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Abstract—The degradation of batteries in UAVs may result in various problems, such as connectivity troubles, flight delays, and 

unexpected accidents. Flight safety and reliability are affected by propeller efficiency and performance. This study explores an acoustic-

based method to classify propeller faulty conditions in Vertical Take-Off and Landing Unmanned Aerial Vehicles (VTOL UAV). The 

main objective is to emphasize the difference between classifier models developed using different battery-level flight data. The sound 

generated by VTOL UAV provides valuable information about the flight performance, essential for effectively monitoring flying 

conditions and identifying potential faults. This study uses three classification algorithms-Medium Tree (MT), Linear Support Vector 

Machine (LSVM), and Linear Discriminant (LD), to classify propeller failures of VTOL UAVs. Datasets are collected from three 

simulated propeller faulty conditions using a wireless microphone connected to a smartphone in an indoor lab environment with a 

soundproofing mechanism. The Mel Frequency Cepstral Coefficients technique is implemented in MATLAB (R2020a) to extract 

valuable features from the recorded sound signals. Extracted features from high and low-battery flights are utilized to develop 

classification models. Classifiers' performance is analyzed to compare the difference between selected models developed using high and 

low-battery flight data. The accuracy was measured with other samples to test the robustness of classification models. LSVM and MT 

classification models developed using high-battery flight data produce better accuracy than low-battery flight data in the training and 

testing phases. LD classification model developed using high-battery flight data produces better accuracy than low-battery flight data 

in the testing phase only. These results show that battery degradation can affect the performance of the VTOL UAV faulty classification 

algorithm. 
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I. INTRODUCTION

VTOL UAV (Vertical Take-Off and Landing Unmanned 
Aerial Vehicle) can take off, fly, hover, and land vertically. 
Due to the many benefits compared to manned vehicles, 
VTOL UAVs are in high demand in the marketplace [1]. Over 
the past decade, UAVs have been employed in various 
applications, including crop monitoring, surveillance and 
monitoring, transportation, building systems, delivery 
systems, and inspection [2]. The military and civilian sectors 
increasingly use unmanned aerial vehicles for various tasks, 
which might have a terrible effect if any malfunctions occur 
during flight.  

General flight failures in UAVs could result from propeller, 
eccentric, and bearing malfunctions, significantly affecting 

flight performance [3], [4]. Recent studies have also shown 
actuator malfunctions as a significant source of UAV failure 
in flight, both in military and commercial UAVs [5]. Most of 
the studies stated that the faults of the VTOL UAV result from 
malfunctions in its fundamental parts. For these reasons, 
condition monitoring and fault identification are essential 
issues in UAVs.  

Various experiments have been conducted to study specific 
failures that affect VTOL UAV flight performance using 
different sensors. Extensive time series and frequency domain 
analysis of collected data from multiple sensors could extract 
hidden information for failure identification. For example, 
Ray et al. [6] investigate the inter-turn short circuit faults in 
the motor winding of single-phase UAV systems using multi-
resolution analysis based on statistical parameter estimation 
for monitoring. Altinors et al. [4] proved that multiple faults 
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from the UAV main component (see Fig. 1) could be detected 
and identified.  

 

 

Fig. 1  Fundamental component of VTOL UAV. 

 
Researchers around the globe have conducted different 

studies to investigate various faulty detection measures 
focusing on motors and actuators with similar aims to avoid 
flight crashes and retain stability in failure conditions.  
Cheng et al. [7] address the problem of UAV faults and 
diagnose UAVs’ health status by measuring UAV motor 
vibration. The motor’s vibration was measured by altering the 
propeller condition and asymmetrical motor mount pattern. A 
study by Huimin et al. [8] developed an anomaly detection 
system that can prevent the motor of a drone from operating 
at abnormal temperatures to reduce the frequency of UAV 
crashes. Benini et al. [9] proposed a diagnostic algorithm for 
actuator fault detection in VTOL UAVs. Park et al. [10] 
proposed multivariate statistical analysis techniques on the 
inertial measurement unit (IMU) and the motor input 
measurements to isolate an actuator fault in a quadrotor. A 
combined investigation involving the motor and propeller was 
done by Lee et al. [11]. They developed an overall fault 
diagnostic technique for the UAV by considering the broken 
propeller for malfunctioning the UAV motor. 

The flexibility of the UAV propeller plays a vital role in 
the dynamics of flight conditions. Propeller cracks and bent 
are the most common faults detected on VTOL UAVs in 
actual operating environments. Cahabug et al. [12] proposed 
a failure detection system for a UAV that detects propeller 
failures to reduce the risk of crashes. Zhang et al. [13] 
developed a simulation model to achieve high accuracy in 
detecting propeller faults in flight.  

An exhaustive study is needed to diagnose how propeller 
efficiency and performance affect flight safety and reliability. 
Ghalamchi et al. [14] proposed an estimator for detecting and 
diagnosing propeller degradation on a multicopter aerial 
robot. Palanisamy et al. [15] implemented an extended 
Kalman filter-based parameter estimation algorithm to 
identify changes in the propeller aerodynamic efficiency. The 
author focused on propeller blade performance and damage 
detection in electric UAVs. Ahsun et al. [16] present a 
recursive algorithm for estimating a propeller engine’s thrust 
and power coefficient. Nemati et al. [17] derived a dynamic 
model of a tilting-rotor quadcopter with one propeller failure 
and designed a controller to achieve hovering and navigation 
capability.  

The degradation of batteries in UAVs may result in various 
problems, such as connectivity troubles, flight delays, and 

unexpected accidents. Therefore, battery faults or depletion 
could make it more challenging for UAVs to operate reliably. 
In the literature, there appear to be limited studies on the 
battery performance of UAVs. Mohsan et al. [18] stated that 
charging UAVs is one of the most time-consuming and 
complex activities. Due to their short battery life, UAVs' 
mission duration and range are limited. Tseng et al.[19] 
conducted research to identify how a UAV's power 
consumption is affected by movement (including hovering, 
vertical, and horizontal movement), payload, and wind. 

Detecting and diagnosing faults is vital in UAV flight 
monitoring as it helps ensure the aircraft’s safety, stability, 
and dependability.  A Convolutional Neural Network (CNN) 
extracts features and removes noise from UAV data to 
diagnose actuator faults [20]. Ghazali et al. [21] proposed a 
fault detection based on the vibration of the multirotor arms 
using artificial intelligence (AI). Yang et al. [22] have 
presented a method to detect propeller damage only based on 
the audio noise caused by the UAV’s flight. Similarly, Liu et 
al. [23] also proposed to detect propeller damage using audio 
noise collected from the UAV’s flight. CNN is then utilized 
to classify spectrograms as input data and allow the 
distinguishment of broken and unbroken propellers by 
applying transfer learning to various UAV testing scenarios. 
A study by Shibl et al. [24] proposed a proper battery 
management system (BMS) to increase the lifetime and 
efficiency of the battery. The system utilized Deep Neural 
Networks (DNN) and Long Short-Term Memory (LSTM) 
through a classification problem for the reliability of UAVs.  

Machine learning (ML) tools are essential to extract hidden 
information from various sensor data for failure detection and 
identification. This project aims to develop a sound-based 
monitoring system for VTOL UAV flight conditions and fault 
identification using Machine Learning. Due to the 
advancement of machine learning, integrating the 
classification of battery performance and faulty propeller 
conditions is an essential factor in improving safety and 
efficiency across a spectrum of industries. 

An extensive option of ML algorithm can be chosen for 
fault detection and identification depending on sensors used 
in the experiment and signals collected from UAV flight. 
Casabianca et al. [25] compare the performance of different 
types of deep neural networks, Convolutional Neural 
Networks (CNN), Recurrent Neural Networks (RNN), and 
Convolutional Recurrent Neural Networks (CRNN), in 
detecting UAV faults using acoustic signals. Iannace et al. 
[26] built a model based on artificial neural network 
algorithms by measuring the noise emitted by the VTOL 
UAV to identify balanced and unbalanced blades in its 
propeller.  

Vibration sensors are another instrument for gathering 
essential signals comparable to UAV sound data. Zhang et al. 
[27] proposed a UAV fault detection and identification (FDI) 
method based on airframe vibration signals using airborne 
acceleration. This study uses data from a triaxial 
accelerometer to detect and identify quadcopter blade faults 
through a Long- and Short-Term Memory (LSTM) network 
model. Using a similar LSTM model, Jiangmeng et al. [20] 
introduce a hybrid CNN-LSTM model in their study for the 
fault diagnosis of actuator faults.  
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Support Vector Machine (SVM) is another widely used 
data classification method. Yol et al. [28] used sound based 
SVM for fault classification of the VTOL UAV. A study by 
Bondyra et al. [29] states that using SVM to determine the 
occurrence and character of the rotor fault can further improve 
the accuracy of the detection process. 
The signal pre-processing step is crucial for accurate and 
efficient sound data analysis to provide valuable information 
about the UAV’s potential faults. Shiri et al. [30] use 
Variational Mode Decomposition (VMD) to remove noise 
from acoustic signals to detect damage in rotating machines. 
Rangel-Magdaleno et al. [31] use Discrete Wavelet 
Transform (DWT) in their study to decompose sound signals 
in detecting the unbalanced blade of a UAV. DWT can be 
used to extract useful information from a signal, as well as for 
denoising, compression, and feature extraction [32]. Yaman 
et al. [33] use the Mel-frequency Cepstral Coefficients 
(MFCC) method for feature extraction of the audio signal in 
UAV motor’s fault detection. Dumitrescu et al. [34] claim that 
the success of MFCC is due to a filter bank that uses wavelet 
transforms to process the Fourier Transform, which is like 
how the human auditory system works. 

II. MATERIAL AND METHOD 
Figure 2 shows the flowchart for carrying out the project. 

First, a study of recent research is conducted to compare and 
review all the methods developed by other researchers in this 
field. Next, we plan for experimental setup, including the test 
room, the VTOL UAV settings, and the microphone setup for 
recording audio data. After that, it will go through a recording 
process to collect all the sound signals. Then, all the data were 
pre-processed and analyzed to extract informative features. 
Finally, we run several classification models to classify the 
faults according to the respective groups. 

 

 
Fig. 2  Project flowchart. 

A. Experimental Setup 

This study uses DJI Mavic Pro as the main recording 
subject of VTOL UAVs with pre-assigned faulty 
mechanisms, which will be prepared with different propeller 
conditions. Ulanzi J12 Wireless Microphone is attached to the 
subject. At the same time, the microphone receiver was linked 
to the iPhone application device to gather the sound signals 
during the experiment, as shown in Figure 3. Three faulty 
propeller conditions were created and named Faulty 1, Faulty 
2, and Faulty 3, as shown in Table I. Faulty 1 is designed for 
faulty propeller blades located at right counterclockwise 
(CCW) and left clockwise (CW) positions. Faulty 2 is created 
for faulty propeller blades at the right and left CCW positions. 

Faulty 3 is created for faulty propeller blades at the left sides 
of both CCW and CW positions.  

 

 
Fig. 3  Setup of drone and microphone 

TABLE I 
PROPELLER CONDITIONS 

Type Propeller Damage Location 

Faulty 1 

 
Right CCW and Left CW 

Faulty 2 

 
Right CCW and Left CCW 

Faulty 3 

 
Left CCW and Left CW 
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B. Recording phase 

To maximize the effectiveness of the sound signal data 
collection, the VTOL UAV was put up at the same height as 
the receiver during flight, which was 2.5 meters. The sound 
recording took a total of 12 minutes of each propeller 
condition. The 12-minute record is divided into four groups 
to differentiate the battery level before the battery runs out. 
The VTOL UAV battery has also been measured before and 
after every flight. Table II presents VTOL UAV battery 
percentage data, while Table III illustrates the sound signal 
collected for the three conditions to analyze the performance 
due to battery degradation. 

TABLE II 
BATTERY PERCENTAGE DATA  

Flights battery 

condition 

Initial Drone’s Battery Level (%) 

Faulty 1 Faulty 2 Faulty 3 

High Battery (HB) 98 98 98 

Medium Battery 1 

(MD1) 

84 83 84 

Medium Battery 2 

(MD2) 

69 69 69 

Low Battery (LB) 54 54 55 

TABLE III 
RAW DATA FROM HIGHEST (HB) AND LOWEST BATTERY (LB) LEVEL FOR 

THREE FAULTY CONDITIONS 

High Battery Low Battery 

Faulty 1 

  
 

Faulty 2 

  
 

Faulty 3 

  
 

The raw data consists of 48,000 samples x 180 sec for each 
faulty condition. After pre-processing, the cleaned data were 
shortened into 100 segments of one-second signals. Due to 
significant differences in battery performance, only data from 
the highest battery (HB) and lowest battery (LB) groups will 
be used in this study to compare classification accuracy. Table 
IV shows the one-second sound signal of each condition. 
MFCC spectrum computation is implemented for the 
shortened sound samples to extract the informative features. 

 

TABLE IV 
ONE-SECOND SHORTENED SOUND SIGNALS FROM HIGH AND LOW BATTERY 

LEVEL 

High Battery Low Battery 

Faulty 1 

  
 

Faulty 2 

  
 

Faulty 3 

  

C. MFCC Feature Extraction 

Mel frequency Cepstral coefficients (MFCC) technique is 
implemented in MATLAB (R2020a) to extract valuable 
features from the recorded sound signals. MFCC are very 
common and one of the best methods for feature extraction 
when talking about the 1D signals [34]. The Mel frequency 
transform is a commonly employed technique for feature 
extraction from audio signals.  

The block diagram depicted in Figure 4 outlines the Mel 
Frequency transformation process, including signals framing, 
windowing, FFT spectrum transformation, Mel filterbank, log 
transforms, discrete cosine transformation, and cepstral 
coefficient computation. MFCC features will be extracted for 
each of the three groups of VTOL UAV datasets before 
further classification in MATLAB Classification Learner.  

 

  
Fig. 4  MFCC conversion block diagram. 

 
The plotted MFCC spectrum in Table V visually represents 

the extracted features. These coefficients capture the sound 
signal's temporal variations and represent the audio's spectral 
envelope. The cepstral coefficients were defined as a line or 
curve on the plot, showing the magnitude or intensity of each 
coefficient. 
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TABLE V 
PLOTTED MFCC SPECTRUM 

High Battery Low Battery 

Faulty 1 

  
 

Faulty 2 

  
 

Faulty 3 

  

III. RESULT AND DISCUSSION 
Fig. 5 and Fig. 6 illustrate scatter plot graphs of the features 

obtained from MFCC feature extraction, which involves the 
180-sample data of high and low battery levels.  
 

 
Fig. 5  Scatter plot graph of Linear SVM model for faulty class prediction 
using high-battery flight data. 
 

 
Fig. 6  Scatter plot graph of Linear SVM model for faulty class prediction 
using low-battery flight data. 

 
In this study, features extracted by MFCC for both flight 

times have been tested for three classifiers deploying the 
MATLAB classification learner tool. The three selected 
classifiers are Medium Tree (MT), Linear Support Vector 
Machine (LSVM), and Linear Discriminant (LD). The blue, 

red, and yellow indicate Faulty 1, Faulty 2, and Faulty 3, 
respectively. Tables VI and VII show the training and testing 
accuracy results computed for the three classifiers. Table VIII 
displays the training time for the selected classifier models. 

TABLE VI 
CLASSIFIER MODEL TRAINING ACCURACY 

Classifiers 
Accuracy (%) 

High Battery Low Battery 

Medium Tree 87.78 86.67 

Linear SVM 99.44 98.89 

Linear Discriminant 98.89 99.44 

TABLE VII 
CLASSIFIER MODEL TESTING ACCURACY 

Classifiers 
Accuracy (%) 

High Battery Low Battery 

Medium Tree 85.83 82.50 
Linear SVM 98.33 96.67 

Linear Discriminant 98.33 97.50 
 

 
Fig. 7  Percentage accuracy of three classifier model validation and test. 

 
Fig. 6 illustrates a graphical representation for comparative 

accuracy between three selected classifier models. As shown 
in Table VI, by running with 5-fold cross-validation, the best 
training accuracy was calculated with the LSVM, with an 
accuracy of 99.44% for HB and 98.89% for LB. In contrast, 
the MT model gained the lowest accuracy of 87.78% and 
86.67% for HB and LB flights, respectively. LSVM and MT 
training accuracy slightly differ in classification learning 
ability between classifier models developed using data from 
HB and LB flights. The classification training algorithm 
developed using HB flight data produces better accuracy than 
LB flight data.  

The accuracy was measured with other samples to test the 
performance of classification models. The classification 
model testing accuracy presented in Table VII shows that 
LSVM and LD are similar in classifying the faulty groups, 
with an accuracy of 98.33% for HB. However, the testing 
accuracy for the classifier model using the LB dataset shows 
reduced accuracy compared to the HB model. Comparison 
between the models using LB data shows that LD accuracy is 
higher than LSVM with a 0.83% difference. Lastly, the MT 
model is the lowest for both HB and LB model testing 
accuracy, with 85.83% and 82.5%, respectively.  

Although the LD training algorithm using LB flight data 
shows slightly higher accuracy than the classification model 
developed using HB flight with a 0.55% difference, the 
training time is longer in LB than in HB flight data, as shown 
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in Table VIII. Besides, the testing accuracy for the LD model 
is lower using LB flight data compared to HB with a 0.83% 
difference. 

The obtained training and testing accuracy shows a clear 
difference in classification learning performance developed 
using data recorded from HB and LB flights. These results 
show that battery degradation can affect the performance of 
the VTOL UAV faulty classification algorithm.  

TABLE VIII 
TRAINING SPEED 

Classifiers 
Training time (sec) 

High Battery Low Battery 

Medium Tree 7.06 3.65 
Linear SVM 11.54 6.66 
Linear Discriminant 7.45 7.59 
 
In terms of the methods used, Altinators et al. [4] proposed 

a sound-based fault identification by using a microphone 
fixed at a distance of about 1 meter from the UAV with an 
accuracy of 96.16%. In contrast, our method uses a 
microphone attached to a VTOL UAV, resulting in higher 
accuracy when using LSVM and LD models. Microphone 
position to collect the VTOL UAV sounds might significantly 
reduce noises from the surroundings. The dataset for this 
study was obtained within a controlled laboratory setting. 
Acoustic reflections can still occur in the laboratory setting, 
echoing sound. Sound recordings become highly challenging 
in outdoor settings.  

IV. CONCLUSION 
In conclusion, battery degradation can affect the 

performance of VTOL UAV's faulty classification models 
using sound flight data. LSVM and MT classification models 
developed using high-battery flight data produce better 
accuracy than low-battery flight data in both training and 
testing phases. The LD classification model developed using 
high-battery flight data produces better accuracy than low-
battery flight data only in the testing phase.   

MFCC has proven its ability to capture sound 
characteristics generated by different propeller faulty 
conditions, which is essential for effectively classifying UAV 
flight conditions. This study shows promising results in 
classifying propeller faulty conditions for real-time flight 
monitoring by integrating sound sensors on UAVs. In the 
future, efforts can be made to enhance the reliability and 
accuracy of the collected data using high-performance 
wireless mic to reduce surrounding noises. Additionally, 
complementary analysis methods such as deep learning 
approaches can be considered to enhance faulty classification 
for complex and multiple faults. 
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