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Abstract— Offline handwriting writer identification has significant implications for forensic investigations and biometric 

authentication. Handwriting, as a distinctive biometric trait, provides insights into individual identity. Despite advancements in 

handcrafted algorithms and deep learning techniques, the persistent challenges related to intra-variability and inter-writer similarity 

continue to drive research efforts. In this study, we build on well-separated convolution architectures like the Xception architecture, 

which has proven to be robust in our previous research comparing various deep learning architectures such as MobileNet, EfficientNet, 

ResNet50, and VGG16, where Xception demonstrated minimal training-validation disparities for writer identification. Expanding on 

this, we use a model based on similarity or dissimilarity approaches to identify offline writers' handwriting, known as the Siamese 

Network, that incorporates the Xception architecture. Similarity or dissimilarity measurements are based on the Manhattan or L1 

distance between representation vectors of each input pair. We train publicly available IAM and CVL datasets; our approach achieves 

accuracy rates of 99.81% for IAM and 99.88% for CVL. The model was evaluated using evaluation metrics, which revealed only two 

error predictions in the IAM dataset, resulting in 99.75% accuracy, and five error predictions for CVL, resulting in 99.57% accuracy. 

These findings modestly surpass existing achievements, highlighting the potential inherent in our methodology to enhance writer 

identification accuracy. This study underscores the effectiveness of integrating the Siamese Network with depth-wise separable 

convolution, emphasizing the practical implications for supporting writer identification in real-world applications.  

Keywords— Offline handwriting; writer identification; Siamese network; similarity approach; depth-wise separable convolution. 

Manuscript received 26 Sep. 2023; revised 24 Dec. 2023; accepted 19 Jan. 2024. Date of publication 31 Mar. 2024. 

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License. 

I. INTRODUCTION

Identifying offline handwriting authors remains an open 

research problem due to the diversity in handwriting, which 
extends beyond alphabet forms to include scripts like Chinese 

and Indian scripts and regional variations such as Javanese 

scripts in Indonesia, among others. In the context of writer 

identification, those scripts are a substantial advancement of 

feature extraction techniques and the comprehensive 

methodologies employed by numerous researchers for writer 

identification. For instance, scripts such as Urdu and Hindi 

exhibit strikingly similar strokes despite originating from 

distinct writing systems, resembling writer identity styles and 

characteristics. Moreover, the similarity between writers' 

handwriting and the high intra-variability among authors 
continue to be subjects of investigation to find optimal 

methods for writer identification, particularly in the offline 

context. This research has broad applications in forensics, 

psychology, historical and ancient documents, authentication 

of wills, bank signatures, and more. For instance, in forensic 

science, experts can utilize the findings of this research to 

identify the author of a handwritten will or threat letter and 

determine its authenticity. In general, Online handwriting 

involves using a mouse or pen on tablets to generate data in 

real-time. 
Conversely, offline handwriting employs ink on paper, 

creating the document through scanned images. Online and 

offline handwriting produce distinctive characteristics based 

on the writer's hand movements and has even become a 

biometric trait. In this study, due to the well-established 

performance of Optical Character Recognition (OCR) 

technology in addressing online handwriting, we emphasize 

authors who engage in offline handwriting. Furthermore, 

given the high intra-variability, similarities among writers, 

and linguistic diversity worldwide, this issue remains an open 

research problem in offline handwritten text. Identifying 
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authors from offline handwriting employs two approaches: 

conventional handcrafted algorithms and deep learning [1]. 

Notable examples of handcrafted algorithm approaches 

include texture-based descriptors [2], scale-invariant feature 

transform [3], [4], and the utilization of transform-based [5], 

which have demonstrated promising research outcomes. 

However, with the emergence of deep learning, automatic 

feature extraction has become feasible, as shown by [6]–[9] 

utilizing a CNN architecture and harnessing frozen layers 

coupled with a machine learning algorithm as a classifier.  
A similar approach, but with dissimilarity techniques, has 

been undertaken by [10]. Furthermore, several researchers 

have explored a focus on feature learning, both in 

unsupervised manners such as [11] and semi-supervised 

manners like [12], aiming to enhance writer identification 

accuracy [13]. The proposed FragNet involves a segregated 

network comprising a feature pyramid for feature map 

extraction from word data and a fragment pathway trained for 

author identity prediction. Kumar and Sharma [14] also 

employed CNN with a segmentation-free approach to the 

utilized data. Additionally, [15] used a multi-stream structure-
based CNN approach to enhance prediction accuracy, while 

[16] pursued a combined approach incorporating 

conventional methods with deep learning techniques. 

From our previous study [17], we endeavored to evaluate 

several deep learning architectures, including VGG, ResNet, 

Xception, EfficientNet, and MobileNet, to ascertain the 

optimal ground truth for selecting a deep learning architecture 

appropriate for addressing the problem of author 

identification in handwriting. The findings highlighted that 

XceptionNet exhibited a small convergence gap between 

training and validation. 

Furthermore, several researchers have employed the 

Siamese Neural Network (SNN) approach, where this 

technique aims to discover the similarity between two inputs 

once they enter a neural network. SNN has found application 

in verifying the authenticity of offline signatures, as 

demonstrated in previous studies [18]–[20]. Despite these 

approaches being used in offline writer signatures, this 

approach in the context of offline handwriting writer 

identification was pursued by [21] with Bengali handwritten 

from India, [22] with additional SIFT algorithm and modified 
Principal Component Analysis (PCA) trained on omniglot 

dataset. A unique database 19 called NIST-SD19 was 

incorporated with SNN by [23] to verify handwritten authors. 

With all that has been explained above, it is noteworthy that 

the offline handwriting of authors can also be categorized as 

the same objects, albeit possessing distinct biometrics. 

This research aims to enhance accuracy and validation for 

offline handwriting writer identification. We utilize the 

publicly available IAM and CVL datasets as benchmarks. 

Following this, the resultant model will undergo an 

assessment using metrics based on the confusion matrix to 
determine the performance of the suggested model. 

II. MATERIALS AND METHOD  

The method proposed in this research is visually depicted 

in Fig. 1. Initially, we acquire the publicly available image 

datasets IAM and CVL. A preprocessing phase follows, 

involving thorough cleaning and preparation steps, which will 

be detailed in the dedicated preprocessing subsection. 

Subsequently, the data is segmented into inputs: Input 1 and 
2.  

 

 
 

Fig. 1  Proposed Method 
 

  

536



These inputs are directed into a Siamese network, where a 

CNN incorporates a depth-wise separable convolution to 

serve as a feature extractor. The Siamese network generates 

an encoded representation that simplifies the computation of 

the L1 distance, facilitating the evaluation of similarity or 

dissimilarity and also extracts the writer's identification label. 

A. IAM Dataset 

The IAM dataset [24] constitutes an openly accessible 

compilation of offline handwriting samples in the English 

language. It covers 658 unique writers, each designated with 

IDs spanning from 000 to 657. This dataset includes well-

segmented data units such as words, sentences, and pages. 

However, in segmenting into words, certain characters remain 

unresolved. Additionally, special characters like commas, 

quotation marks, and colons, which  

can be challenging to interpret in an author's handwriting, are 

removed. The Word of IAM dataset has a total of 100350 

images. These images were split into two halves, resulting in 
50175 images for each input. Within each input set, a further 

division was made: 70% of the data (35123) was allocated for 

data training, and 30% (15053) was used for validation and 

testing. Specifically, 90% of the validation subset comprised 

1355 images, and the remaining 10% constituted 151 images 

for testing. The data distribution for each writer becomes 

uneven when the dataset is segmented  

into words. However, this uneven distribution proves 

advantageous in our proposed Siamese approach, which 

capitalizes on one-shot classification and mitigates the need 

for an extensive dataset size. Examples of the IAM dataset in 

page and word formats are presented in Fig. 2. 
 

 
Fig. 2  Example of IAM dataset 

B. CVL Dataset 

The CVL dataset [25] is an openly accessible English and 

German offline handwriting dataset, encompassing 

contributions from 310 writers. Similar to the IAM dataset, 

the CVL dataset is structured to accommodate word, sentence, 

and page data, primarily focusing on identifying author 

identities. The dataset contains a total of 99904-word images. 

These images were divided equally into two sets, resulting in 
49952 images for each input. An additional partition was 

implemented within these input sets, with 70% (34966 

images) allocated for training purposes and 30%, 14986 

handwritten images reserved for testing and validation. 

Within the validation subset, 90% (13487 images) of the 

divided data was utilized, leaving the remaining 10% (1498 

images) for the testing phase. Unlike the IAM dataset, the 

CVL dataset exhibits a relatively even distribution of page 

data across each writer. Fig. 3 showcases several 

segmentation results of word data extracted from page data 

within this dataset. 

 

 
Fig. 3  Example of CVL dataset 

C. Preprocessing 

The datasets obtained from the earlier sources comprise 

raw data extracted from scans of paper documents. As a result, 

the handwritten content within these datasets retains noise 

originating from the inherent randomness of handwriting 

despite certain sections being discernible. The preprocessing 

phase incorporates two distinct stages to mitigate the dataset's 

variability. The primary stage is dedicated to data cleansing, 

as illustrated in Fig. 4 

 

 
Fig. 4  The initial stage of cleaning preprocessing for IAM and CVL datasets. 

 

In the initial preprocessing stage, it is observed that the 

handwritten content within the dataset occasionally contains 

colors other than black. As a result, a conversion to grayscale 

is performed. Subsequently, certain writings need more 
strokes and noise. A morphological operation called 

"morphology" is applied to address these issues, precisely an 

opening operation, to effectively remove noise during image 

segmentation. Further refining is achieved using a Gaussian 

filter to mitigate Gaussian noise. Binarization is then applied 

to establish a consistent black-and-white color scheme for the 

images. Finally, Otsu thresholding is utilized to automatically 

determine a threshold separating foreground and background 

pixels. The outcomes of this initial preprocessing stage are 

illustrated in Fig. 4. 

Following the data cleansing process in the initial 
preprocessing stage, the second stage involves preparing the 

data before it enters the Xception architecture within the 
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Siamese network. All the handwritten images must be divided 

into training, testing, and validation sets. For this purpose, the 

data is split into two equal portions, each comprising 50%, 

which will serve as Input 1 and 2. Subsequently, further 

partitioning is performed within each input set, with 70% for 

training, 10% for testing, and 20% for validation. Given that 

the handwritten images are structured around words, a 

standardized input size of 299x299x3 for Xception 

architecture is established after the preprocessing phase. This 

preprocessed data is then input into the neural network for 
subsequent processing. 

D. Depth-wise Separable Convolution 

The Xception architecture [26] is an artificial neural 

network that leverages depth-wise separable convolution, 

featuring a depth of 36 layers and more than 20 million 

parameters. This convolution approach is known for its 

computational efficiency, significantly reducing the 

computational workload through separate channel 
computations. In architectures like MobileNet, customary 

nonlinear layers, batch normalization, and ReLU activation 

are typically placed after each convolution layer. However, in 

the context of Xception, batch norm, and activation of ReLU 

are exclusively utilized after depth-wise separable 

convolution, which is followed by point-wise convolution.  

Experimental results have shown improved accuracy 

compared to architectures where batch normalization is 

applied after every convolution, as seen in MobileNets. Our 

previous research evaluated various deep learning 

architectures, including VGG, ResNet, Xception, 

EfficientNet, and MobileNet, to identify the most suitable 
architecture for addressing the author identification problem 

in handwriting. The findings highlighted that ResNet 

achieved the highest accuracy rates. However, XceptionNet 

exhibited a smaller convergence gap between training and 

validation, rendering it more suitable for real-world 

applications. The architectural configuration is illustrated in 

the previous Fig. 1. 

E. Siamese Network 

The Siamese network employs identical neural subnets 

with uniform weights. The Siamese Neural Network (SNN) is 

designed to match a pair of representation vectors and 

ascertain their semantics to distinguish one from another. This 

configuration enables vector representation data to group 

similar instances while distinguishing dissimilar ones [27]. 

The SNN framework finds applicability across various 

research domains, mainly focusing on image processing and 

computer vision, for example, face recognition, signature 

verification, object tracking, anomaly detection, and one-shot 

learning [28]–[30]. Upon traversing the neural network, the 

feature extraction process yields encodings utilized for 
calculating the discrepancy between two inputs, referred to as 

loss function. In selecting the loss function, we opt for the 

contrastive loss based on the Manhattan or L1 distance metric, 

as mathematically represented in equation (1): 

 �(�, �) =  ∑ |�� − ��|


���  (1) 

where d is the distance between qi and pi, two representation 

feature vectors. This distance is then incorporated in 

contrastive loss calculation, which is commonly used in SNN 

as depicted in equation (2):  

 � = (1 − �)
�

�
(�)� + (�)

�

�
{maximum (0, � − �)}� (2) 

where Y represents loss, B indicates two-ways, as if siamese 

inputs offline handwriting from the same writer ID or not, in 

this case, B = 0 if similar, and B = 1 on the contrary, a margin 

l that we set to 0.7 to be allowed, and D as calculated L1 

distance from equation (1). Suppose B = 0 and the distance D 

below 0.7, the second term of the contrastive loss formula will 

be zero. If D exceeds 0.7, the network will be penalized for 

not keeping dissimilar pairs separated by at least the margin. 
This situation encourages the network to learn feature 

representations that maintain a clear margin between different 

writers in the feature space. That also means lower loss values 

indicate that the network effectively distinguishes between 

pairs, whereas higher loss values suggest that the network 

struggles to differentiate between specific pairs. For the 

Manhattan distance, as an illustrative example, following the 

preprocessing steps described above, the IAM dataset is 

processed through the designed CNN architecture. The 

distance of similarity or dissimilarity for the input data is 

calculated based on the L1 distance computation, as illustrated 

in Table 1 

TABLE I 

EXAMPLES OF L1 DISTANCE COMPARISON 

ID 

Input 

1 

Input 2 

164 269 658 

164 [0.63863564] 
(similar) 

[0.10000002] 
(dissimilar) 

[0.10000288] 
(dissimilar) 

269 [0.10000002] 

(dissimilar) 

[0.63863564] 

(similar) 

[0.10000002] 

(dissimilar) 
316 [0.11547202] 

(dissimilar) 
[0.10000014] 
(dissimilar) 

[0.1000002] 
(dissimilar) 

396 [0.10000002] 
(dissimilar) 

[0.10000008] 
(dissimilar) 

[0.10000002] 
(dissimilar) 

658 [0.10000014] 
(dissimilar) 

[0.10043496] 
(dissimilar) 

[0.63863564] 
(similar) 

F. Configuration 

Upon completing the preprocessing steps, which involved 

cleaning and preparing the dataset to dimensions 299x299x3, 

we utilized the Xception architecture as a feature extractor. 

The parameter "include_top" was false, leading to the fully 

connected layers being omitted from the architecture's output. 

Additionally, we executed 25 epochs during the training 

process. Subsequently, we introduced a flattened layer to 
convert the features generated by the Xception model into a 

singular vector. Moreover, we calculated the L1 distance 

(Manhattan distance) between the two obtained features, 

resulting in a similarity score. 

Additionally, a prediction was generated to determine 

whether the two images were similar or dissimilar based on 

the computed distance. To optimize the Siamese model, 

reduce errors, and enhance performance, we employed the 

optimizer “Adam” with a 0.0001 learning rate. For binary 

classification, we selected the binary_crossentropy as the loss 

function. This experiment was conducted using the processor 

Intel Pentium i9 with a clock of 2.50 GHz, along with 32GB 
of RAM. The system was further enhanced with an NVIDIA 
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GeForce RTX 3080 TI GPU featuring 12GB of VRAM. The 

duration of the training process spanned around five to seven 

days for its completion. 

III. RESULTS AND DISCUSSION 

During the training process for the IAM dataset, it became 

evident that by the 22nd epoch, the training accuracy had 
reached a point where further improvements were not 

noticeable, prompting us to conclude the training. The 

training accuracy outcomes of our proposed method have 

been illustrated in Fig. 5 and Fig. 6 in the order mentioned. 

The graphical representation showcases that the IAM dataset 

achieved convergence between training and validation 

accuracy by the fifth epoch, nearing 98%. This convergence 

gradually improved with successive epochs. In contrast, the 

CVL dataset exhibited accuracy convergence later, 

specifically around the eighth epoch, achieving a 

commendable accuracy level of 98%. This observation 
implies that the CVL dataset possesses more intra-variation or 

similarity than the IAM dataset. 
 

 
Fig. 5  Graphic of IAM dataset training accuracy 

 

 
Fig. 6  Graphic of CVL dataset training accuracy 

 

A comprehensive evaluation of each training iteration 

was conducted. The results indicated that the highest 

achieved accuracy rates were notably impressive, 99.81% 

for the IAM dataset and an even more remarkable 99.88% 

for the CVL dataset. Additionally, the model underwent 

rigorous testing utilizing an independent set of image pairs, 

constituting 10% of previously unobserved data. During 

this evaluation, the model's predictions were compared to 

the actual author identification IDs, allowing for an 

assessment of their accuracy. When these predictions align 

with the ground truth, the corresponding label encoding is 

assigned to the authentic or original images, and the author 

IDs are subsequently extracted, as depicted in Fig. 7.  

 

 
Fig. 7  Few predictions of data test 

 

From Fig. 7, in the first column and row, it can be 

observed that input 1 with ID 135 is paired with input 2 with 

ID 021. The prediction result indicates a distance of 

0.9999982, suggesting dissimilarity. Conversely, in the first 

row and second column, where the IDs are the same, the 

distance result is 0.4348201, signifying that this text is from 

the same author. This pattern continues for the remaining 

comparison results. These outcomes demonstrate that the 

predictions for unseen test data have performed remarkably 

well. However, a comprehensive evaluation of prediction 

results for the entire dataset is necessary to assess its 
performance, as detailed in the following subsection. 

A. Evaluation Metrics 

Since the predictions' output is binary, indicating 

similarity or dissimilarity, we do not employ metrics such as 

Top1, Top5, Top10, Hard N, or Soft N accuracy because 

these metrics are utilized for classification tasks where the 

output is not binary but involves multiple classes. Following 

the testing phase, the forecasted results on similarity and 
dissimilarity within the 10% dataset are Assessed through 

evaluation metrics, namely recall, F1-score, accuracy, and 

precision from the confusion matrix, as depicted in Fig. 8 

and Fig. 9 for both datasets above. 

The confusion matrix for IAM dataset indicates that the 

model correctly predicted class 1 (similar) for 722 instances 

and class 0 (dissimilar) for 782 cases, incorrectly predicted 

class 1 for zero instances, and incorrectly predicted class 0 

for two instances. This result shows high accuracy and low 

error, with only two incorrect predictions. 
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Fig. 8  Matrix of “Confusion” for the IAM dataset 

 

 
Fig. 9  Matrix of “Confusion” for CVL dataset 

 

From Fig. 9 for the CVL dataset, class 1 (similar) has 717 

true positives and zero false positives, and class 0 (dissimilar) 

has 777 true negatives and five false negatives. These 

outcomes also mean the model performs exceptionally well, 

with only five incorrect predictions. The assessment metrics 

result is presented in Table 2. 

TABLE II 

EFFICIENCY EVALUATION METRICS MODEL 

Dataset 

Metrics IAM CVL 

Accuracy 99.81% 99.88% 
Precision 99.75% 99.57% 

Recall 99.75% 99.57% 
F-1 score 99.75% 99.57% 

 

These findings illustrate the frequency with which the 

model generates accurate predictions across the evaluated 

dataset. However, it is essential to acknowledge that not all 
predictions are entirely precise, as approximately 0.2% were 

inaccurate for the IAM dataset and 0.3% for the CVL dataset. 

These inaccuracies underscore both dataset's significant inter-

class similarity and intra-class variation. Our approach 

focuses on a binary task, precisely predicting whether a pair 

of input data is similar or dissimilar while identifying author 

IDs. 

B. State-of-the-art Comparison 

Compared to our findings, we gathered data from the 

comprehensive survey paper on state-of-the-art writer 

identification authored by Purohit and Anwar [1]. To ensure 

fair and unbiased comparisons, we specifically focused on the 
datasets IAM and CVL. Subsequently, we juxtaposed the 

outcomes attained through cutting-edge methodologies with 

those achieved using our suggested methodology. This 

comparative evaluation is visually presented in Table 3 for 

IAM and CVL for Table 4. 

TABLE III 

STATE-OF-THE-ART COMPARISON WITH IAM DATASET 

Authors Method Accuracy (%) 

Abdelilah et al. [7] ResNet-34 99.5 
He and Schomaker [8] Adaptive CNN 85.2 
He and Schomaker [13] FragNet-64 85.1 
He and Schomaker [9] GR-RNN 96.4 
Kumar and Sharma [14] SEG-WI model 97.27 
Sulaiman et al. [16] CNN + LBP 96.1 
Xing and Xiao [15] CNN  98.23 
Proposed method (xception+siamese) 99.81 

TABLE IV 

STATE-OF-THE-ART COMPARISON WITH CVL DATASET 

Authors Method Accuracy (%) 

Christlein et al. [4] CNN + GMM super 
vector encoding 

99.4 

Abdelilah et al. [7] ResNet-34 99.5 
He and Schomaker [22] GR-RNN 90.2 

Helal et al. [10] CNN 99.80 
Chen et al. [12] ResNet-50 99.2 
Kumar and Sharma [14] SEG-WI model 99.35 
He and Schomaker [13] FragNet-64 85.1 
Sulaiman et al. [16] CNN + LBP 99.69 
He and Schomaker [8] Adaptive CNN 94.3 
Christlein et al. [11] CNN + VLAD 

encoding 
99.5 

Proposed method (xception+siamese) 99.88 

IV. CONCLUSION 

This research introduces an innovative identification 

technique for offline handwriting writers utilizing a Siamese 

network with the Xception architecture as the feature 

extractor. This study employs a unique approach to achieve 

cutting-edge results in writer identification from offline 

handwriting samples. The testing outcomes exhibit an 

accuracy of 99.81% for the IAM dataset and 99.88% for the 

CVL dataset. These results highlight the competitiveness of 
the Siamese neural network approach compared to existing 

methods. Additionally, integrating the Xception architecture 

from our previous work has effectively narrowed the gap 

between training and validation accuracy convergence. This 

enhancement renders the approach more applicable in real-

world scenarios. While the accuracy and evaluation metrics 

achieved are commendable, there is a trade-off in the training 

computation time, which took five to seven days. This trade-

off prompts us to contemplate future endeavors that involve 

exploring datasets beyond the English language and personal 

datasets.  
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