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Abstract—A bionic leg with ergonomic functionality can increase the user’s independence. However, an ergonomic bionic leg can be 

challenged to be developed. One of its challenges is related to functionality, where the bionic leg motor can be rugged to adapt to the 

user. One of the solutions for the bionic leg challenge is the application of a motor driver controlled by the user’s muscle signal. EMG 

signal can be utilized as the user’s signal source. The EMG signal is then fed back into the motor device. EMG signals obtained during 

a natural walking environment can result in smooth and natural movement. This study classifies EMG signals into 8 classes: a controlled 

walking environment (treadmill walking with various speeds) and a natural walking environment (ground walking, upstairs and 

downstairs walking). This research aims to optimize the ANN method using transfer function variations. The best method will be used 

to train EMG-driven motors for future studies related to bionic legs. The best ANN parameter in this research using Levenberg-

Marquardt backpropagation as a training algorithm with transfer function pairing of the exponential function: Hyperbolic tangent 

sigmoid transfer function and SoftMax transfer function with 98.8% accuracy and 0.036 MSE value. The best method from the 

experiment and ANN classification can be used as a training method for a bionic leg in future research.  
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I. INTRODUCTION

Recent studies related to active foot prostheses and bionic 

legs show the development in the topic of robots’ natural 

movement achievement utilizing user and device interaction 

and communication [1]–[3]. Interaction and communication 

between user and device can be achieved using surface 

electromyography (EMG) and muscle signals recorded during 
walking activity [3], [4]. One method to achieve natural 

movement of active foot prostheses or bionic legs is using 

EMG-driven devices [5]. EMG signals recorded from below-

limb muscles can be fed back into motors to achieve better 

and more natural movement. This present study classified 

human gait in various environments using artificial neural 

networks (ANN) with transfer function methods optimization. 

The ANN method optimization in this study will be used as 

bionic leg training for future studies. 

Human gait classification research has been done 

extensively with various sensors [4], [6]–[8] and machine 

learning methods [4], [5]. However, not a lot of research 

reports the EMG classification based only on surface EMG 

(sEMG) sensor data [4], [9], [10]. Previous studies recorded 

EMG signal data using mobile phone sensors consisting of an 

accelerometer and gyroscope [6]. Another study used an 

Inertial Measurement Unit (IMU) sensor as an EMG signal 

[7], [8]. Some studies have similarities with this present study, 

which used only the sEMG sensor as a data acquisition device 

[3], [4], [9], [10]. The difference between the present study 
and studies that have been conducted previously lies in the 

sEMG sensor type used as a data acquisition device. Previous 

studies used sEMG, which have been on the market or 

databases that have been published online, i.e., Wave plus 

wireless, Cometa Milan, Italy [3], Medical Technology, Italy, 

Version PCI-32 ch2.0.1 [4] and bilateral EMG, HuMoD 

database [9], [10]. Meanwhile, this current study uses a novel 
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sEMG sensor called Myomes [11], [12]. Our research team in 

Indonesia has developed Myomes.  

A lot of previous studies classified human gait based on 

EMG signals during treadmill walking, where some researchers 

stated that treadmill walking affected gait performance [4]. To 

achieve natural movement, EMG signals are suggested to be 

recorded during various natural walking environments such as 

ground walking, upstairs walking, downstairs walking, uphill 

terrain walking, and downhill terrain walking [3], [4]. This 

study conducted EMG signals data acquisition in two walking 
environments: Controlled and natural. Controlled environment 

EMG signal data acquisition was done during treadmill 

walking. Meanwhile, the natural environment is conducted 

during natural movements such as ground walking, upstairs 

walking, and downstairs walking. A study by [7] classified 

walking environment into four classes, i.e., incline down, 

incline up, walking, stairs down, and stairs up. Some studies 

classified walking environment into five classes [3], [13].  

Walking signals recorded from IMU sensor are classified 

into walking, running, going upstairs, going downstairs, and 

standing [13] while the more recent study [3] classified sEMG 
into walking flat-ground, upstairs, downstairs, uphill, and 

downhill. Another study [14] also differentiated EMG signals 

into 5 classes, i.e., level ground, upstairs, downstairs, pump, 

and down ramp. Meanwhile, this current study classified 

sEMG signal-based walking gait into 8 classes, i.e., controlled 

movement during treadmill walking with 5 various speeds and 

natural movement consisting of ground walking, upstairs 

walking, and downstairs walking. All of the previous studies 

[3], [7], [13], [14] This study classified below-limb EMG 

signals based on natural movement in both controlled and 

natural environments. To our best knowledge, no study has 
classified below-limb EMG signals into 8 classes with a 

combination of controlled and natural environments. 

Previous studies recorded the EMG signals from more 

research participants than this study [3], [4]. However, this 

present study involved a more comprehensive range of ages 

from 25 years old to 40 years old. This present research also 

involved both gender males and females as research 

participants; meanwhile, previous research focused on male 

participants [3], [4]. Below limb EMG signals classification 

has been widely conducted utilizing various machine learning 

methods [3], [4], [15]–[20]. A study by [16] compared three 

machine learning methods to classify gait signals from EMG. 
The three classification methods are Convolutional Neural 

Networks (CNN), Support Vector Machine (SVM), and K-

nearest neighbors (KNN). The study found that CNN had the 

highest accuracy among the three methods. Another research 

uses ANN as a classifier. Recent study [3] used ANN to 

classify walking environments with the Butterworth filter but 

did not use EMG features. A study found that complicated 

data acquisition protocol can increase the ANN accuracy [15], 

the study used the sigmoid function as one of the layers. EMG 

features have been calculated in other studies [17], [19], [20]. 

Some studies used 5 time-domain features [17] and other used 
14 time domain features [19], meanwhile, another 

incorporated 11 EMG features with time domain and 

frequency domain combination [20]. The gap between this 

study's analysis and another study lies in the various transfer 

function combinations used, and the 12 features consist of 

both time-domain and frequency-domain features. 

This current study contributed to using a novel sEMG 

sensor called Myomes to record below-limb EMG data and 

classify it into controlled and natural walking environments 

with 8 classes. The EMG features used in the research consist 

of 12 features, 8-time domain-based features, and 4 

frequency-based features. The Artificial Neural Networks 

(ANN) method with various transfer functions is used as a 

classification technique. This research aims to achieve the 

best transfer function method of ANN classification for bionic 

leg data training in future research.  

II. MATERIAL AND METHOD  

Fig.1 illustrates the research flow method, which consists 

of EMG data acquisition and a classification process. The 

classification process includes calculating EMG features and 

classifying them using ANN. 

 

 
Fig.1  Research flow diagram 

A. Participants 

EMG data were recorded from five healthy research 

participants aged 25 - 40. Table 1 shows the list of research 

participants, including their height, weight, and Body Mass 

Index (BMI) information. According to [21], based on BMI 

value, all participants fall into healthy and normal weight 

categories. All research participants had never undergone 

below-limb surgery, never experienced knee joint pain, and 
did not have pathological conditions that affected walking 

abilities. All participants can also walk normally on the 

ground, up and down the stairs, and on various treadmill 

speeds. Research participants' selection was based on age 

range and health condition considerations, where all 

participants did not smoke or drink alcoholic beverages, and 

all participants included light exercises in their daily 

activities. 
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TABLE I 

RESEARCH PARTICIPANTS INFORMATION 

Participants Sex 

Age 

(Years 

Old) 

Height 

(cm) 

Weight 

(kg) 
BMI 

Participant 1 Male 25 168 71.5 25 
Participant 2 Male 32 170 73.3 24 
Participant 3 Male 40 169 71 25 
Participant 4 Female 22 160 61.4 24 

Participant 5 Female 34 155 49 20 

B. Experimental Procedures 

EMG data collection was conducted using a surface EMG 

kit called Myomes [11], [12], developed by the Center for 

Biomechanics, Biomaterial, Biomechatronic, and Bio Signal 

Processing (CBIOM3S). CBIOM3S is a research center 

specializing in biomedical device development. Located at 

Integrated Laboratory Universitas Diponegoro, Semarang, 

Central Java, Indonesia, CBIOM3S has produced a wide 

range of products and research related to the biomedical 

engineering field, i.e., artificial knee joint [22], biodegradable 

bone screw [23] and foot prosthesis [24], [25]. This present 
study used a 1000 Hz sampling frequency. This sampling 

frequency was selected based on the Nyquist rate where 800-

1000 Hz frequency sampling is needed for the EMG 

experiment to avoid signal deviation and aliasing effect [16]. 

Myomes signal amplitude ranges between 1 to 10 mV and is 

converted into percentage units [12].  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2  Myomes electrode placement: (a) gastrocnemius medial head,  

(b) bicep femorus longus, (c) vastus lateralis and (d) tibialis anterior 

All participants walked barefoot in various environments: 

controlled environment (walking on a treadmill with speed 

variation 1 (7.26 m/min), variation 2 (20.80 m/min), variation 

3 (35.76 m/min), variation 4 (50.61 m/min) and variation 5 

65.32 m/min)) and natural environment (ground walking, up 

and down the stairs). Myomes electrode was attached on four 

different below-limb muscles as seen in Fig.2. Myomes 

electrode was attached using hypafix onto gastrocnemius 

medial head (Fig.2(a)), bicep femorus longus (Fig.2(b)), 

vastus lateralis (Fig.2(c)) and tibialis anterior (Fig.2(d)). 

Electrode placement was based on professional opinion and 

SENIAM recommendation [26]. 

C. Classification Method 

This research used ANN as a classification method with 

Levenberg-Marquardt backpropagation as a training 

algorithm. Levenberg-Marquardt backpropagation was 

chosen as the training algorithm due to its better performance 

than another training algorithm [12]. Some studies found that 

Levenberg-Marquardt backpropagation has classification 

results above 95% [27]–[30]. EMG signals were classified 

into 8 classes, i.e., treadmill walking with speed 1, labeled as 

T1, treadmill walking with speed 2, labeled as T2, treadmill 
walking with speed 3, labeled as T3, treadmill walking with 

speed 4, labeled as T4, treadmill walking with speed 5 labeled 

as T5, ground walking labeled as GW, walked upstairs 

Labelled as UW and walked down stair labeled as DW. This 

present research mainly focused on the human walking 

environment so that the gait is not parted. The EMG signal 

used in this research was one full walking gait, as presented 

in Fig.3. 
 

 
(a) 

 
(b) 

Fig. 3  Gait illustration: (a) ground walking and treadmill walking and  

(b) Upstairs and downstairs walking 

Classification steps consist of: (i) Feature calculation, (ii) 

ANN data preparation and (iii) ANN Classification. There 
were 12 EMG features included in this research for feature 

calculation. The EMG features consist of 8 time-domain 

features and 4 frequency domain features. The 8 time-domain 

features were integrated EMG (IEMG), mean absolute value 

(MAV), EMG variance (VAR), root mean square (RMS), log 

detector (LOG), waveform length (WL), kurtosis (KU) and 

skewness (SK). Meanwhile, the frequency domain features 

were mean frequency (MNF), median frequency (MF), total 

power (TTP), and mean power (MNP). In ANN data 

preparation, EMG signals, which have been feature 
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calculated, are divided randomly into 70% for training, 15% 

for validation, and 15% for training. All EMG signals for this 

research totaled 117 data. The next step was ANN 

classification. Fig. 4 shows the ANN model used in this 

present research. 

 
Fig. 4  ANN network structure 

 

Fig. 4 illustrated the ANN network with 12 EMG features 

calculated as input, 25 neurons in hidden layer and 8 output 

represented class classification mentioned above, i.e., TI, T2, 

T3, T4, T5, GW, UW and DW. The hidden layer shown in 

Fig.3 consists of two, which each layer represented with 

different transfer function. This present research used various 
pairing of transfer function methods to optimize ANN 

accuracy. Table 2 shows the list of transfer function pairings 

used in this study. 

TABLE II 

TRANSFER FUNCTION METHOD PAIRING ON ANN NETWORK HIDDEN LAYER 

Experiment- Hidden layer 1 

transfer function 

Hidden layer 2 

transfer function 

1 Hyperbolic tangent 
sigmoid transfer 
function 

SoftMax transfer 
function 

2 Elliot 2 symmetric 
sigmoid transfer 
function 

SoftMax transfer 
function 

3 Elliot symmetric 
sigmoid transfer 
function 

SoftMax transfer 
function 

4 Positive linear 
transfer function 

SoftMax transfer 
function 

5 Linear transfer 
function 

SoftMax transfer 
function 

6 Hyperbolic tangent 

sigmoid transfer 
function 

Elliot 2 symmetric 

sigmoid transfer 
function 

7 Hyperbolic tangent 
sigmoid transfer 
function 

Elliot symmetric 
sigmoid transfer 
function 

8 Hyperbolic tangent 
sigmoid transfer 
function 

Linear transfer function 

 
ANN performance in this research is then defined using the 

mean square error (MSE) function. 

III. RESULTS AND DISCUSSION 

A. EMG Data Acquisition 

Various walking environments will result in different 

EMG signals. Fig. 5 shows the EMG signals recorded from 

participants with the illustration of one full gait. The EMG 

signals were chosen from vastus lateralis muscle. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

  
(f) 

 
(g) 

 
(h) 

Fig. 5  EMG signals recorded plot from vastus lateralis muscle: (a) TI, (b) T2, 

(c) T3, (d) T4, (e) T5, (f) GW, (g) UW and (h) DW 
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Fig. 5 (a)-(e) shows the EMG signals recorded during 

treadmill walking. The signal pattern is consistent with 

previous research findings, which stated that a controlled 

environment, e.g., treadmill walking, affects gait performance 

[4]. Fig. 5 (a)-(e) can be seen and compared to Fig. 5 (f), 

where the participants did the ground walking, and there was 

a decreased length of the stance phase. Fig. 5 (e) illustrated 

that the faster the treadmill, the greater the gait performance 

affected. Fig. 5 (a), where treadmill speed variation 1 (7.26 

m/min), the initial contact, and initial swing show the highest 
EMG signal at 28% from 0-38 s and 35% from 76-105 s. This 

record resembles Fig. 4(b), where participants walked on a 

treadmill under speed variation 2 (20.80 m/min). Fig. 4(b) 

showed that initial contact and swing had the highest EMG 

signals, 55% from 0-31 s and 55% from 48-70 s. This value 

indicated that research participants can still walk comfortably 

in speed variations 1 and 2. Meanwhile, Fig. 4(c), (d), and (e) 

show initial contact at 80% from 0-30 s, 95% from 0-45 s, and 

96% from 0-37 s. The initial swing shows a decreased value 

close to zero, indicating that at variation 3 (35.76 m/min), 

variation 4 (50.61 m/min), and variation 5 65.32 m/min) the 
research participants are close to running. 

Meanwhile, for the natural environment, Moyes detected 

full stance phase length. Fig. 5 (f), where research subjects did 

ground walking, shows a full gait consistent with the sketch 

in Fig. 3(a). Fig. 5 (g) and (h) indicated the same pattern 

between upstairs walking and downstairs walking, where 

mid-stance and initial swing had the highest EMG signal 

value. 

B. Classification Result 

Based on previous research [12], [27]–[30] Following the 

finding that Levenberg-Marquardt backpropagation had the 

best accuracy result for gait detection, this present research 

used the same training algorithm. Fig. 6 shows the ANN 

training accuracy for each transfer function pairing. 

Hyperbolic tangent sigmoid transfer function labeled as 

tansig, SoftMax transfer function labeled as SoftMax, elliot 2 

symmetric sigmoid transfer function labeled as elliot2sig, 

elliot symmetric sigmoid transfer function labeled as elliotsig, 

positive linear transfer function labeled as poslin and linear 

transfer function labeled as purelin. Fig.6 indicated that 
tansig-softmax pairing had the best training accuracy result at 

99.2%. 

 
Fig. 6  Training accuracy for EMG signals classification 

 

ANN optimization uses various transfer function pairings 

for the hidden layer networks. Table 3 shows the confusion 

matrix for overall ANN accuracy. 

TABLE III 

CONFUSION MATRIX FOR OVERALL ACCURACY 

Experiment-1: Layer 1: Tansig. Layer 2: SoftMax 

Actual Class T1 T2 T3 T4 T5 GW UW DW 

T1 12 0 0 0 0 0 0 0 

T2 0 9 0 0 0 0 0 0 

T3 0 0 12 0 0 0 0 0 

T4 0 0 0 10 0 0 0 0 

T5 0 0 0 1 10 0 0 0 

GW 0 0 0 0 0 8 0 0 

UW 0 0 0 0 0 0 9 0 

DW 0 0 0 0 0 0 0 10 

Recall (%) 100 100 100 77 100 100 100 100 

Accuracy  98.8 % 

Experiment-2:  Layer 1: Elliot 2 sig. Layer 2: SoftMax 

Actual Class T1 T2 T3 T4 T5 GW UW DW 

T1 8 0 0 0 0 0 0 0 

T2 2 9 0 0 0 0 0 0 

T3 1 0 12 0 0 0 0 0 

T4 1 0 0 10 0 0 0 0 

T5 0 0 0 1 10 0 0 0 

GW 0 0 0 0 0 8 0 0 

UW 0 0 0 0 0 0 9 0 

DW 0 0 0 0 0 0 0 10 

Recall (%) 67 100 100 77 100 100 100 100 

Accuracy 93.8% 

Experiment-3: Layer 1: Elliotsig. Layer 2: SoftMax 

Actual Class T1 T2 T3 T4 T5 GW UW DW 

T1 9 0 0 0 0 0 0 0 

T2 3 7 1 0 0 0 0 0 

T3 0 0 10 0 0 0 0 0 

T4 0 0 1 10 0 0 0 0 

T5 0 0 0 1 10 0 0 0 

GW 0 0 0 0 0 10 0 0 

UW 0 2 0 0 0 0 9 0 

DW 0 2 0 0 0 0 0 10 

Recall (%) 75 78 83 77 100 100 100 100 

Accuracy 90.1 % 

Experiment-4: Layer 1: Poslin. Layer 2: SoftMax 

Actual Class T1 T2 T3 T4 T5 GW UW DW 

T1 10 0 0 0 0 0 0 0 

T2 0 9 0 0 0 0 0 0 

T3 1 0 12 0 0 0 0 0 

T4 1 0 0 11 0 0 0 0 

T5 0 0 0 0 9 0 0 0 

GW 0 0 0 0 1 8 0 0 

UW 0 0 0 0 0 0 9 0 

DW 0 0 0 0 0 0 0 10 

Recall (%) 83 100 100 100 90 100 100 100 

Accuracy 96.3 % 

Experiment-5: Layer 1: Purelin. Layer 2: SoftMax 

Actual Class T1 T2 T3 T4 T5 GW UW DW 

T1 8 0 0 0 0 0 0 0 

T2 0 9 0 0 0 0 0 0 

T3 1 0 12 0 0 0 0 0 

T4 1 0 0 11 0 0 0 0 

T5 1 0 0 0 9 0 0 0 

GW 1 0 0 0 1 8 0 0 

UW 0 0 0 0 0 0 9 0 

DW 0 0 0 0 0 0 0 10 

Recall (%) 67 100 100 100 90 100 100 100 

Accuracy  93.8 % 

Experiment-6.: Layer 1: Tansig. Layer 2: Elliot2sig 

Actual Class T1 T2 T3 T4 T5 GW UW DW 

T1 11 0 0 0 0 0 0 0 

T2 0 9 0 0 0 0 0 0 

T3 0 0 12 0 0 0 0 0 

T4 0 0 0 9 0 0 0 0 

T5 0 0 0 1 10 0 0 0 

GW 0 0 0 1 0 8 0 0 

UW 1 0 0 0 0 0 9 0 

DW 0 0 0 0 0 0 0 10 

Recall (%) 92 100 100 82 100 100 100 100 

Accuracy  96.3% 

 

85

90

95

100

T
ra

in
in

g
 a

cc
u
ra

cy
 (

%
)

Transfer function pairing

1005



Experiment-7: Layer 1: Tansig. Layer 2: Elliotsig 

Actual Class T1 T2 T3 T4 T5 GW UW DW 

T1 8 0 0 0 0 0 0 0 

T2 1 9 0 0 0 0 0 0 

T3 1 0 10 0 0 0 0 0 

T4 1 0 1 9 0 0 0 0 

T5 0 0 1 1 10 0 0 0 

GW 0 0 0 1 0 8 0 0 

UW 1 0 0 0 0 0 9 0 

DW 0 0 0 0 0 0 0 10 

Recall (%) 67 100 83 82 100 100 100 100 

Accuracy  90.1% 

Experiment-8.: Layer 1: Tansig. Layer 2: Purelin 

Actual Class T1 T2 T3 T4 T5 GW UW DW 

T1 10 0 0 0 0 0 0 0 

T2 0 9 0 0 0 0 0 0 

T3 0 0 12 0 0 0 0 0 

T4 1 0 0 9 0 0 0 0 

T5 0 0 0 1 10 0 0 0 

GW 0 0 0 1 0 8 0 0 

UW 1 0 0 0 0 0 9 0 

DW 0 0 0 0 0 0 0 10 

Recall (%) 83 100 100 82 100 100 100 100 

Accuracy  95.1% 

 

The confusion matrix is based on Table 3, where rows 

indicate the predicted classes (output classes), and columns 

correspond to true classes (target classes). Diagonal cells (bold 

marks) are information regarding the EMG signal that has been 

correctly classified. All the off-diagonal columns are the EMG 

signal data which have been incorrectly classified. Recall (true 

positive rate) shows the percentage of all EMG data that is 

correctly classified. The classification result shows that the 

ANN method with Levenberg-Marquardt backpropagation and 

transfer function pairing between Tansig and SoftMax resulted 
in the highest accuracy at 98.8%. This result is consistent with 

previous findings which stated that exponential activation 

function (tansig and SoftMax) results in higher accuracy than 

non-exponential activation function (Elliotsig, elliot2sig, poslin 

and Purelin) [31]. The finding in this present paper is also 

consistent with a study by [32] ANN with Levenberg-

Marquardt backpropagation and transfer function pairing 

between Tansig and SoftMax performed better accuracy. The 

ANN model with various transfer function combinations for 

different layers is then evaluated using the MSE value. Fig.7 

shows the MSE value for other combinations.
 

 

(a) 

 

(b) 

 

(c) 
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(f) 
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(h) 

Fig. 7  MSE validation result for each transfer function combination: (a) Hyperbolic tangent sigmoid transfer function-Softmax transfer function, (b) Elliot 2 

symmetric sigmoid transfer function-Softmax transfer function, (c) Elliot symmetric sigmoid transfer function-Softmax transfer function, (d) Positive linear 

transfer function-Softmax transfer function, (e) Linear transfer function-Softmax transfer function, (f) Hyperbolic tangent sigmoid transfer function-Elliot 2 

symmetric sigmoid transfer function, (g) Hyperbolic tangent sigmoid transfer function-Elliot  symmetric sigmoid transfer function and (h) Hyperbolic tangent 

sigmoid transfer function- Linear transfer function 

Based on Fig.7 MSE value can indicated accuracy result. 

Lowest MSE value means that the accuracy is higher in the 

model [33]. The MSE value from Fig. 7 consists of three 

values, i.e. training MSE value, validation MSE value and 

testing MSE value. This present study used the validation 

MSE value, which can be resumed in Table 4. Table 4 denoted 

the summary of MSE value for each experiment. From MSE 
value can be seen that tansig and SoftMax transfer function 

combination had lowest MSE value hence the highest 

accuracy. 

TABLE IV 

MSE VALUE SUMMARY 

Experiment- 

Hidden 

layer 1 

transfer 

function 

Hidden 

layer 2 

transfer 

function 

MSE 

Value 
Epoch 

1 Tansig SoftMax  0.036 5 
2 Elliot 2sig SoftMax  0.040 5 
3 Elliotsig SoftMax  0.085 3 
4 Poslin SoftMax  0.053 8 

5 Purelin SoftMax  0.058 5 
6 Tansig  Elliot 2 sig 0.157 8 
7 Tansig Elliot sig 0.120 10 
8 Tansig Purelin 0.123 2 

TABLE V 

ACCURACY COMPARISON FOR THIS PRESENT AND PREVIOUS STUDIES 

Study Sensor Classes 
Classifier 

Method 

Accuracy 

(%) 

Present 
study 

Myomes 
(sEMG) 

8 ANN 98.8 

Kim [3] sEMG 5 ANN 96.3 

Panahandeh 
[13] 

IMU 5 

Hidden 
Markov 
Model 

(HMM) 

98.5 

Zhang [14] IMU 5 CNN 97.42 

IV. CONCLUSION 

From the experiment and ANN classification which have 

been conducted, a conclusion can be derived that ANN 

method with Levenberg-Marquardt backpropagation and 

transfer function pairing (as seen in Table 3) is the pairing that 

result 98.8% accuracy which exponential transfer function 

(tansig and SoftMax). This shows better result than previous 

study where classified EMG signal into five walking 

environment and conducted ANN classification without EMG 

features [3]. Table 5 resume the comparison of this present 

study and previous studies. From Table 5, it can be concluded 

that the tansig-softmax transfer function pairing is suitable for 

bionic leg training in future studies. The pairing shows the 

highest overall accuracy while maintaining a low MSE value. 
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