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Abstract— In this paper, we briefly review the basic concepts of quantum computation,  entanglement,  quantum cryptography and 

quantum fourier  transform.   Quantum algorithms like Deutsch Jozsa, Shor’s   factorization and Grover’s data search are developed 

using fourier  transform  and quantum computation concepts to build quantum computers.  Researchers are finding a way to build 

quantum computer that works more efficiently than classical computer.  Among the  standard well known  algorithms  in the field 

of quantum computation  and communication we  describe  mathematically Deutsch Jozsa algorithm  in detail for  2  and 3 qubits.  

Calculation of balanced and unbalanced states is shown in the mathematical description of the algorithm. 
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I. INTRODUCTION 

The rapid growth of computer technology is based on 
standard principles of quantum theory. Today both 
theoretical and practical machines works based on 
classical physics. However physics tells us that the 
quantum computation arena pretty differently. An 
important goal of quantum algorithms is work more 
efficiently than classical algorithms to solve the same 
problem. Fourier transformation techniques are used to 
achieve the exponential speed-up. Quantum computational 
speed-up has prompted an awful lot research to build 
quantum computer systems, to locate new algorithms, to 
quantify the rate-up, and to separate classical from 
quantum computation. One important intention is to 
recognize the purpose for quantum computational speed-
up, to understand what assets are needed to do quantum 
computation [1]. Small quantum-mechanical systems are 
simulated on quantum computers, however simulation of 
classical Turing machines of this type can't be predicted to 
be efficient. A quantum computers makes direct use of 
Qubits to encode information and perform operation on 
data according to the laws of quantum mechanics [2]. The 
performance of the algorithms which run on quantum 
computer is much better than any classical algorithm.  

Quantum systems have the strength to revolutionize 
information technology by employing quantum computers 
and  quantum cryptography [3, 4]. In general quantum 
networks [5, 6] have various application ranging from 
distributed quantum computing [7, 8] and securing data 
from multiple function evaluation [9, 10]. Over a period of  

 
20 years, the theory quantum algorithms has been an 
interesting research area for researchers. Although huge 
quantities of quantum computers are not yet implemented 
to replace conventional computers. The race for quantum 
computational supremacy, Google’s approach and IBM  
challenge are examined. The time line of quantum  
technologies from 2015 to 2045 is shown [11]. 

II. BACKGROUND IN THEORETICAL AND EXPERIMENTAL 

DEVELOPMENT OF QUANTUM  COMPUTER 

In the early 1930’s the proposed quantum mechanical 
computers were power full and produced surprising results 
than classical computers. First mathematical computation 
proven in the papers of Chruch and Turning in 1936 
underlies the subsequent development of theoretical 
computer science became the distinction between 
computable and non computable functions. First 
mathematical computation, which underlies the 
subsequent development of much theoretical computer 
science, was the distinction between computable and non 
computable functions shown in papers of Chruch [1936] 
and Turning [1936]. The result of these papers is Chrch’s 
thesis. It concludes that a turning machine can simulate all 
quantum computing devices. Conjugate coding is first time 
introduced by Stephen Winser in the year 1960’s. However 
the long term security offered by many encryption systems. 
It was further developed as public key cryptography by 
Rabin and Even. Also in 1973 Alexnde Holevo shows that 
n qubits cannot carry more than n classical bits of 
information which is referred as Halevo’s bound. In 1975 
R P Poplavskii showed the computational infeasibility of 
simulating quantum systems on classical computers due to 
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superposition principle [12]. Further in 1980’s Paul 
Benioff describes Hamiltonian Models of quantum 
mechanical computers. Yurimanin proposed further 
implementation work on quantum computing [13, 14]. 
Further in 1982 Feynman suggested that quantum 
computer might be useful for simulating other systems of 
quantum computing [15, 16]. In 1984 Charles H. Bennett 
has further played a major role in reversible computing 
[17]. Next it introduced the Toffli gate which provides a 
universal set of classical computation with the NOT and 
XOR gates [18]. Several years later a quantum Turing 
machine was described by Deutsch and confirmed that 
quantum computers can be constructed. In 1985 Deutsch 
developed a notation of quantum mechanical turning 
machine. Bernstein, Vazirani and Yao showed that 
quantum computers can do anything a classical can do with 
at most a small (logarithmic) slow down [19]. Deutsch and 
Josza generalized this hassle to one that can be solved 
exactly on a quantum computers in polynomial time, 
however for which an precise solution on a classical 
computers calls for exponential time [20, 21, 22]. 

The early 1990’s, first truly quantum algorithms 
explained, these algorithms with no classical analog that 
were probably better than any possible classical algorithms. 
The first of these was Deutsch’s algorithms, later 
generalized to the Deutsch-Jozsa algorithms [21]. These 
initial quantum algorithms were able to solve problems 
effetely with certainty that classical techniques can solve 
effectively with high probability. The same problem can 
be solved using classical algorithm with high probability 
in polynomial time. The example for polynomial 
separation between quantum and classical computation 
was Bernstein and Vazirani [23]. 

Daniel R Simon's polynomial time algorithm for a 
quantum computer distinguishes computable random 
function from one class and random number of other 
function where as same task founds to be difficult in the 
classical turning machine and would take exponential time 
[24]. The runtime of Simon’s first quantum algorithm is 
found to be optimal and exponentially faster than any 
equivalent classical algorithm [25]. Despite the fact that 
his problem seems to be very abstract, it corresponds to 
large number of problems in the field of computer science, 
which includes calculating discrete logarithms and 
factorization of integers into primes [26]. Quantum 
computers can solve non-oracular problems with 
exponential speedup over the well known classical 
algorithms. Finding discrete logarithms and factoring 
integers are the two problems which are hard to run on 
classical computers and they have been used frequently in 
the proposed cryptosystems. Efficient algorithms were 
given by peter Shor in 1997 to solve these problems on 
quantum computer [27]. To solve both oracular and non-
oracular problems with exponential speedup many 
generalizations and variations of these algorithms have 
been discovered by many researchers [28, 29, 30, 31, 32, 
33, 34, 35, 36]. Quantum Fourier transform (QFT) is base 
for these algorithms. Mathematical computation such as 
factoring of a large integer could be done on a quantum 
computer. The performance of these tasks is outstanding 
compare to their performance on classical computer. A 
novel methods were proposed for implementing public-
key cryptosystems but its security is depends on 
factorization of large integer. Here secure communication 

can be established with digital signatures instead of 
carrying the keys [37]. The invention of the Shor algorithm 
provides exponential speed-up for number of algorithms in 
public-key cryptosystems because no classical algorithm is 
faster than Shor’s factoring algorithm i.e factorization of 
integer into prime numbers. 

Lov K. Grover presented a quantum mechanical 
algorithm to search a particular item in large data base. For 
example to find someone’s phone number in telephone 
directory containing N names with the probability of 0.5 
classical algorithm will need to see minimum of N/2 names, 
where as Grover’s quantum search algorithm will 
complete the same task in �√� steps [38, 39]. These two 
algorithms created lot of interest in building quantum 
computer. After this, research in developing quantum 
algorithms was in steady status for first few years. Further 
in the year 1998, using Deutsch’s algorithms first 
experimental 2-bit qubit NMR quantum computers are 
demonstrated by Jonatha A. Jones and Michle Mosca. For 
instance, in 2001 researchers at NMR Computers reported 
the successful implementation of Shor’s algorithm in a 7-
qbit quantum computers [40]. Todd D. Pittman and Jeremy 
L. O’Brien demonstrate quantum controlled-not gates 
using only linear optical elements in the year 2003 [41]. 
From the last decade, entire work carried out in practical 
implementation of quantum computers compare to 
theoretical work. First quantum bytes (qubyte) and pure 
state NMR quantum computers were built in the year 2004. 
In the same year Jian Wei group constructed five photon 
entanglement, minimal number of qubits required for 
universal quantum error correction [42]. Next further in the 
year 2006 Theoretical physicist and experimentalists have 
presented 12 qubits quantum information processing 
extending from 7 qubits to 12 qubits, despite of that, it also 
explains decoherence. 

III.  BASIC CONCEPTS IN QUANTUM COMPUTATION 

Quantum bits or Qubits are used to encode the 
information in the form of ones and zeros in quantum 
computing. They are in the superposition state with the 
measurable value of 1 or 0. The mathematical 
representation of superposition state of the qubit with the 
base vectors |0〉 and |1〉 is given by 

|�〉 = ��|0〉 + ��|1〉  
Where ��  is the complex scalar amplitude of 

measuring |0〉 and  ��  is the amplitude of measuring 
the value |1〉. The normalizing condition  for complex 
coefficients is  ��� + ��� = 1. |�〉 is the unit vector. Its 
means that ‖|�〉‖ = 〈�|�〉 = 1 i.e.  |��|� + |��|� = 1. 

The most computational basis is used in the 
quantum computing. 

|0〉 = �1
0�,        |1〉 = �0

1� 

The base vectors can be represented as  

|+〉 = |0〉 + |1〉
√2 = 1

√2 � 1 
 1 � ,               

 |−〉 = |0〉 − |1〉
√2 = 1

√2 �  1−1�         
A Qubit can be expressed as  

|�〉 =  ��|0〉 + ��|1〉   

 =  ��
|+〉  + |−〉

√2 + ��
|+〉  − |−〉

√2  
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= �� + ��
√2  |+〉 + �� + ��√2  |−〉 

It's tough to do any exciting computation with only a 
single qubit. Multiple qubits are used to form quantum 
registers. The length of quantum registers determines the 
amount of information they can carry. Since every qubit in 
quantum register is in the superposition state, the n qubits 
register is in the superposition of all possible 2� states. It 
is represented as  

|��〉 = � ��|�〉����
���  

           Using above expression the states of the qubit register  for � = 3 is as follows: 

|� 〉 = � ��|�〉�!��
���  

= � ��|�〉 ="
��� � ��|0〉 +"

��� ��|1〉 + ��|2〉 + ��|3〉 + ��|4〉
+ ��|5〉 + ��|6〉 + ��|7〉 

 

The representation of integer in the string form is 

 

|0〉 = |000〉 = |0〉  ⊗ |0〉 ⊗ |0〉 = �10� ⊗  �10� ⊗ �10�          
= (1 0  0  0  0  0  0  0)* 

|1〉 = |001〉 = |0〉  ⊗ |0〉 ⊗ |1〉 = �10� ⊗  �10� ⊗ �01�
= (0  1  0  0  0  0  0  0)* 

|2〉 = |010〉 = |0〉  ⊗ |1〉 ⊗ |0〉 = �10� ⊗  �01� ⊗ �10�
= (0 0  1  0  0  0  0  0)* 

|3〉 = |011〉 = |0〉  ⊗ |1〉 ⊗ |1〉 = �10� ⊗  �01� ⊗ �01�
= (0  0  0  1  0  0  0  0)* 

|4〉 = |100〉 = |1〉  ⊗ |0〉 ⊗ |0〉 = �01� ⊗  �10� ⊗ �10�
= (0 0  0  0  1  0  0  0)* 

|5〉 = |101〉 = |1〉  ⊗ |0〉 ⊗ |1〉 = �01� ⊗  �10� ⊗ �01�
= (0  0  0  0  0  1  0  0)* 

|6〉 = |110〉 = |1〉  ⊗ |1〉 ⊗ |0〉 = �01� ⊗  �01� ⊗ �10�
= (0 0  0  0  0  0  1  0)* 

|7〉 = |111〉 = |1〉  ⊗ |1〉 ⊗ |1〉 = �01� ⊗  �01� ⊗ �01�
= (0 0  0  0  0  0  0  1)* 

 

 

IV.     QUANTUM CRYPTOGRAPHY 

Cryptography is art of writing mathematical logics to 
encrypt and decrypt the data. It enables us to transmit or 
store sensitive information is insecure like internet.  So that 
it cannot be reached by anyone except the intended 
recipient. Let us understand with an example, suppose we 
need to send information “ Good Morning ”. This 
information every letters are replaced with 4th successive 
letter in the alphabet. The encrypted message will be 
“ JRRG PRUQMQJ ”.  To decrypt our message we have 
to go back 4 letters in the alphabets using the letter that we 
want to decrypt. The transformed image is done in this way, 

 

 
 

This process of converting information in garbage non 
readable format is called encryption. The process opposite 
to this is known as decryption. Decryption is achieved only 
with the help of key which is only known by the legitimate 
recipients. The key is used to decrypt the hidden message. 
This makes transmission of information more secure 
because even if the hacker mange to get the    information 
it will not sense to them information stored in the form of 
CIPHER TEXT. 

Cryptography is highly intensified field in securing the 
data. Breaking cipher text is a just primary pencil and paper 
puzzle in school level. There is an abundant applications 
in the field of quantum cryptography. It is a popular 
emerging field in technological age, which includes 
broadcast, internet, e-mails, network communication cell 
phones, business finances and private confidential 
information. 

A quantum computer threatens the basic idea of 
cryptographic security, because it can perform certain 
kinds of computations that cannot be done by conventional 
computers. Cryptographic keys can be broken quickly by 
quantum computers and allow an eavesdropper to hack the 
secured information. Recently two cryptographic cipher 
are defined, asymmetric cipher [43]. Symmetric 
cryptosystem is one in which decryption and encryption is 
done on the same key where as in asymmetric 
cryptosystem decryption and encryption processes 
performed on the mechanism of two different keys  [44]. 

 



62 
 

 
 

Techinque involved in cryptography 

 

• Symmetrical (secret-key) 

cryptosystems 

 

 
 
In symmetric cryptography both receiver and sender 

perform the task with the same single key. For example 
Alice sends a message to Bob. Alice encrypted plaintext 
message has to be decrypt by Bob using the same key, 
which is used by Alice while encrypting. The key need to 
be kept secret, it means only Alice and Bob should know 
it. It is very difficult task to exchanging secrete keys over 
a public networks. Therefore asymmetric cryptography 
was introduced to solve this single key distribution 
problem. 

• Asymmetrical (public-key) 

cryptosystems 

 

 
 
 
In this method, each individual has a private key and 

public key. Two distinct keys are used for encryption and 
decryption. For instance, if Bob wants to encrypt the 
message Alice must send her public key to Bob and Bob 
can would decrypt the message with his private key. In this 
type of cryptography each has a private key and a public 
key. Public key is shared with all those whom we need to 
share the information, but private key is not revealed with 
everyone it kept secret. 

V. QUANTUM FOURIER TRANSFORM 

Before discussing the quantum Fourier transform, we 
will talk a bit about the discrete Fourier transform (DFT) 
as well as the Fast Fourier Transform (FFT) algorithm. The 
QFT will be constructed to be essentially the equivalent of 
the FFT with a quantum circuit. 

The DFT of a N Point sequence  +,�- = .+,0-, +,1-,+,2-, .  .  .  . +,� � 1-0  is  

1,2- � 1√� � +,�- 3�4 �56�77��
���  

The time domain sequence x(n) can be computed 
from X(k) using the Inverse Discrete Fourier Transform 
(IDFT): 

+,�- � 1√� � 1,2- 3  4 �56�77��
���  

Let 87 � 3�4 9:;   

1,2- � 1√� � +,�- 8  6�7��
���  

  

The matrix form representation of the DFT equations is 1 �  87    + 

 

< 1,0-1,1-⋮1,� � 1->

� 1√�  
⎣⎢⎢
⎢⎢⎡
1 1 1 ⋯ 111⋮

87�87�⋮
87�87C⋮

⋯⋯⋱
877��87�,7��-⋮1 877�� 87�,7��- ⋯ 87,7��-,7��-⎦⎥⎥

⎥⎥⎤ 
 

The direct computation of DFT requires N2 complex 
multiplications and N(N − 1) complex additions.  FFT is 
an algorithm that efficiently computes the DFT.  Any FFT 
algorithm compute DFT with HIJ� �  complex additions 

and  7� HIJ� �  complex additions. FFT algorithms are 

based on the symmetry properties of twiddle factor  87 .  
The following are the properties. 87KL;9 � �87K     and   87KL7 � 87K  

Quantum Fourier Transform (QFT) is a quantum 
implementation of the discreet Fourier transform. quantum 
algorithms which are computing  DFT  are  exponentially 
faster than FFT  of classical computers. 

The QFT for N=8 of the function 

|M⟩ � 12 , |0〉 
 |1〉 
 |2〉 
 |3〉 
 |4〉 
 |5〉 
 |6〉 
 |7〉- 

�
⎣⎢⎢
⎢⎢⎢
⎡11111111⎦⎥⎥

⎥⎥⎥
⎤
  

 

Plain Text: 
 GOOD 
MORNING 

Cipher Text: 
JRRG QMQJ 

Plain Text: 
 GOOD 
MORNING 

Ke Ke

ENCRYPTIO DECRYPTIO

CRYPTOGRAPHY 
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OPQ7  ,|M⟩-  =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 1 1

1 8R
�

1 1
8R

� 8R
 

1 8R
�

1 8R
 

8R
C 8R

S

8R
S 8R

T

1 1
8R

C 8R
U

1 1
8R

S 8R
"

8R
R 8R

��

8R
�� 8R

�U
8R

�� 8R
�C

8R
�R 8R

��

   1 8R
C

   1 8R
U

8R
R 8R

��

8R
�� 8R

�U

   1 8R
S

   1 8R
"

8R
�� 8R

�R

8R
�C 8R

��

8R
�S 8R

��

8R
�� 8R

�U
8R

�C 8R
�R

8R
 � 8R

 U

8R
�C 8R

 �

8R
�R 8R

 U
8R

 S 8R
C�

8R
C� 8R

CT⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

⎣
⎢
⎢
⎢
⎢
⎢
⎡1
1
1
1
1
1
1
1⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 

OPQ7. |M⟩0 = 1
√2 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 1 1

1 1
√2 − V 1

√2

1 1
−V − 1

√2 − V 1
√2

1 −V
1 − 1

√2 − V 1
√2

−1 V
V 1

√2 − V 1
√2

1 1
−1 − 1

√2 + V 1
√2

1 1
V 1

√2 + V 1
√2

1 −V
−1 1

√2 + V 1
√2

−1 V
−V − 1

√2 + V 1
√2

1 −1
1 − 1

√2 + V 1
√2

1 −1
−V 1

√2 + V 1
√2

1 V
1 1

√2 + V 1
√2

−1 −V
V − 1

√2 + V 1
√2

1 −1
−1 1

√2 + V 1
√2

1 −1
V − 1

√2 − V 1
√2

1 V
−1 − 1

√2 − V 1
√2

−1 −V
−V 1

√2 − V 1
√2 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎢
⎢
⎡1
1
1
1
1
1
1
1⎦

⎥
⎥
⎥
⎥
⎥
⎤

 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡1
0
0
0
0
0
0
0⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 

 

Fig 1: Circuit for implementing Deutsch Jozsa Algorithm
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VI. QUANTUM ALGORITHMS 

The quantum computation of few quantum algorithms 
shows that computational speed is much faster than any 
classical algorithm.  Hence research on finding new 
quantum algorithms has been the spread all across the 
quantum computation field. 

The discovery of the following types of quantum 
algorithms shows better performance and their advantages 
over  known classical algorithms: 

• QFT based algorithms. e.g. Integer  factorization 
and discrete logarithm of Shor and Deutsch Josza 
Quantum algorithm 

• Grover’s data search quantum algorithm and its 
extentions. 

• Algorithms to simulate quantum systems. 
 

Deutsch–Jozsa problem and its quantum algorithm 

Deutsch-Jozsa Problem: A Boolean function M: .0, 10 � → .0, 10 is said to be constant if the output M,+- 
equals to 0 or 1 for all values of input +. It is said to be 
balanced if  M,+- equals 0 for exactly half of the entire 
possible +, and 1 for the other half.  Our problem is to 
distinguish between these two cases. The four possible 
functions of M,+-  are 
 M,+- = 0     M,+- = 1YZZZZZZ[ZZZZZZ\]^�_`a�`  bc�]`�^�_                      M,+- = +     M,+- = +̅YZZZZZZ[ZZZZZZ\ eafa�]gh  bc�]`�^�_  

 
This algorithm distinguishes constant from balanced 

functions in one evaluation of  M , versus 2��� + 1 
evaluations for classical deterministic algorithms. 
Balanced functions have many interesting and some useful 
properties. 

The Deutsch-Jozsa Problem is specifically designed to 
be easy for quantum algorithm and hard for any 
deterministic classical algorithm. The motivation is to 
show a black box problem that can be solved efficiently by 
a quantum computer with no error, where as a 
deterministic classical computer would need exponentially 
many queries to the black box to solve the problem. 
Although of little practical use, it is one of the first 
examples of a quantum algorithm that is exponentially 
faster than any possible deterministic classical algorithm. 
The generalization of Deutsch algorithm is known as 
Deutsch Jozsa algorithm. 

The solution for Deustch-Jozsa algorithm is based on 
the expression given in the equation (1) which solves with 
probability 1 using only one call to the quantum black box 
computing M,+-. A traditional classical algorithm would 
require two calls to a classical black box in order to 
determine if M,+- is constant or balanced. 
 | + ⟩ | i ⟩   jklm  | + ⟩ | i ⊕ M,+- ⟩                                           

(1)                                         
 
 
 
 
 
 

The algorithm flow is shown in the figure 1. This circuit 
uses an n-qubit query-register prepared in the state |0⟩  and 
answer-register prepared in |1⟩ . The Hadamard 
transformation is applied to each qubit. The function f is 
embedded in an oracle ob  and this is followed by another 
Hadamard transformation on each query-register qubit. 
The measurement at the end will test positive for |0⟩ if  M  
was constant, and negative if  M was balanced. 
The states through the circuit are as follows: 

The input state |�� ⟩  is 

|�� ⟩ = |0⟩  |0⟩  |0⟩  |1⟩ = |0⟩⊕   |1⟩                                 
(2) 

The state |�� ⟩  is the output of the Hardmard gate for the 
input state |�� ⟩  which is given as 
 |�� ⟩ = p⊕ C |0 ⟩⊕   |1⟩ = p |0⟩  p |0⟩ p |0⟩ p |1⟩ |�� ⟩= 1√2 �1 11 −1� . �10� . 1√2 �1 11 −1� . �10� . 1√2 �1 11 −1� . �10�. 
                                                                                �√�  �1 11 −1� . �01�  
|�� ⟩ = 1√2 �11� . 1√2 . � 1  1 � . 1√2 . �11� . 1√2 . � 1−1� 

 |�� ⟩ = 1√2 ,|0⟩ + |1⟩-. 1√2 ,|0⟩ + |1⟩-. 1√2 ,|0⟩
+ |1⟩-. 1√2 , |0⟩ − |1⟩- 

Where |−⟩ = �√�  , |0⟩ − |1⟩- 

|�� ⟩ = 1√2  ,|0⟩ + |1⟩-. ,|0⟩ + |1⟩-.  ,|0⟩ + |1⟩-. |−⟩ 
|�� ⟩ = 1√2  .|000⟩ + |001⟩ + |010⟩ + |011⟩ + |100⟩

+ |101⟩ + |110⟩ + |111⟩0. |−⟩ 

|�� ⟩ = 1√2  � |+⟩ q 1√2 |0⟩ − 1√2 |1⟩rs∈.�,�0!  

 

The transformation  ob  is applied on the state |�� ⟩ |�� ⟩ = ob  |�� ⟩ 
|�� ⟩ = ob 1√2  .|000⟩ + |001⟩ + |010⟩ + |011⟩

+ |100⟩ + |101⟩ + |110⟩    
+ |111⟩0  q 1√2 |0⟩ − 1√2 |1⟩r 
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|�� ⟩ = 1√2C  .|000⟩(|M,000- ⊕ |0⟩ − |M,000- ⊕ |1⟩)
+ |001⟩(|M,001- ⊕ |0⟩ − |M,001-⊕ |1⟩)+ |010⟩(|M,010- ⊕ |0⟩ − |M,010-⊕ |1⟩)+ |011⟩(|M,011- ⊕ |0⟩ − |M,011-⊕ |1⟩)+ |100⟩(|M,100- ⊕ |0⟩ − |M,100-⊕ |1⟩)+ |101⟩(|M,101- ⊕ |0⟩ − |M,101-⊕ |1⟩)+ |110⟩ (|M,110- ⊕ |0⟩ − |M,110-⊕ |1⟩)   + |111⟩(|M,111- ⊕ |0⟩ − |M,111-⊕ |1⟩)0          

 

 There are three cases 

1.  M,000- = M,001- = M,010- = M,011- = M,100- =M,101- = M,110- = M,111- = 0 

2. M,000- = M,001- = M,010- = M,011- = M,100- =M,101- = M,110- = M,111- = 1 

3. Half of   M,000-, M,001-, M,010-, M,011-, M,100-, M,101-, M,110-, M,111-  
equal to 0 and another half equal to 1. 

N=2,   m=2^2=4 

Applying case (1) 

 

|�� ⟩ = 1√2C  .|000⟩( |0⟩ − |0 ⊕ |1⟩)
+ |001⟩(|0 ⊕ |0⟩ − |0 ⊕ |1⟩)+ |010⟩(|0 ⊕ |0⟩ − |0 ⊕ |1⟩)+ |011⟩(|0 ⊕ |0⟩ − |0 ⊕ |1⟩)+ |100⟩(|0 ⊕ |0⟩ − |0 ⊕ |1⟩)+ |101⟩(|0 ⊕ |0⟩ − |0 ⊕ |1⟩)+ |110⟩ (|0 ⊕ |0⟩ − |0 ⊕ |1⟩)   + |111⟩(|0 ⊕ |0⟩ − |0 ⊕ |1⟩)0 

|�� ⟩ = 1√2C  .|000⟩( |0⟩ − |1⟩) + |001⟩(|0⟩ − |1⟩)
+ |010⟩(|0⟩ − |1⟩) + |011⟩(|0⟩ − |1⟩)+ |100⟩(|0⟩ − |1⟩) + |101⟩(|0⟩ − |1⟩)+ |110⟩ (|0⟩ − |1⟩)   + |111⟩(|0⟩ − |1⟩)0 

|�� ⟩ = 1√2  .|000⟩ + |001⟩ + |010⟩ + |011⟩ + |100⟩
+ |101⟩ + |110⟩    + |111⟩0  q 1√2 |0⟩
− 1√2 |1⟩r 

 

Applying case (2), all functions are 1 then |�� ⟩  state  

becomes 

|�� ⟩ = 1√2C  .|000⟩(|1 ⊕ |0⟩ − |1 ⊕ |1⟩)
+ |001⟩(|1 ⊕ |0⟩ − |1 ⊕ |1⟩)+ |010⟩(|1 ⊕ |0⟩ − |1 ⊕ |1⟩)+ |011⟩(|1 ⊕ |0⟩ − |1 ⊕ |1⟩)+ |100⟩(|1 ⊕ |0⟩ − |1 ⊕ |1⟩)+ |101⟩(|1 ⊕ |0⟩ − |1 ⊕ |1⟩)+ |110⟩ (|1 ⊕ |0⟩ − |1 ⊕ |1⟩)   + |111⟩(|1 ⊕ |0⟩ − |1 ⊕ |1⟩)0 

|�� ⟩ = 1√2C  .|000⟩(|1⟩ − |0⟩) + |001⟩(|1⟩ − |0⟩)
+ |010⟩(|1⟩ − |0⟩) + |011⟩(|1⟩ − |0⟩)+ |100⟩(|1⟩ − |0⟩) + |101⟩(|1⟩ − |0⟩)+ |110⟩ (|1⟩ − |0⟩)   + |111⟩(|1⟩ − |0⟩)0 

|�� ⟩ = 1√2  .−|000⟩ − |001⟩ − |010⟩ − |011⟩ − |100⟩
− |101⟩ − |110⟩   − |111⟩0  q 1√2 |0⟩
− 1√2 |1⟩r 

For case (3): half of the functions are 0 and another half 

are 1; let f(000)= f(001)= f(010)= f(011)= 0 and f(100)= 

f(101)= f(110)= f(111)= 1 so that the |�� ⟩ state  becomes 

|�� ⟩ = 1√2C  .|000⟩(|0 ⊕ |0⟩ − |0 ⊕ |1⟩)
+ |001⟩(|0 ⊕ |0⟩ − |0 ⊕ |1⟩)+ |010⟩(|0 ⊕ |0⟩ − |0 ⊕ |1⟩)+ |011⟩(|0 ⊕ |0⟩ − |0 ⊕ |1⟩)+ |100⟩(|1 ⊕ |0⟩ − |1 ⊕ |1⟩)+ |101⟩(|1 ⊕ |0⟩ − |1 ⊕ |1⟩)+ |110⟩ (|1 ⊕ |0⟩ − |1 ⊕ |1⟩)   + |111⟩(|1 ⊕ |0⟩ − |1 ⊕ |1⟩)0 
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|�� ⟩ = 1√2C  .|000⟩(|0⟩ − |1⟩) + |001⟩(|0⟩ − |1⟩)
+ |010⟩(|0⟩ − |1⟩) + |011⟩(|0⟩ − |1⟩)+ |100⟩(|1⟩ − |0⟩) + |101⟩(|1⟩ − |0⟩)+ |110⟩ (|1⟩ − |0⟩)   + |111⟩(|1⟩ − |0⟩)0 

|�� ⟩ = 1√2  .|000⟩ + |001⟩ + |010⟩ + |011⟩ − |100⟩
− |101⟩ − |110⟩   − |111⟩0   q 1√2 |0⟩
− 1√2 |1⟩r 

The results of all three cases can be expressed as 

|�� ⟩ = 1√2  � ,−1-b,s- |+⟩ q 1√2 |0⟩ − 1√2 |1⟩rs∈.�,�0!  

 

|�  ⟩ = 1√2  � ,−1-b,s- 
s∈.�,�0!   1√2  � ,−1-s .u  |i⟩

u∈.�,�0!  

Interchanging the order of summation, we get 

|�  ⟩ = 1√2  �  12 u∈.�,�0!    � ,−1-s  .  u Lb,s-   |i⟩s∈.�,�0!  

|�  ⟩ = 1√2  �  
u∈.�,�0!   v 12 � ,−1-s  .  u Lb,s-   

s∈.�,�0! w |i ⟩ 
In the above equation each state has amplitude (xayz) i.e 

xayz =   12 � ,−1-b,s-   s∈.�,�0!  

{ 12 � ,−1-b,s-   s∈.�,�0! {
�

= |1    }M   M  �~  �I�~����
0   }M  M   �~ ��H���3�  

 

TABLE 1  
STATUS OF  TWO QUBIT SYSTEM FUNCTION 

 ��� ��� ��� ��� State 

0 0 0 0 Constant 
0 0 0 1 Unbalanced 
0 0 1 0 Unbalanced 
0 0 1 1 Balanced 
0 1 0 0 Unbalanced 
0 1 0 1 Balanced 
0 1 1 0 Balanced 
0 1 1 1 Unbalanced 
1 0 0 0 Unbalanced 
1 0 0 1 Balanced 
1 0 1 0 Balanced 
1 0 1 1 Balanced 

1 1 0 0 Balanced 
1 1 0 1 Unbalanced 
1 1 1 0 Unbalanced 
1 1 1 1 Constant 

 

VII. CONCLUSION 
This paper briefly represents the history of the quantum 

computer development, experimental demonstration of 
quantum computers and basic concepts in quantum 
computation. Quantum cryptography and quantum fourier 
transform are described. Among the well know quantum 
algorithms, Deutsch–Jozsa quantum algorithm is 
described mathematically in detail for 3 qubits. Here 
output of each stage is shown to find the whether the 
system function is balanced or unbalanced. Table 
represents the status of the system for 2 qubits. Similarly 
we can show for 3, 4  and 5 qubits systems. 
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