcomes show that the recommended technique 

performs better than conventional methods with handcrafted 

features.  

Within deep learning, data augmentation is an important 

role that aims to improve model performance and 
generalization by generating enriched copies of the training 

data. Several modifications, such as flipping, rotation, 

zooming, and color alterations, are used to increase the 

adequate size of the dataset and create diversity. This 

procedure increases the model's robustness to real-world 

fluctuations while decreasing the risk of overfitting. While 

often utilized in computer vision applications, this technique 

can also be used for other data sources, such as audio and text 

[29]. 

As time passed and technology grew, deep learning was 

implemented in machine vision applications, which provided 

more benefits, especially in the industrial sector. Computer 
vision, often known as machine vision, has advanced 

significantly over the past five years, opening up a wide range 

of applications. Machine vision is widely utilized in industrial 

automation and quality control, where automated inspection 

and product assurance are two examples of such applications. 

Deep learning techniques have been applied in industrial 

inspection, stressing their efficiency in defect detection and 

improving production processes [30]. 

In [31], it seeks to offer a generalized technique for 

automatic material identification utilizing machine learning 

and vision technologies to improve the cognitive capabilities 
of industrial robots and machine tools. 4.0. It is created and 

processed to separate the red, green, and blue color 

components of the RGB color model from a dataset of the 

surfaces of four materials (aluminum, copper, medium-

density fiberboard, and mild steel) that need to be identified 

and categorized. The machine learning method is trained 

using these color components as characteristics. In addition to 

using a Support Vector Machine as a classifier, the generated 

data set also uses other classification methods like Decision 

Trees, Random Forests, Logistic Regression, and k-nearest 

Neighbor. 

Imaging machines can examine, recognize, and interpret 

images that resemble people with the help of a technique 

called machine vision [32]. Machine vision application to 

industrial processes is frequently driven by a desire to save 

costs by boosting productivity and efficiency, reducing errors 
to improve quality, or collecting data. Additionally, and 

maybe more importantly, technology might compensate for a 

lack of trained personnel or free people from hazardous, 

taxing, or exhausting industrial tasks [33]. 

Two types of machine vision applications exist within a 

Learning Factory in Brazil: a solution for quality control and 

a station for sorting [34]. The outcomes encompass 

heightened awareness of machine vision among students and 

industry members and the development of a solution that can 

extend beyond the Learning Factory into industrial 

applications.  
Medical image analysis has also been used extensively in 

machine vision, which helps with disease detection and 

diagnosis. Analyzing MRI scans showed the promise of 

machine vision in medicine [35] by demonstrating how 

combining deep learning models with other measures can 

improve the diagnosis of moderate cognitive impairment. 

Real-time monitoring and detection of suspicious actions also 

play a vital part in security and surveillance systems. Their 

study on using deep learning approaches for moving object 

detection and tracking emphasized the significance of 

machine vision in surveillance applications [36].  
Finally, machine vision has also been widely applied in 

agriculture for disease diagnosis, yield assessment, and crop 

monitoring. To highlight its function in precision agriculture, 

it concentrated on deep learning-based crop identification 

from remote sensing photos [37]. These examples highlight 

the extensive use of machine vision across many industries, 

made possible by ongoing developments in deep learning and 

computer vision research. 

Even so, CNN methods are used to classify PV panel 

defects; this paper will use the deep learning algorithm, CNN, 

in MIL software that consists of various classifier contexts. 

Plus, the model that has been generated will be utilized in 
machine vision applications in the future as machine vision is 

one of the primary technologies used in intelligent 

manufacturing and has effectively replaced artificial visual 

inspection [38]. 

II. MATERIALS AND METHOD 

A. Pre-trained Dataset for Machine Vision Application 

Figure 1 explains the whole process of classifying PV panel 

images. These activities involving various mediums and 
sources are also advisable and consulted by experts. It goes 

through until data training takes place in the MIL workspace. 

It focuses on using deep learning algorithms that build up 

together inside MIL. It is essential to have pre-trained model 

data before applying it to the prediction dataset. Pre-trained 

models provide an efficient solution in the field of deep 

learning, where the extraction of essential insights from 
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images is crucial. Activity 1 makes a great start in the 

preliminary studies in this paper. Many research and findings 

are found in various techniques and methods to achieve their 

objectives. Despite that, this paper is coming up with another 

finding. Based on that, the next activity was conducted. 

Based on the preliminary study, a few characteristics were 

counted to define the images to be put respectively in the 

categories for training purposes. Dataset images of PV Panels 

are collected thoroughly in defect and non-defect categories.  

In Activity 2, the data acquisition involving data collection 
and cleaning are involved in this work. The image is collected 

from online sources to get the suitable part of the PV panel to 

meet the defect detection accuracy and maximize the 

compatibility with MIL software. Data cleaning took part by 

choosing an image of the PV panel’s defect, which likely 

looks like a crack and scratch effect. 

 

 
Fig. 1  Steps On Classifying Defect and Non-Defect PV Panels 

 

Moving to Activity 3, every image undergoes an 

augmentation process consisting of converting it into a 

grayscale image, scaling, flipping, and rotating it to ensure it 

is fit to be trained in the MIL environment. To get the best 

result, all the dataset images are taken from various angles to 

show possibilities in real situations, which implements 

rotating and flipping the images.  All the images’ datasets 

have also been prepared in grayscale color and have the same 

size and image type file. The dimensions set are 190x150 and 

in JPEG format. These specifications are essential for 

succession in a created model and for the accuracy of 

prediction results in classifying the PV panels.  

Figure 2 and Figure 3 show the example for both classes of 

PV panels. The non-defect PV panel images are constant to 

strengthen the photos in good condition. In comparison, 

defect PV panel images are messing up with scratching and 

cracking effects. Moving to the next step in Activity 4, MIL 

uses deep learning as the classification technique. It involves 

a few layers of neural networks connected by neurons to help 
learn the features of the images. By that, MIL had prepared 

the corresponding environment, yet it is still revisable to meet 

any project requirement.  
 

 

Fig. 2  Image dataset for non-defect PV panel 

 

 

Fig. 3  Training dataset image for defect PV panels 

 

The training dataset is split into the development and 

training datasets. The Training Dataset is used to train the 

classifier context, while the Development Dataset, also 

known as the Dev Dataset, is used to verify the classifier 

context during the training. In this paper, 700 images are used 

in the training dataset for both categories. Then, MIL 

automatically divides it into two datasets by referring to the 
conditions that have been assigned. 

TABLE I   

ICNET CLASSIFIER CONTEXT 

 

Table 1 represents in MIL there are many classifiers to train 

the image dataset and created a model for classification.  The 

classifier is using CNN, that is well known in giving a 

satisfactory in recognizing design in the input image, such as 

lines, gradient and circle. Only two classifiers had been 

chosen to find the best fit to classify defect and non-defect PV 

panels, ICNET Small and ICNET Medium. Both are designed 

Type  Classifier Context 

ICNET Small  

Medium 

XL 

Mono XL 

Color XL 
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specifically in MIL for deep learning process together with 

image dataset specifications especially on pixels range. 

Referring to Activity 3, the pixels stated are in the range 

that is suitable with ICNET Small and ICNET Medium, which 

need minimum receptive pixels of 43 and 83 pixels, 

respectively. Besides, the compatibility is for grayscale 

images, which made it a strong reason to compare these two 

classifiers. ICNET XL had a higher minimum receptive pixel, 

which may concern the time constraint in the training dataset. 

ICNET Mono and ICNET Color XL were made for color 
images with the purpose of transfer learning. 

Both classifiers, ICNET Small and ICNET Medium, used 

the same dataset to see differences in the percentage of the 

average training model. In addition, it took different estimated 

times to finish the training depending on factors such as the 

number of images, the size of each image dataset, and the 

complexity of the image dataset. 

TABLE II  

PERCENTAGE FOR AVERAGE TRAINED MODEL 

 

Table 2 showing the percentage for average trained model 

which showing the accuracy on training the image dataset to 

be known in their category. In the average trained model, both 

classifier showing the success of training in higher percentage 

for class 1 which are detected as defect PV panel images. 

Whereas, for class 0, non-defect PV panel, the classifier 

ICNET Small shows a higher percentage of success training 

compared to ICNET Medium. Based on this percentage of 
success training, it may affect the result on testing data while 

using this model. 

The model is produced after the process of training image 

dataset with relative classifier. It will be compiled and saved 

in MIL library class known as MClass. By having this model, 

prediction testing can be done to see how well the model can 

work to classify the PV panels. Another testing image dataset 

will be used in this model by mixing all the images with an 

indicator of defect and non-defect PV panels. All these 

processes will be executed in Activity 5 and briefly explained 

in the results and discussion section 

B. Matrox Imaging Library (MIL) 

Machine vision technology for automated visual inspection 

is becoming more capable and practical through the 

development of artificial intelligence. This is particularly true 

of machine learning through deep learning, as this technology 

imitates how the human brain interprets visual data. Still, it 

does it quickly and robustly as a computerized system. By 

limiting production costs and raising consumer satisfaction, 

technology helps manufacturing companies maintain quality. 
In situations where there are complicated and varied 

imaging settings, deep learning technology excels at 

applications such as identification and defect detection. The 

system still benefits from traditional image processing and 

analysis to identify regions of interest inside images to speed 

up the total process and make it even more robust. These 

evolving technologies were so welcoming to make good use 

of a better experience in many sectors. 

Matrox Imaging Library acts as a machine vision 

application in this research. It is a machine vision and image 

analysis software development kit with an interactive MIL 

CoPilot environment. For training, MIL CoPilot offers 

dedicated workspaces for classification, one of the deep 

learning neural networks techniques. These workstations 
include a condensed user interface that only displays the tools 

required to complete the training assignment, such as an 

image label mask editor, image annotation, image editing 

region, and many more functions specifically designed for 

deep learning purposes. An additional specialized workspace 

is offered to batch-process photos from an input folder to an 

output folder. Once an operation sequence is defined, it can 

be translated into executable programmed code in any 

language that MIL X supports. The programmed code may be 

presented as a command-line executable or dynamic link 

library (DLL) and it may be bundled as a Visual Studio 
project, which may thus be built without leaving MIL CoPilot.  

MIL provides several advantages which is why it had been 

highlighted in this research. It eliminates the need for starting 

coding from scratch, especially for deep learning algorithms, 

while also offering an efficient, consistent, and easily 

understandable user interface. Moreover, the models created 

using the library are compatible with commonly used 

programming languages such as Java, C#, C++, and Visual 

Basic, ensuring broader applicability. The library further 

simplifies coding by generating code with the appropriate 

functions directly from the MIL workspace, enhancing 
workflow efficiency and ease of use. 

The workspace that contains all the work completed during 

a session is preserved for future use and collaboration with 

colleagues. This application was always sought for 

improvements to meet the latest technological requirements. 

Besides, there was great team support to assist all users in 

getting to know more and making full use of this application. 

 

 

Fig. 4   Matrox Imaging Library environment 

Figure 4 shows the user interface for starting up the 

application. Deep learning techniques were used with 

machine vision applications, which gained interest and 

became one of the best tools and technologies available today. 

They never make humans less but add more help to daily 

tasks. 

Classifier 

(ICNET) 
PV Panel Class 

Avg Trained Model 

(%) 

Small 
Class 1 (Defect) 99.75 
Class 0 (Non-
Defect) 

83.45 

Medium 

Class 1 (Defect) 99.31 

Class 0 (Non-
Defect) 

63.46 
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III. RESULTS AND DISCUSSION 

This section assesses the model's effectiveness developed 

from the training dataset using several classifier contexts. The 

training dataset for this study consists of PV panel images that 

reflect the defect and non-defect categories. The numerical 

results demonstrate the suggested model's precision and the 
PV panels' classification result. A few images of PV panels 

consisting of both defect and non-defect PV panels were set 

in one dataset to see how the model would help classify the 

PV panel images.  The testing image dataset will be tested in 

another workspace, and some steps will be assigned until the 

result is achieved. Predictions on the class of PV panels are 

expected to be accurate based on the trained model. 

There are some class libraries available in the MIL 

workspace. When importing the test dataset image into the 

new workspace, the class library for prediction, 

MClassPredict, must be recalled together with another 
predefined class. This is one of the necessary steps to 

differentiate the workspace into a prediction environment, and 

every class has an important function to ensure the trained 

model progresses well.  

The model created will be restored in the current 

workspace to run the prediction test together with the new 

testing image dataset. In conjunction with that, some of the 

class libraries have also been set up to be prepared before the 

testing by referring to guidance from MIL experts and the 

suitability of achieving the objective of this research. 

Everything must be set up in sequence. Then, the prediction 

test is good to go. 
The model is created in another workspace; it must be 

saved as a MIL-type file to be implemented in the MIL 

workspace. The prediction dataset is tested using the training 

model developed to ensure the PV panel images can be 

classified accurately into defect and non-defect PV panels. 

The testing image dataset thoroughly reviews the training 

model and predicts that it will be placed in its class. This result 

focuses on the value of accuracy in prediction testing when 

comparing training models from different classifiers. The 

result of the testing image dataset will be explained in the next 

paragraph. 

TABLE III  

RESULT OF AN AVERAGE TEST MODEL 

 

Table 3 shows the result of an average test model for 100 

images of testing dataset. Classifier ICNET Small for defect 

PV panel has same percentage for trained and test model 

while non-defect PV panel have a very slight difference value. 

Compared with ICNET Medium, both shown differences 
between the trained and test model. Figure 5 shows chart for 

the result after testing image dataset is running through the 

model created. The most critical part in this work is to classify 

the defect or non-defect PV panel.  

Thus, classifier ICNET Small has shown higher accuracy 

based on the trained model and the testing model from 100 

images testing dataset in classifying the PV panels into Class 

1 (Defect) and Class 0 (non-defect). This strengthens the 

result on the reliability of the trained model in classifying the 

PV panels into their respective class. Varying characteristics 

and factors of the classifier itself, as well as the type of images 

that have been used in this research, may influence the results. 
Thus, future work can be done in many other ways. 

 

 
Fig. 5  Comparison Chart Model 

IV. CONCLUSION 

In this paper, an algorithm from machine vision application 

for classifying PV panel image with respective image dataset 

was proposed. First, it was determined that the images dataset 

was suitable for use in the MIL environment by performing a 

prescribed data acquisition and specific data augmentation. 
Then, a trained model was created using a classification 

strategy that utilized a deep learning classifier that was built 

into MIL. Using the ICNET Small classifier's training model, 

a higher degree of accuracy is attained when identifying 

photos of PV panels without defects. Multiple perspectives 

are used to evaluate the model's performances, mentioning the 

type of classifiers and the total of dataset images help in 

demonstrating the model's effectiveness.  

Future work will consider a range of research routes, many 

of which will require more study and development work. 

First, MIL specializes in image classification with five types 

of ICNET classifiers, while this current research compares 
just two. Another classifier test can be done concerning the 

minimum requirement of pixels, coloring images, number of 

datasets, and type of learning, complete or transfer. Then, the 

image dataset can be tested to predict the classification of PV 

panel images. 

All the models created can be used on another platform or 

machine that is compatible with it. Also, the model can be 

trained again to improve its classification performance based 

on the learning and training dataset. These advantages are 

wisely helpful in concerning the quality of PV panels, which 

are best before deploying them for their primary purpose as a 
renewable source. 

99,75 83,45 99,31 63,46

99,75 83,46 99,2 63,47
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Comparison Chart between Training and Test 

Model

Avg Trained Model (%) Avg Test Model (%)

Classifier 

(ICNET) 

PV Panel 

Class 

Avg Trained 

Model (%) 

Avg Test 

Model (%) 

Small 

Class 1 

(Defect) 
99.75 99.75 

Class 0 (Non-
Defect) 

83.45 83.46 

Medium 

Class 1 
(Defect) 

99.31 99.20 

Class 0 (Non-
Defect) 

63.46 63.47 
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