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Abstract— Relational database management systems (RDBMS) have long served as the fundamental infrastructure for web 

applications. Relatively slow access speeds characterize an RDBMS because its data is stored on a disk. This RDBMS weakness can be 

overcome using an in-memory database (IMDB). Each query result can be stored in the IMDB to accelerate future access. However, 

due to the limited capacity of the server cache in the IMDB, an appropriate data priority assessment mechanism needs to be developed. 

This paper presents a similar cache framework that considers four data vectors, namely the data size, timestamp, aging factor, and 

controller access statistics for each web page, which serve as the foundation elements for determining the replacement policy whenever 

there is a change in the content of the server cache. The proposed similarCache employs the Pearson correlation coefficient to quantify 

the similarity levels among the cached data in the server cache. The lowest Pearson correlation coefficients cached data are the first to 

be evicted from the memory. The proposed similarCache was empirically evaluated based on simulations conducted on four IRcache 

datasets. The simulation outcomes revealed that the data access patterns, and the configuration of the allocated memory cache 

significantly influenced the hit ratio performance. In particular, the simulations on the SV dataset with the most minor memory space 

configuration exhibited a 2.33% and 1% superiority over the SIZE and FIFO algorithms, respectively. Future tasks include building a 

cache that can adapt to data access patterns by determining the standard deviation. The proposed similarCache should raise the Pearson 

coefficient for often available data to the same level as most accessed data in exceptional cases. 
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I. INTRODUCTION

Relational database management systems (RDBMS) have 

been the fundamental infrastructure for most web applications 

since computers proliferated [1]. With information considered 

a primary asset, efficient and rapid data storage, access, and 

manipulation are of utmost importance [2]. A relational 

database management system (RDBMS) facilitates the 

construction of intricate applications through its structured 

table arrangement and interpretable associations, enabling 

developers to run intricate data queries [3]. Furthermore, 

RDBMS provides notable benefits in data integrity, security, 

and the capability to handle concurrent transactions [1]. When 

data can be accessed and modified concurrently by several 
users in real-world online applications, the properties above 

assume significant importance [2]. Thus, selecting an 

appropriate Relational Database Management System (RDBMS) 

and implementing effective database design play crucial roles in 

determining the triumph of online applications [3]. 

Many web applications continue to employ RDBMS as 
their primary storage medium due to its ability to maintain 

well-structured data [4], [5]. However, these RDBMS 

architectures are characterized by relatively slow access 

speeds as data are stored on disk [6]. In contrast, in-memory 

database (IMDB) technology has experienced rapid growth. 

It is widely adopted by cloud service providers such as 

Amazon Web Services, Google Cloud Platform, IBM, and 

Microsoft Azure [7]–[9]. IMDB stores data in computer 

memory rather than on disk, resulting in significantly faster 

access speeds [10], [11]. 
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IMDB, also known as a NoSQL database [12], [13], 

realizes extensive application as a server cache to alleviate 

server workloads and reduce internet latency [14], [15]. 

However, IMDB exhibits a notable limitation in that it does 

not guarantee suitable ACID properties [4] [16], including 

desirable atomicity, consistency, isolation, and durability. 

Consequently, IMDB is not yet positioned to supplant 

RDBMS as the primary database system [9]. Moreover, 

implementing IMDB within web applications hosted on 

shared-hosting platforms replicated and distributed across 
various geographic locations poses challenges in maintaining 

privacy and trust [17]. Thus, a coalescence of IMDB and 

RDBMS concepts can be leveraged to support transactions 

that ensure ACID compliance while preserving swift data 

access performance [16]. A pioneering example of such 

integration is exemplified by Megastore [18]. In the 

Megastore framework [18], data are partitioned to guarantee 

the isolation of ACID semantics within each partition, thereby 

upholding the consistency property. 

Determining data priorities thus becomes a crucial 

consideration due to the minimal memory capacity. To 
address this issue, some research has utilized machine 

learning methods to create replacement policies or memory 

content replacement methods [19]. However, using machine 

learning techniques in this context entails computationally 

intensive training processes [20], [21]. Therefore, in recent 

years, several researchers have introduced the concept of 

application-level caching (ALC), which is more flexible and 

can be implemented in real-world web applications [22]. The 

schematic caching framework [23] proposes a query parser to 

break down query results into unique key values to be stored 

in IMDB. The Hyperbolic caching framework [24] proposes 
access frequency and access time variables to assess the 

priority of cached data before it is stored in the cache server. 

In addition, an APLCache caching framework [20] proposes 

reactive and proactive caching mechanisms by studying user 

access behavior based on access frequency, memory 

consumption, and staticity. However, several caching 

frameworks fail to address changeable decisions that lack 

robustness due to the necessity of aligning caching logic with 

web development architecture.  

This research proposes a caching framework by 

considering the access controller in the MVC architecture 

(Models-Views-Controllers) combined with several other 
variables such as access count, data size, timestamp, and 

aging factor to make the caching decision more 

comprehensive. Furthermore, all caching decision variables 

are formulated using the Pearson correlation coefficient to 

calculate the similarity of each cached data item with respect 

to its top-accessed counterparts. When a request for memory 

cache replacement arises, the data item with the lowest 

correlation level is removed from memory first. 

II. MATERIALS AND METHODS 

A. Related Works 

Application-level caching is a software development 

methodology that leverages memory as a popular data storage 

medium, enabling repeated access without the need to retrieve 

data from the Relational Database Management System 

(RDBMS) [25]. Typically, ALC approaches involve manual 

implementation by application development teams, including 

the development of code functions that direct data storage into 

memory [20]. This approach is time-consuming and requires 

extensive source code modifications in response to any 

changes in business processes that affect cached data 

priorities. ALC approaches must therefore consider factors 

such as hit ratio performance, data access characteristics, and 

data change frequencies [26]. 

ALC research has focused on three methods: weighting, 

machine learning, and optimization. Ma et al. [27] proposed 
the caching framework WSCRP, which calculates the weight 

of cached data by incorporating variables such as data size 

(S�), network cost (����), request time start-end (Δt�), aging 

factor (
), and access frequency (�� ).Generally, the 

corresponding weight is as described in Eq. (1). Ma et al. [28] 

also introduced the caching framework WGDSF, which 

considers the weight of document types (WDT) and their 

access frequency (WTF). This is then combined with the 

greedy dual size frequency (GDSF) caching algorithm on the 

aging factor variable (
) and network cost (��), as seen in 

Eq. (2). 

Akbari et al. [19] proposed the FPRA caching framework 

based on machine learning, utilizing the Fuzzy C-Means 

(FCM) algorithm. Each cached data item in memory is 

grouped into respective clusters based on three parameters: 

access recency (PR), access frequency (PF), and reference 

rate ����(�). When there is a need to store new data in 

memory, FPRA removes the member of the cluster with the 

smallest cumulative reference time (Δt� ) first, as indicated 
by Eq. (3). Zhang et al. [29] suggested the use of data cache 

clustering with variables R (interval time), F (frequency), and 

S (size) employing the K-Means algorithm. Variables R and S 

are sorted based on their smallest values, while variable F is 

sorted based on its largest value. Cached data with the 

smallest cumulative RFS value is removed first when there is 

a need to store new data, followed by Eq. (4): 

�� =  S�
����

∗   
�
�� ∗  Δt�    (1) 

�(�) = 
 + ��(�) ∗ ��� (�) ∗ ���(�) (2) 

��� = (  Δt� ) − (k − 1) ($%&)

�'(
 (3) 

���),*

= +(,�- − ,�-). + (,�. − ,�.). + ⋯ + (,� − ,�). 
(4) 

0� =  1�
2�

 (5) 

In addition to these two primary caching methods, caching 
weighting and caching mining, Blankstein et al. [30] 

introduced the hyperbolic caching (HC) framework, which 

calculates cached data priority (03) using access frequency 

(1�) and access time (23) since data entered the cache, as 

illustrated in Eq. (5). The fundamental concept behind HC is 

to separate the cached data priority calculation function from 

its structure. This approach differs from previous proposals 

where the cached data priority calculation method influenced 

its position in memory. Another method within the ALC 

realm was suggested by Mertz et al., which achieved 
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simplicity by embedding caching logic code to consistently 

provide data services directly from memory using method 

calls [20] [26]. 

Mertz et al. [20] proposed a reactive caching mechanism 

using method calls while the application is running and then 

built its caching model based on the nested cacheability 

pattern [31] [22]. This nested caching pattern approach is 

prone to suboptimal solutions. Their research was then 

improved with a metaheuristic optimization method using Ant 

Colony and Genetic Algorithm algorithms so that it is not 
easily trapped in local optimum solutions [32]. The data cache 

weighting methods proposed by [31] and [22] are also 

challenged at determining the optimal solution because they 

rely on greedy methods completely. In addition to these 

studies, a machine learning-based caching system using FCM 

has also been proposed, but this research will be difficult to 

implement in real-world DBMS web applications because it 

adds computationally free databases, web servers, and dataset 

training. Although these studies have weaknesses, the concept 

of using aging factors in [28] and [32] can be well adopted to 

solve the problem of cache pollution. Meanwhile, the concept 
of calculating the proximity distance between two data caches 

using Euclidean distance [19] as a caching decision 

consideration was eventually adopted into Pearson correlation 

since this method more strongly refers to the substance of the 

linear relationship between two data caches. Furthermore, 

method calls proved to be reliable for implementation in real-

world web applications [22]. 

Based on the literature study, the proposed similarCache 

framework fills a research gap in application-level caching for 

real-world web applications. This research is motivated by the 

convenience and ease offered by systems with method calls, 
while recognizing that each cached data item possesses 

numerous properties that can be leveraged to propose a robust 

and comprehensive cache replacement policy. Therefore, this 

paper presents a caching framework denoted as similarCache, 

which adopts method calls to map each data access to its 

respective controller. The relationship between data and 

controllers stands as a key element that necessitates 

continuous updates. Subsequently, the coefficient of 

correlation for each cached data item is computed concerning 

the most frequently accessed data items at that moment. 

Cached data items with the lowest correlation coefficients are 

evicted from memory first. The operational mechanism of the 
proposed similarCache framework is described below. 

B. Look-Aside Caching 

The proposed similarCache framework employs a 

topological look-aside caching approach to ensure that every 

data request is promptly searched within the memory. This 

technique is implemented because the primary objective of 

ALC is to enhance user-side response times. Internet users 

tend to bypass and seek alternative websites if they encounter 
slow response times [33] [34]. Response time is a critical 

metric for developers of web-based applications and cloud 

network infrastructure managers because it can significantly 

impact user satisfaction and comfort [35] [36]. The 

operational mechanism of the look-aside caching architecture, 

as illustrated in Fig. 1, is described as follows. 

Based on Fig. 1, the look-aside caching adopted by the 

similarCache proposal prioritizes data responses sourced 

from the server cache. The caching system receives the signal 

from the client and sends it to the cache and database 

controllers. The cache controller looks for the requested data. 

If HIT or data are found, these data are immediately given 

back to the client. However, if the requested data is not found, 

then the data request signal received by the database 

controller is immediately sent to the RDBMS. The RDBMS 

provides the requested data to the database controller and 

forwards it to the controller cache. The cache controller stores 

the data as new in cache memory and then forwards it directly 
to the client. 

 
Fig. 1  Look-aside caching mechanism [37] 

C. Method Calls 

 
Fig. 2  Method calls mechanism 

 

Fig. 2 provides an illustration of how method calls function 

within a web application, effectively mapping each URL 

access within the application server. In many cases, web 

applications built using the MVC (Models-Views-
Controllers) framework feature multiple controllers 

responsible for interacting with the database. However, there 

are instances when only a select few controllers are in high 

demand. For instance, we consider an academic information 

system at a university. At the start of the semester, the 

StudyPlan Controller sees its highest access frequency, but 

toward the end of the semester, the StudyResult Controller 

becomes the most heavily accessed. Access patterns for these 

controllers remain relatively consistent, underscoring the 

importance of method calls in breaking down access to each 

data ID. As a result, method calls vitally contribute to 
pinpointing the currently popularly accessed controllers, thus 

influencing the prioritization of data loaded into them. 

D. Correlation Coefficient 

The proposal of the similarCache framework, which 

calculates the correlation coefficient for each cached data item 

with the top-accessed data, draws inspiration from the caching 

cluster model [19]. Essentially, caching system technology 
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must be capable of swiftly determining whether a piece of 

data should be placed in memory. Consequently, 

implementing a caching policy based on a machine learning 

approach can be challenging to realize in practice. However, 

a different scenario arises when machine learning technology 

is utilized to analyze user data access patterns, which 

subsequently influence the selection of items offered by a 

marketplace, for example. 

Thus, the similarCache framework proposal adopts the 

concept of similarity calculation of the caching cluster model 
[19] as a method for determining the priority of data to be 

placed in memory. Whenever similarCache needs space to 

accommodate new data in memory, it must perform two 

fundamental tasks: (1) establish the top-accessed data and (2) 

calculate the correlation coefficient for each data item in 

memory concerning the top-accessed data. This concept for 

top-accessed data resembles the notion of centroids that are 

used for clustering algorithms in machine learning. Based on 

our prior research following [38], we have determined that 

using the least recently used value and aging value of the 

Greedy-Dual Size Frequency (GDSF) algorithm offers 
respective advantages, including the capability to implement 

different access patterns. Therefore, we assign our top-

accessed data values based on the least recently used data, the 

aging factor 4(�), access frequency �(�), network cost �(�) and 

data size �(�), as shown in Eq. (6). Ultimately, data with the 

lowest correlation coefficient will be removed to make room 

for new data to occupy memory. Eq. (7) represents the 

Pearson correlation coefficient formula between two cached 

data 56,3, 738 used by the similarCache framework to make 

caching decisions with its top-accessed (,). The next section 

will provide a more detailed explanation of the data vectors 

that similarCache employs for computing this correlation 

coefficient: 

4(�) =  
 + �(�) ∗ �(�)
�(�)

 (6) 

5(,, 7) = ∑ (,���'- − ,) × (7� − 7)
;∑ (∆,�).��'- × ;∑ (∆7�).��'-

 (7) 

E. The Proposed SimilarCache 
TABLE 1. 

WEBSITE DATA PROPERTIES. 

No Properties Example 1 

1 iddata 4242106418 
2 URL http://1stnatbk.com/images/2236int_r13

_c1.gif 
3 controller /images/ 
4 data 2236int_r13_c1.gif 
5 timestamp 1282592384.330 (baseline: top-accessed 

data) 
7 size 465 KB 

 

1=>?(@A��B) =  1
1  �2(�) −  �2C��  

�2CD)  − �2C��  
�

�'-
 (8) 

Data vectors in the web application domain typically 

possess several properties, as indicated in Table 1. 

SimilarCache records every access statistic for these data 
items. Subsequently, these data can be revisited if 

similarCache needs to execute a replacement policy, as 

illustrated in Fig. 2. Notably, each time a replacement policy 

is executed, the top-accessed data are reset by similarCache. 

All other property values associated with these top-accessed 

data serve as the baseline for calculating the correlation 

coefficients for all cached data items within memory. 

The similarCache framework proposal designates recently 

used data as the top-accessed data, as based on our previous 

research findings, the recently used data property 

demonstrates good caching performance [38]. However, it is 

essential to note that the value of the recently used data 
property may not be entirely reliable because its performance 

in specific data access patterns is no better than that of cost-

based and aging factor-based algorithms [32]. Therefore, the 

similarCache framework proposal also incorporates an aging 

factor (Eq. 6) In the final calculation of data similarity using 

the Pearson correlation coefficient. 

 
Fig. 3  The Pearson correlation coefficient in the proposed similar cache 

 

Figure 3 demonstrates the functioning of the similarCache 

system, which uses all cached data attributes mentioned in 

Table 1 and the aging factor value derived from Equation 6. 

According to Equation 7, the variable x represents the 

property values of the most frequently requested data, 

whereas the variable y represents the property values of all 

other cached data items. The correlation coefficients for all 

cached data items in memory are determined about the most 

frequently accessed data at that specific moment. 
Consequently, the data item stored in the cache with the 

lowest correlation coefficient is prioritized for removal from 

the memory and replaced with different data. An innovative 

idea implemented in this study is the inclusion of the 

controller access patterns while calculating the final 

similarity. This concept is implemented based on our 

acknowledgment that controller access statistics in web 

applications may display fluctuations. Consequently, we 

apply the standard min-max approach to normalize each 

controller access (�2(�)) using Equation 8. The outcome of this 

normalizing procedure produces controller access statistics 

that range from 0 to 1. Once all values in Table 1 have been 

normalized, the proposed similarCache architecture will 

compute the cached data for all data that is currently being 

accessed the most. This technique is implemented whenever 
there is a request to allocate storage for a new data cache. The 

cache server will remove the data cache that has the lowest 

Pearson Coefficient value and replace it with the new data 

cache. 

The proposed similarCache framework aims to overcome 

the technical constraints in application-level caching research 

for real-world online applications by implementing proven 

strategies that enhance hit ratio performance. The proposed 
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similarCache has multiple benefits, as seen by the description 

of the proposed technique in Figure 2. One advantage of 

similarCache is its capacity to minimize cache pollution by 

selecting the least recently used material as a reference for 

caching before inserting it into the server cache. The LRU 

algorithm has been demonstrated to be highly effective in 

achieving a high hit ratio [38]. Another benefit is that the 

caching choice is more thorough as it considers several 

factors, including the access controller, access count, data 

size, date, and aging factor. 
The design of the caching system must be comprehensively 

considered so that it does not cause network bottlenecks and 

reduce the performance of the database and web server. 

Generally, caching systems are developed uniquely by 

researchers according to the case study, whether the goal is to 

increase the hit ratio or reduce the bandwidth usage by 

maximizing the byte hit ratio [39]. This decision represents a 

trade-off that must be chosen in designing a caching system 

[40]. Not all goals can be simultaneously realized, i.e., the 

features of one caching algorithm cannot be entirely superior 

to those of other caching algorithms [41] [42]. 

III. RESULTS AND DISCUSSION 

A. Result 

Based on the simulations conducted on four IRcache 

datasets, the hit ratio (HR) performance of the proposed 

similarCache framework proves to perform well when 

compared to the commonly used SIZE and FIFO algorithms 

for implementing replacement policies. These four IRcache 

datasets exhibit varying access patterns, resulting in distinct 

maximum hit ratio performances. The maximum hit ratio 
performance is observed when utilizing the largest memory 

size configuration, analogous to the scenario where all data 

can be perfectly accommodated within the caching server's 

memory. However, practical instances are faced with data 

access growth consistently outpacing and exceeding the 

memory capacity that can be allocated. Thus, the proposition 

of an appropriate replacement policy method can significantly 

maximize the utility of the constructed caching system. 

 

 
Fig. 4  HR Performance Using the BO2 Dataset 

 

Fig. 4 illustrates the hit ratio performance using the BO2 

dataset, as characterized by moderately cacheable requests 

compared to other datasets. Based on the maximum memory 

size configuration, all three replacement policy methods 

achieve an optimal hit ratio performance of 34.67%. The hit 

ratio performance of the proposed similarCache framework 

with the smallest memory configuration reaches 19.67%, only 

1.33% behind the FIFO algorithm. However, when the 

memory configuration is increased twofold, the similarCache 

framework outperforms the others with hit ratio performances 

of 32.67%, 31%, and 31.33%, respectively. In the final 

configuration, all three cache replacement methods achieve 

optimal hit ratio performance. 

 

 
Fig. 5  HR Performance Using the SV Dataset 

 

Fig. 5 illustrates the hit ratio performance on the SV 

dataset. Based on our statistical information, the SV dataset 

features the highest number of unique requests, resulting in 

the lowest hit ratio performance among the three datasets. The 

highest hit ratio performance of 14.33% can only be achieved 

with the largest cache configuration. This result is markedly 
different from the simulations on the BO2 dataset, where hit 

ratio performance was achieved in the last three memory 

configurations. The proposed similarCache framework 

exhibits the best hit ratio performance of 6.33%, surprisingly 

in the smallest memory configuration. In this configuration, 

similarCache outperforms the SIZE and FIFO algorithms by 

2.33% and 1%, respectively. 

 

 
Fig. 6  HR Performance Using the UC Dataset 

 

Fig. 6 and Fig. 7 showcase the simulation outcomes of 

similarCache on the UC and NY datasets, respectively. The 

NY dataset stands out due to its significantly lower count of 

unique requests compared to the other three datasets. This 

unique attribute enables the system to achieve the highest hit 
ratio performance because it can accommodate a vast amount 

of data in a memory cache. Another noteworthy distinction is 

that in the last four configurations, all replacement policy 
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methods manage to attain optimal hit ratio performance. In 

these scenarios, application server administrators reap 

substantial benefits, as they are spared the need for significant 

investments in large memory capacities. However, the access 

patterns observed in the NY dataset represent an anomaly, 

resembling a viral access phenomenon that occurs briefly 

during specific times and then quickly dissipates. 

 

 
Fig. 7  HR Performance Using the NY Dataset 

B. Discussion 

Based on the simulation results from the four IRcache 

datasets, the proposed similarCache framework presents a 

distinct approach to handling each access to the application 

database. In the current era of artificial intelligence and large 
datasets, we recognize the growing need for information 

systems to adopt more comprehensive considerations before 

making decisions. Web-based applications that continue to 

rely on RDBMS benefit from a dependable intermediary to 

provide swift responses to frequently recurring access 

requests for the same popular data. As a result, research in 

application-level caching at the application level remains an 

open and evolving field. 

Our extensive literature review reveals a multitude of 

studies in application-level caching, each offering unique 

perspectives and valuable insights. 

Blankstein et al. proposed the hyperbolic caching 

framework, which employs a simple calculation concept 0� =�E
�E

 for caching decisions. However, this approach has a notable 

limitation—it does not consider data size, potentially 
diminishing the prospects of enhancing hit ratio performance 

for small-sized data. Another framework, APLcache, was 

introduced by Mertz et al., featuring the development of both 

proactive and reactive caching components, which adds 

significant complexity to the caching decision-making 

process. The observed hit ratio performance improvement, 

approximately 2.78%, appears disproportionate when 

weighed against the intricacies of the caching system it 

proposes. Even our earlier research on the LRU-GENACO 

framework demonstrated algorithmic complexity that did not 

yield commensurate hit ratio performance improvements, 
merely achieving a 1% increase. 

We acknowledge that there is inevitably a trade-off in the 

objectives of the caching system being constructed. The 

choice may involve improving the hit ratio at the expense of 

increased computational load or prioritizing energy efficiency 

in the server environment, which could lead to a decrease in 

hit ratio performance or response time due to constrained 

resources. However, the performance of the similarCache 

framework concept is less beneficial in cases where there is a 

significant increase in access to specific cached material, such 

as during a viral phenomenon. In general, cache servers 

prioritize caching material that is frequently accessed, 

whereas similarCache aims to proactively address this issue 

to avoid cache pollution. 

The subsequent similarCache will be designed to adapt to 

changing data access patterns. The three datasets utilized in 

the preceding simulation exhibit common data access 
patterns. However, due to the need for improved performance 

at smaller cache sizes, the access patterns on the SV dataset 

vary considerably for the proposed similarCache. We began 

to develop the idea that, in the event of an access abnormality, 

a proposed similarCache can efficiently ascertain the 

distribution of data access patterns by employing standard 

deviation calculations. The suggested similarCache should 

have the capability to increase the Pearson coefficient for data 

that has a large number of visits, particularly for top-accessed 

data, in the case of an anomaly. 

IV. CONCLUSION 

This study presents a web-based application-level caching 

solution that employs method calls to link controller accesses 

with database query results. This paper has the main 

contribution of the similarCache framework employs the 

Pearson correlation coefficient to prioritize the replacement 

of data in the server cache. The performance of the system is 

evaluated by analyzing the hit ratio using IRcache datasets. 

The simulation findings indicate that the data access patterns, 
and cache size significantly influence the hit ratio 

performance. Although the store capacity is restricted, 

similarCache enhances the efficiency of cache memory 

consumption. Simulations on the SV dataset demonstrate that 

the proposed similarCache outperforms the commonly used 

SIZE and FIFO techniques by 2.33% and 1%, respectively. 

The future work involves developing a comparable cache that 

can adapt to changes in data access patterns by calculating the 

present standard deviation. If an abnormality occurs, the 

proposed similarCache should have the capability to elevate 

the Pearson coefficient for data that is frequently accessed to 
the same level as data that is accessed the most. 
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