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Abstract— Thermodynamics is considered one of the most complex and challenging subjects for many students. This is primarily due 

to comprehending abstract concepts such as entropy, enthalpy, and energy flow, which involve complex mathematical equations and 

are rarely accompanied by tangible visualizations. This research aims to design, develop, and test a data-based visualization tool for 

thermodynamics testing results. This study collected and processed data from thermodynamics testing and simulations, such as the 

mini-steam power plant trainer used as a teaching aid in thermodynamics education, as the foundation for designing a data-based 

visualization tool for thermodynamics concepts. The visualization tool was created using the Python programming language integrated 

with the web-based Streamlit framework. The designed visualization tool encompasses various features, including automated data 

reporting, visualization of variable correlations using correlation heatmaps, Sankey diagrams for visualizing energy flow, and the 

capability to predict electrical output using machine learning integrated with three different machine learning algorithms. The 

visualization tool was evaluated by thermodynamics experts using a Likert scale. Based on the results obtained, the experts gave an 

average score of 4 in the information accuracy aspect in the good category. This shows that the information displayed in this 

visualization tool is by thermodynamics learning at Padang State University. In the visualization aspect, experts gave an average score 

of 4.25, which is in the Good and Very Good range. In alignment with the education aspect, experts gave an average score of 3.75, which 

is close to the good category. This shows that this aspect is considered suitable for studying thermodynamics, although shortcomings 

still need to be corrected. Experts gave a relatively high assessment of the Ease-of-Use aspect, with an average score of 4.5, with a range 

of Good and Very Good. This enables students to better understand complex patterns, cause-and-effect relationships, and parameter 

changes within thermodynamics concepts. 
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I. INTRODUCTION

Thermodynamics is a branch of physics that deals with 
systems in equilibrium, which can be used to determine the 
amount of energy required to change a system from one state 
of equilibrium to another. However, thermodynamics cannot 
be used to determine the rate of change that occurs during 
processes when the system is not in equilibrium. Such a 
system can change because of the surrounding environmental 
conditions. The material system in thermodynamics can 
receive heat energy or energy in various forms. A good 
understanding of thermodynamics allows students to optimize 

processes such as steam power plants, engine cooling, and the 
design of renewable energy systems [1], [2]. Field 
observations at the State University of Padang found that in 
the thermodynamics course, there is teaching material that 
examines the working process of steam turbines. However, 
previous research has found that thermodynamics is often 
considered one of the more complex and challenging themes 
for many students to understand [3], [4], [5]. This is partly due 
to understanding abstract concepts such as entropy and 
enthalpy, complex mathematical equations, and the lack of 
concrete visualizations. As a result, students must rely on 
mathematical representations that are sometimes difficult to 
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grasp. Therefore, more interactive learning methods and 
effective teaching media are needed to visualize 
thermodynamic concepts. 

The rapid and dynamic development of computer 
technology and data science is greatly facilitated by 
widespread internet usage and web-based technologies within 
the academic community. This phenomenon enables the 
integration of thermodynamics concepts with data in a web-
based format, providing students with authentic experiences 
of how changes in one parameter can impact others. 
According to research findings [6], there has been a shift in 
learning styles among students due to extensive exposure to 
computers and the Internet. As a result, students tend to prefer 
learning with the aid of visualizations [7]. This has prompted 
educators to adapt teaching methods to align with visual 
learning methods familiar to technology-savvy students. To 
enhance thermodynamics education in an era where students 
are accustomed to technology-driven learning styles, there is 
a need for a tool that visualizes the data from thermodynamics 
testing and simulations. The primary goal is to improve 
students' understanding of thermodynamics concepts, 
particularly in the context of mini-steam power generation. In 
the process of steam power plant trainer apparatus, which 
serves as an educational tool in thermodynamics, monitoring 
parameters such as temperature, pressure, volume, energy, 
and other variables is often required.  

Exploratory Data Analysis (EDA) in statistics and data 
science is a visual and descriptive data-exploration process 
aimed at drawing conclusions and raising questions about a 
given dataset before performing analysis [8],[9],[10]. It aims 
to uncover patterns, relationships, anomalies, and insights 
present in the data that might have been difficult to spot before 
the analysis occurred [11]. In web-based EDA, system 
performance can be visualized in real-time or as a series of 
intervals, allowing students to observe the change in 
parameters over time [12]. In EDA, it’s also possible to build 
an interactive simulation through which a user can directly 
manipulate key system parameters. For example, in EDA for 
a thermodynamic system simulation, the user can set the 
values of temperature and pressure and observe how system 
performance changes due to these changes. This capability 
can deepen students’ understanding of the concepts associated 
with the thermodynamic system, such as the role of 
temperature, pressure, and energy changes. 

Taking that into account, understandably, we run into 
issues with the concepts of temperature and pressure, as 
explained earlier. All in all, the main objective of this research 
is to create a tool for visualizing thermodynamic concepts in 
the form of a web-based interface based on the knowledge 
from thermodynamic testing. This way, students can grasp 
more challenging concepts through a visual representation of 
data by getting the chance to observe and recognize relations 
of thermodynamic variables, find correlations between 
variables, and run simulations based on machine learning 
methods to predict the electric energy output of a steam 
turbine. Being able to play with data in this manner will help 
students explore the relationships between thermodynamic 
variables, understand more complex concepts, and apply that 
knowledge to run simulations for predicting the outcomes of 
steam turbines. Consequently, this research will be 
approached using a visualization tool for the most effective 

and supportive form of learning when it comes to 
thermodynamic concepts, thus giving students an exciting 
experience to comprehend thermodynamic phenomena and 
their application to the process of generating steam power. 

II. MATERIALS AND METHOD 

This research is research and development that aims to 
design, develop, and test thermodynamic concept 
visualization tools. This research focuses on creating and 
evaluating visualization tools integrated with web-based EDA 
to visualize thermodynamic concepts. This visualization tool 
was created using the Python programming language, while 
the web interface was designed using the Streamlit framework 
[13], [14]. The data used in this research are the steam turbine 
trainer testing results by mechanical engineering students at 
Padang State University. This visualization tool has three 
main features, namely: (1) automatic checking using Pandas 
profiling [15], so that users can quickly identify potential 
errors or anomalies in the dataset; (2) visualization with 
various diagrams, including Sankey diagrams to visualize 
energy flows and correlation analysis between variables using 
correlation heatmaps; (3) the electricity output prediction 
feature using machine learning methods; this allows students 
to test various scenarios and see how changes in input 
variables can affect the resulting electricity output. The design 
of this visualization tool consists of several stages, as can be 
seen in Figure 1. 

 

 
Fig.1  Research Method 

A. Literature Review 

Literature study is a series of activities related to methods 
of collecting library data, reading and taking notes, and 
managing research materials, such as looking for various 
reference sources related to thermodynamic concepts in steam 
power plants, EDA, and understanding how to apply the 
Streamlit framework with the Python library. This stage aims 
to understand better the theoretical and practical basics related 
to the visualization tools that will be designed. 

B. Data Collection and Data Cleaning 

Data collection and cleaning are the initial stages of 
research, where good data collection can ensure adequate data 
quality for analysis. Data cleaning helps ensure that the data 
is free from errors or anomalies that could affect the analysis 
results [16], [17]. This research creates a breakthrough by 
utilizing data from students' independent practice testing as a 
means of interactive learning. So far, data from testing and 
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experiments in the steam turbine process has only been used 
as basic knowledge without being collected or used actively 
to improve students' understanding of thermodynamic 
concepts. The data used in this research comes from the steam 
turbine trainer testing results carried out by mechanical 
engineering students at Padang State University over the last 
three years, from 2020 to 2023. This data is a routine 
assignment for students taking thermodynamics courses at 
Padang State University. Students use a steam turbine as a 
medium to simulate thermodynamic phenomena such as 
energy changes, entropy, and the Rankine cycle as in the 
process of steam power generation. In the learning process, 
students are generally divided into groups of 5 students, where 
each student works together to test and collect data on various 
components of steam power plants such as boilers, fuel, 
turbines, and condensers for further analysis. In this research, 

this data was used as a basis for creating a thermodynamic 
visualization tool for steam power plants. However, before 
further analysis is carried out, the data is cleaned first, such as 
removing invalid values. 

C. Design of Visualization Tools 

The subsequent phase involves the design and integration 
of visualization features into a web framework that is based 
on Streamlit, following the acquisition of the data and its 
subsequent cleansing. The visualization features include 
machine learning models, correlation analysis with 
correlation heatmaps, energy flow visualization with Sankey 
diagrams, and automatic data examination with the Pandas 
profiling and Sweetviz modules. Two stages comprise the 
design of this visualization tool, as illustrated in Figure 2.  

 
Fig. 2  Schematic of the visualization tool design 

 

In the first stage, a machine learning model was designed 
using 3 algorithms commonly used for prediction, namely 
Decision tree (DT), Random Forest (RF), and Artificial neural 
network (ANN). This algorithm is implemented using the 
default parameters provided by the scikit-learn library version 
1.2.2 [18] and Keras version 2.12.0 [19] for ANN, as can be 
seen in Table 1. The data used for training and testing the 
model is divided into two parts, namely 80% training data and 
20% testing data. Each machine-learning model is validated 
using cross-validation. This technique allows the training data 
to be divided into several subsets or folds, and iteration is 
carried out on each subset to be used as test data. In contrast, 

the other subset is used as training data. The selection of 
default parameters in the design stage of this machine learning 
model is based on considerations aimed at providing ease of 
use and a good understanding for students in utilizing machine 
learning features. This is intended to enable students to 
comprehend the fundamental concepts of machine learning 
without delving too deeply into complex parameter tuning. 
With these default parameters, it is expected that students can 
focus their attention on the learning process of machine 
learning concepts and the interpretation of model prediction 
results. 
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TABLE I 
MODEL PARAMETERS 

DT RF ANN 

Parameter value Parameter value Parameter value 

Criterion mse n_estimators 100 Epochs 100 
Splitter best criterion mse Batch 32 

Min Samples Split 2 max_depth None Optimizer Adam 
Min Samples Leaf  1 min_samples_split 2 Learning rate 0.001 

min_samples_leaf 1 Model Sequential 
max_features Auto 

Dense (layer 1) 
Units: 32 

bootstrap True Activation: relu 

Dense (layer 2) 
Units: 16 

Activation: relu 

Dense (output layer) 
Units: 1 

Activation: linear 

The machine learning model is evaluated using evaluation 
metrics such as Mean Absolute Error (MAE), Root Mean 
Squared Error (RMSE), and R-squared (R2). The selection of 
these three metrics is designed to provide holistic and 
comprehensive information about the performance of the 
electricity power prediction model. These evaluation metrics 
have also been employed in previous research on predicting 
electricity output in steam power plants [20], [21], [22]. MAE 
provides an understanding of overall prediction accuracy, 
RMSE emphasizes the handling of large errors. At the same 
time, R-squared gives an insight into how well the model can 
explain variations in power data. By utilizing these three 
metrics, the model evaluation can be conducted more 
effectively from various perspectives relevant to the research 
objectives and practical applications in the field. Model 
evaluation metrics can be calculated using the following 
equations [23], [24]: 

1) Mean Absolute Error (MAE): MAE measures the
average of the absolute differences between the model's 
predictions and the target values. The lower the MAE value, 
the better the model makes predictions. MAE can be 
calculated using Equation 1. 

��� =  �
� ∑|
� −  ��| (1) 

Where 'i' represents the index of data samples, 'N' stands for 
the total number of samples, 'y_i' corresponds to the actual 
data values for the i-th sample, and 'z_i' represents the 
predicted values generated by the model for the i-th sample. 

2) Root Mean Square Error (RMSE): RMSE is the root
of the mean squared difference between the model's 
predictions and the target values. RMSE measures the same 
units as the target variable and is generally more sensitive to 
significant differences. Lower RMSE values indicate better 
predictive performance by the model. RMSE can be 
calculated using equation 2. 

��� =  ��
�  ∑ (�(��� − �������� (2) 

Where 'n' represents the number of data points used to test the 
model, 'f(X_i)' signifies the value predicted by the model for 
the i-th data point, and 'Y_i' represents the actual value for the 

i-th data point.

3) R-squared (R²): R-squared (R²) is the coefficient of
determination that provides information about how well the 

model fits the data. R² is the ratio of the total variation the 
model explains to the total variation present in the data. The 
R² value ranges from 0 to 1, with higher R² values indicating 
a better model's ability to explain the variation in the data. R-
squared can be calculated using equation 3. 

 =  ∑ ��(�(�����(����(������ �
�∑ (�(�����(�� �!� ��"�∑ ��� ���" �!�

(3) 

where f (Xi) represents the predicted value of the dependent 
variable (Y) based on the independent variable (X) for the i-
th observation, f (X̅) is the mean of all predicted values f (Xi) 
across all observations, Yi is the actual observed value of the 
dependent variable for the i-th observation, Y̅ is the mean of 
all observed values Yi across all observations, and n is the 
total number of observations. 

In the second stage, all visualization and machine learning 
features are integrated into the web-based Streamlit 
framework. The visualization tool's interface is user-friendly, 
with a simple layout, making it accessible to users who may 
not be familiar with data exploration and machine learning. 

D. Evaluation

The thermodynamics visualization tool that has been
designed will be evaluated through a series of tests involving 
two main aspects: (1) internal testing to ensure that all 
functions and components work as expected and (2) 
assessment to be submitted to experts in the field of 
thermodynamics to evaluate the accuracy of information, 
visualization quality, alignment with educational objectives, 
and ease of use using a Likert scale. 

III. RESULTS AND DISCUSSION

Based on field observations at the State University of 
Padang in the mechanical engineering education program, the 
thermodynamics course includes learning materials related to 
the operation of steam turbines. Typically, thermodynamics 
learning is conducted through in-class sessions with 
theoretical content delivery and a miniature power plant 
trainer, such as the one depicted in Figure 3.  

However, up to this point, the data from testing and 
experiments on the mini power plant trainer has been used 
primarily for bare knowledge and has not been actively 
collected or utilized to enhance students' understanding of 
thermodynamics concepts. Data can actively serve as an 
interactive learning tool [25]. 
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Fig. 3  Steam Power Plant Trainer 

With increasingly advanced information technology and 
visualization aids, students can easily access and visualize the 
data obtained from mini-power plant experiments through 
graphs, diagrams, and tables. This enables students to more 
profoundly observe and comprehend complex patterns, cause-
and-effect relationships, and parameter variations within 
thermodynamic concepts. The active use of data in 
visualization also empowers students to engage in self-
directed exploration [26]. Furthermore, this approach aligns 
with the contemporary trend where data is actively employed 
for decision-making, analysis, and innovation across various 
industries and academic disciplines [27]. 

A. Data Collection and Data Cleaning

Data was collected from the results of testing and previous
student simulation assignments regarding steam turbine 
trainers. This data amounted to 312 samples with 9 variables 
consisting of 8 input variables and 1 output variable, as can be 
seen in Table 2.  

TABLE II 
STATISTICS OF STEAM POWER PLANT TRAINER TEST DATASET 

Parameter Variable Min Max Mean 

Steam pressure 
inside the boiler 
(bar) 

Input 3.44 4.36 3.9 

Boiler steam 
temperature (°C) 

Input 141.37 151.31 147.62 

Fuel consumption 
(L/h) 

Input 50 51 50 

Turbine RPM Input 1247.77 1285.164 1260.44 
Inlet turbine 
temperature (°C) 

Input 109 123 113 

Outlet turbine 
temperature (°C) 

Input 96 106 100 

Inlet turbine 
pressure (bar) 

Input 2.79 3.58 2.72 

Outlet turbine 
pressure (bar) 

Input 0.05 1 0.4 

Generator Output 
(Watt) 

Output 2.22 3.41 2.73 

However, after cleaning the data, the numbers were 
reduced to 300 samples. This was caused by missing data, 
duplicates, and a scale much different from other data, so it 
was removed from the dataset. Apart from the steam turbine 
trainer test data, energy flow data was also obtained for each 
PLTU component, such as the boiler, turbine, condenser, and 
generator. Removing data from a dataset is an essential stage 
in data processing, known as data cleaning. This process aims 
to ensure that the data used in analysis or modeling is of good 
quality and reliable [16], [17]. 

B. Design of Visualization Tools

Exploratory Data Analysis (EDA) is an initial investigation
process to identify patterns, discover anomalies, test 
hypotheses, and examine assumptions. Through EDA, users 
can detect errors early on, identify outliers, understand 
relationships between data, and explore essential factors 
within the data. The EDA process includes calculating various 
basic statistical values, visualization, hypothesis formulation, 
assumption checking, and storytelling and reporting. 
Additionally, EDA involves handling missing values, 
outliers, dimensionality reduction, clustering, transformation, 
and data distribution. 

After obtaining the data, the next step is to perform data 
analysis before creating the machine learning model. The test 
data from the steam power plant trainer is analyzed using a 
correlation heatmap to visualize the relationships between the 
input variables and the output variable. A correlation heatmap 
is a visual tool used to display the correlation between 
multiple variables by using different colors to indicate the 
strength and direction of the correlation between two 
variables in the data [28], [29]. The correlation heatmap uses 
the Pearson correlation coefficient as its correlation measure. 
The Pearson correlation coefficient can range from -1 to 1, 
where -1 indicates a perfect negative linear relationship, 0 
indicates no linear relationship, and 1 indicates a perfect 
positive linear relationship [30]. The correlation results for the 
steam power plant trainer test data can be seen in Figure 4. 

Fig. 4  Heatmap of correlation for steam power plant trainer test data 
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Based on Figure 3, it can be seen that almost every input 
variable has a positive correlation with the output variable 
(Generator Output). The outlet turbine pressure and turbine 
RPM parameters have strong positive correlations with the 
electrical power generated by the generator, with values of 
0.46 and 0.41, respectively. Meanwhile, the parameter with 
the smallest correlation to the input variables is the steam 
temperature inside the boiler, with a correlation of 0.18. This 
is consistent with the findings of a previous study [31], [32], 
[33] which indicated that the outlet turbine pressure can
influence the turbine's rotational speed. Higher turbine
rotational speeds result in greater electrical output from the
generator.

The next step involves machine learning modeling to 
predict the electrical power output generated by the steam 

power plant trainer using three algorithms: DT, RF, and ANN. 
Default parameters provided by scikit-learn version 1.2.2 [18] 
and Keras version 2.12.0 for ANN [19] are used for modeling. 
Machine learning modeling is designed based on the 
previously obtained data, which consists of 8 input variables 
and 1 output variable. The data is divided into two parts for 
training and testing: 240 and 60 samples for training. Cross-
validation with K=10 is used for evaluation, and three 
evaluation metrics are employed: MAE, RMSE, and R-
squared. The prediction results for the three machine learning 
models can be seen in Figure 5, and the cross-validation 
results for the three machine learning models are shown in 
Figure 6. 

Fig. 5  Prediction results of (a) DT, (RF), and (c) ANN models 

Fig. 6  Model Evaluation Results Using Cross-Validation K=10 

Based on the validation results using the cross-validation 
method with K=10, this research indicates that out of Random 
Forest (RF), Decision Tree (DT), and Artificial Neural 
Network (ANN), RF performs the best and has the most 
efficient results. We can visualize this by looking at the chart 

below: RF scores higher than both DT and ANN in the R-
squared value, reaching 0.90, while DT and ANN record R-
squared values of 0.80 and 0.78, respectively. If we transfer 
this data into percentages, we will see that RF predicts 
generator output with a higher accuracy when compared to the 
other two models, by an R-squared difference of 12% 
compared to DT and 12% compared to ANN. In addition, 
Random Forest scores the lowest in MAE and RMSE values, 
with each point being 0.06 and 0.07, respectively. DT comes 
next to it, with an MAE of 0.08 and RMSE of 0.10, and ANN 
has the highest MAE and RMSE values – 0.08 and 0.11, 
respectively. This proves that RF not only predicts generator 
output with a higher degree of accuracy but also carries a 
lower error rate when compared to both DT and ANN.  

It is obvious from the chart that RF is capable of high 
generalization, which we can also notice from the R-squared 
value of 0.90, indicating that RF can explain up to 90% of the 
variation in present data. This explains an ability to learn 
underlying patterns in the data. RF is far superior to DT and 
ANN. It mainly shines in ensemble, model stability, and 
scalability. The ensemble is one of the core features of RF, 
where we already know DT has a considerable downside to 
the effect that the decision tree can easily be influenced by 
noise or arbitrary statistical/ accidental relationships in the 
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training data and pick up those patterns as well. This causes 
the model to overfit. Luckily, RF introduces us to an ensemble 
of DTs trained separately, and a voting or averaging 
procedure is done for the final result, reducing overfitting and 
improving model performance. DT overfits because it relies 
on a single DT, unlike RF, which relies on an ensemble of DT 
[34]. In addition to this benefit, RF is also known to be more 
model stable than most decision tree models. Model stability 
is even more important than determining if the model is good. 
Sometimes, small changes in input at random (usually by 
adding or removing a few observations), even when these 
samples were not included before, can cause a dramatic 
change in a model based on a single decision tree [34] DT 
changes as we change the training data slightly, but RF 
sustains the results. This means that RF is less likely to be a 
trick of the current data at hand since it provides strong results 
even with minor changes in data. Finally, RF is more 
accessible to implement by providing good results even with 
small data. RF is also scalable and uses many DTs. On the 
opposing side, ANN requires a large amount of data for 
successful training, and since it has deeper architectures, more 
computational resources are needed, too. 

These results align, moreover, with the exploration of solar 
power plant prediction by random forests [35] That indicates 
that RF uses ensemble learning concepts since the model is 
based on many decision trees combined randomly. This 
further increases the robustness of the model to overfitting. 
Furthermore, in the case of making predictions about hourly 
solar power generation, the weather input in solar power plant 
prediction contributes to uncertainty and errors. Therefore, 
RF proves robust in such cases as it is relatively stable to 
errors in weather input data. Random Forest quantity response 
was stable on diverse weather data. The reliability of the RF 
approach is further confirmed by the algorithm's robustness to 
variations and diversity in weather data. Since the algorithm 
has random subsets of features and training data (data 
samples), using RF can reduce the model's variance and 
consequently help improve performance and provide a better-
fitting model on unseen data.  

Finally, another study [36] the RF approach can discover 
the most significant and explanatory features required for an 
hour-ahead power price prediction in the electricity market. 
This study automatically quantifies and evaluates the relative 
importance of various weather features to electricity prices 
through the RF algorithm. By doing so, the study identifies 
the most relevant variables in determining electricity prices. 
According to the results, the RF algorithm can model the 
power consumption data and demonstrate explanatory 
variables with primacy in determining electricity prices. The 
analyzed variables include load, hydro, thermal production, 
and wind energy production. The research confirms these 
results [37] that explores the performance of RF as an option 
for predicting country-level biomass energy indicators. The 
study points out that RF proves effective in predicting several 
human activities, including crop production or malaria 
diseases, that cause data to be varied in types, including 
categorical and numerical. All these findings are also 
consistent with previous studies [35], [38] that report the 

robustness of the Random Forest approach in achieving 
superb performance in electricity generation prediction. 
These earlier studies reported that RF’s success in handling 
complexity and non-linearity in data content can influence the 
goodness of the predictions made with this algorithm. 

After completing the modeling process using three 
machine learning algorithms, the next step involves 
integrating all features of this data-driven thermodynamics 
concept visualization tool into the Streamlit framework. This 
is in line with a study [39] that indicates using simulations can 
enhance the quality of learning but requires modifications to 
the simulation design and lesson sequence to maximize its 
impact. The study discusses the utilization of computational 
simulations in online learning of advanced placement physics 
at the high school level. The focus is on how students use 
simulations to generate quantitative data and then analyze, 
interpret, and model thermodynamic concepts.  

The research results show that some students experience an 
improvement in conceptual understanding of the properties of 
matter particles and diffusion. Students find simulations 
helpful in explaining complex concepts, and the data 
generated by simulations facilitates understanding. In another 
study [40], there's mention of a new e-learning-based 
educational package called TermolabUA, consisting of three 
programs: Volcontrol for steady-state flow device analysis, 
CarnotCycle for analyzing reversible and irreversible 
processes, and CombustionUA for studying combustion 
processes. This educational package is designed to help 
undergraduate students achieve cognitive competence in 
understanding various thermodynamics topics. The t-student 
test results indicate that the average scores obtained by 
students using the software are higher than the average scores 
without using the software.  

Therefore, this web-based visualization tool is designed 
with an interface that includes a sidebar and content page. The 
sidebar navigates, enabling users to easily access various 
features and pages, such as the Exploratory Data Analysis 
(EDA) page. The EDA page comprises visualization features 
designed to provide a deep dataset understanding. These 
features involve automated data inspection using pandas 
profiling modules, allowing users to identify potential errors 
or anomalies in the dataset quickly. According to a study [41] 
Using Google Colab notebooks to teach thermodynamics, 
students are guided to code to facilitate learning, such as 
creating simulations and visualizing problems. The research 
findings indicate that Google Colab notebooks can be an 
effective tool for enhancing thermodynamics learning.  

Additionally, there are correlation heatmap features that 
visualize relationships between variables, pair plots to explore 
data distributions and manual graphs like scatterplots that 
offer flexibility in data analysis. Users can freely access these 
features by using the sidebar as a navigation guide to gain 
better insights into thermodynamics concepts. The EDA page 
features can be seen in Figure 7, which can provide a 
comprehensive learning experience for students in 
understanding thermodynamics concepts through data 
analysis and informative visualization. 
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Fig. 7  Exploratory Data Analysis (EDA) Page 

On the second page or in other features of this visualization 
tool, there is a Sankey diagram graph feature, a visual element 
that plays a very significant role in understanding 
thermodynamics concepts, especially in the energy flow 
processes within a system. The Sankey diagram plays a 
crucial role in providing a visual representation of how energy 
enters and flows through a thermodynamic system [42], [43]. 
In this representation, the thickness of the arrows on the 
Sankey diagram reflects the amount of energy flow, allowing 
students to visualize how energy moves through various 
system components. The Sankey diagram graph in this 
visualization tool is designed to be an interactive learning 
tool, enabling students to understand the extent to which 
energy is used or lost in each component of the 
thermodynamic system. By examining the different widths of 
lines on the Sankey diagram, students can gain profound 
insights into energy distribution and how it transfers between 
system components. The view of the Sankey diagram feature 
can be seen in Figure 8, serving as one of the visual elements 
that support the learning of thermodynamics concepts in a 
clear and informative manner. 

Fig. 8  Sankey Diagram Feature Display 

On the third page of this visualization tool, there is a 
machine-learning modeling feature specifically designed to 
predict the electrical power output generated by the generator. 

Users can choose the desired algorithm in this feature, such as 
Decision Tree, Random Forest, and Artificial Neural 
Network. The page design is deliberately simple, focusing on 
user-friendliness, especially for those unfamiliar with 
machine learning methods. The sidebar on this page displays 
input variables that users can adjust, such as steam pressure in 
the boiler, boiler steam temperature, fuel consumption, 
turbine RPM, turbine inlet temperature, turbine outlet 
temperature, turbine inlet pressure, and turbine outlet 
pressure. Users can select the algorithm that suits their needs 
on the right side of the page. The results of the generator's 
electrical power prediction will appear in the content section 
of the page, accompanied by units of measurement in watts. 
Furthermore, this page also provides information about model 
evaluation metrics, such as MAE, RMSE, and R-squared. 
Visual representations of these evaluation metric values can 
be found in Figure 9, offering users direct insights into how 
well the machine learning model can predict the generator's 
electrical power.  

Fig. 9  Machine Learning Model Page Display 

With the combination of these features, this page aims to 
provide an informative and in-depth learning experience for 
students in understanding thermodynamics concepts through 
the practical application of machine learning modeling. This 
visualization tool embodies the concept that data originating 
from practical work, testing, and scientific simulations, as 
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found in thermodynamics concepts, can play a critical role in 
interactive learning. The interactive learning approach is an 
educational method in which students are not merely passive 
recipients of knowledge but actively participate in the entire 
learning process [44]. This visualization tool is designed to 
provide students with insights showing that data is not merely 
the result of experiments but also an active learning resource. 
Through this visualization tool, students are expected to 
comprehend that data plays a role beyond being the output of 
an experiment. Data also serves as the foundation students use 
to gather information, clean and analyze data, and make 
decisions. Therefore, this visualization tool encourages 
students to take an active role in their learning process, build 
analytical skills, and understand the significance of data as a 
dynamic and interactive learning tool. Specifically, 
integrating data from experiments and simulations of 
thermodynamics learning devices, such as steam turbine 
trainers, with a web-based thermodynamics concept 
visualization tool establishes a robust connection with 
previous research. This method enables students to 
comprehend concepts theoretically and experience their 
practical application through data visualization, acting as a 
bridge between theory and practical experience. 

The outcome was that machine learning works to analyze 
problems in thermodynamics, especially in modeling 
nonlinear relations and multi-dimensional data, out of the 
reach of traditional mathematical functions. The outcome of 
this research was similar to Ding [45] who has used machine 
learning methods to predict the thermodynamic properties of 
several compounds from available data? The results show that 
machine learning can be applied in molecular 
thermodynamics to predict and investigate properties and 
behaviors commonly design issues in chemical engineering 
real-life applications. Such machine learning methods can 
better understand the role of ions and molecules in complex 
systems. Nonetheless, implementing machine learning in 
chemical engineering is still at the beginning due to the costs 
of acquiring datasets as one of the primary application areas 
in this research field. In another study, the title of the paper 
was based on extraction research, Funai [46] about how the 
Restricted Boltzmann Machine (RBM) can model phases of 
matter in thermodynamics. RBM was trained by data samples 
obtained from spin configurations taken by repeated sampling 
from the Ising Hamiltonian at various temperatures in the 
presence of an external magnetic field by using Monte Carlo 
methods. The results allow an understanding of how physical 
phase transitions can be identified through the machine 
learning method and then by identifying the distinctive 
properties of configurations, such as maximization of specific 
heat or correlation length. The outcome of this manuscript 
makes it clear that the RBM does not directly relate to the 
renormalization group (RG) flow and its fixed points. Jirasek 
[47] discussed using machine learning methods in
thermodynamics to predict activity coefficients of binary
liquid mixtures. Activity coefficients are calculated from
Gibbs-Duhem relations, resulting in Henry’s law constant
prediction, which is a nonlinearity issue in systems with
excess entropy. Using a probabilistic matrix factorization
modeling, the outcome of this study shows an advantage
without physical descriptors. This predictive method for
activity coefficients in many binary liquid mixtures, including

solutions of hydrofluorocarbons that are widely used as 
refrigerants, is far better than current methods whose 
methodology has been developed during the previous 
decades, without using physical descriptors for its modeling 
components. 

Using machine learning without physical descriptors 
provides a new perspective on the possibility of predicting 
thermodynamic properties without relying on traditional 
models that may require complex physical descriptors. Based 
on the findings of this research and previous studies, it can be 
observed that machine learning methods have a significantly 
positive impact on modeling, visualizing, and explaining 
thermodynamic issues very effectively. Integrating machine 
learning with Streamlit has opened new opportunities for 
data-driven learning models in thermodynamics. Previously, 
data from experiments, testing, and simulations were only 
used for validation, but now, this data can be utilized for 
interactive learning about steam power plants in 
thermodynamics courses. 

This visualization tool not only holds significant potential 
in the context of formal education but can also make a 
substantial contribution beyond academic environments, 
particularly in industry, research, and development. The 
visualization tool can be utilized to train the workforce in 
specific industries, helping them grasp thermodynamics 
concepts and processes relevant to their work [48]. It serves 
to understand and analyze data in industrial research. For 
instance, in industries involving thermal processes, such as 
steam power plants, this tool can assist researchers in 
comprehending changes in energy, entropy, and other 
thermodynamic factors. The use of machine learning 
algorithms to predict electrical power output can also be 
applied in industrial settings, aiding companies in planning 
and optimizing power plant operations, as shown in [20], 
[21], [22]. By combining this visualization tool's strengths, 
providing clear visual insights and robust data analysis 
capabilities, it is expected to have a positive impact in various 
contexts beyond formal education. 

The visualization tool integrated with the Streamlit 
framework significantly impacts both industry and research, 
particularly in the context of steam power plants. Essentially, 
the demand in the steam power plant industry is to achieve 
maximum electrical power production even under various 
environmental conditions. Variability in conditions such as 
temperature fluctuations, air pressure, humidity, and other 
factors significantly affects the performance of critical 
components in steam power plant systems [49],[50]. High air 
temperatures, for instance, can result in increased 
temperatures in various key components such as turbines and 
condensers. This temperature rise can detrimentally impact 
heat transfer efficiency and overall system performance, 
potentially leading to a decrease in power production. 
Conversely, low-temperature conditions can cause significant 
fuel wastage, especially when heating water in boilers, which 
may increase operational costs.  

C. Evaluation of Visualization Tool

The evaluation of these tests was categorized into two
aspects, namely internal testing and assessment conducted by 
experts, who are the structural relationships that mainly learn 
the subject material of thermodynamics, which is by 
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correlation of the structural relationships that mitigate this 
tool for the students and anyone who desires to understand 
thermodynamics. Internal testing refers to the evaluation 
addressing whether the stimuli visual in this project is in line 
with the target for this visual, which is being able to present a 
range of data associated with thermodynamics from a clear, 
easy, and concise viewpoint so that the students can easily 
apply the pieces of information related to thermodynamics to 
understand the subject of thermodynamics [51], [52]. External 
testing refers to the evaluation and assessment conducted by 
experts of strong relationships who learn the subject material 
of thermodynamics to see whether the students and anyone 
who utilizes the visual can carry out the theoretical 
calculations related to thermodynamics based on the data 
provided by this tool. The calculation is performed following 
the calculations formula of thermodynamics that has been 
fixed since the early twentieth century, which is used for a 
wide range of materials by various experts related to the 
chemistry and physics fields. This type of visualization tool 
was assessed and tested by the two subjects above, including 
the tutors, to see whether the visual stimuli of this project 
match the purpose of the core impression and whether the 
visual can visualize stimulation of relations of data of 
thermodynamics, which are derived from two sources, which 
are data simulation and data experimentation, for the students. 
We tested the tool of the visual and received good results. It 
can be compiled quickly and efficiently. The time it takes to 
load and transition between features is not long and is 
happening smoothly without any crashes, moving back to 
places where they came from, or repeating two particular 
errors in the tool. In more detail, the tool shows stability 
clearly in morphology. Data compilations of stimuli 
experiments, whether from the simulation or experiments that 
the students conducted, were carried out successfully with no 
problem. 

The second phase evaluates the visualization tool using a 
Likert scale by experts to assess the correctness of the 
information being presented, the effectiveness of 
visualizations, the integration of the educational aspect, and 
the ease of use of the visualization tool. Four lecturers of 
thermodynamics courses at the University of Padang 
conducted the evaluation process. Figure 10 shows experts' 
evaluation of the visualization tool. 

Based on the results obtained, it can be seen that the experts 
gave an average score of 4 in the Information Accuracy aspect 
in the good category. This shows that the information 
displayed in this visualization tool is by thermodynamics 
learning at Padang State University. In the Visualization 
aspect, experts gave an average score of 4.25, which is in the 
Good and Very Good range. In alignment with the education 
aspect, experts gave an average score of 3.75, which is close 
to the good category. This shows that this aspect is considered 
appropriate for thermodynamics learning, but shortcomings 
still need improvement. Experts give a relatively high score to 
the Ease-of-Use aspect, with an average score of 4.5, in the 
Good and Very Good range. Overall, the experts provided 
very positive assessments, indicating that the visualization 
tool has good quality in conveying thermodynamics concepts, 
especially regarding information accuracy and ease of use. 
Although alignment with learning approaches is a good 

category, there is still room for improvement in enhancing 
relevance to the learning context. 

Fig. 10  Expert Evaluation Results of the Visualization Tool 

This visualization tool is specially designed for learning in 
thermodynamics courses. It assists students in illustrating how 
thermodynamic phenomena occur in steam power plant 
systems. The data used for machine learning modeling is 
derived from testing and simulation in small-scale steam 
power plant systems. Therefore, to implement machine 
learning on an industrial scale, adjustments to the dataset are 
needed to meet specific industrial requirements. It is essential 
to emphasize that the data used to train the model is still very 
limited. This is mainly due to the previous paradigm that 
viewed data merely as a tool to validate research results [53]. 
In future research, it is expected that campus laboratories, 
particularly those involved in thermodynamics testing, will 
consider data an active learning source, especially in 
interactive learning using this visualization tool. A new 
understanding of the role of data can open opportunities to 
expand and enrich the tool's usage in various learning 
scenarios [54]. 

Based on previous research, it was found that a common 
challenge in implementing machine learning methods is the 
limitation of data. Privacy issues cause this [55], high costs, 
and limited access to related databases [56]. Nevertheless, in 
some cases, it has been discovered that this issue can be 
addressed by using synthetic data [57],[58]. Synthetic data is 
intentionally created or generated to increase the quantity or 
variation of available data. This data does not come from 
observations or real-world data collection but is created using 
various techniques and methods, such as generative 
algorithms or data manipulation. The primary goal of using 
synthetic data is to enhance the number of samples available 
for model training, especially in the context of machine 
learning [59], [60]. Research on synthetic chemistry [12] 
identified a constraint: one of the main challenges in applying 
machine learning is the limitation of available data. 

IV. CONCLUSION

Based on the results of designing a web-based exploratory 
data analysis (EDA) tool to visualize thermodynamic 
concepts in the steam power plant trainer process, it can be 
concluded that the experts gave an average score of 4 in the 
information accuracy aspect in the good category. This shows 
that the information displayed in this visualization tool is by 
thermodynamics learning at Padang State University. In the 
visualization aspect, experts gave an average score of 4.25, 
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which is in the good and very good range. In alignment with 
the education aspect, experts gave an average score of 3.75, 
close to the good category. This shows that this aspect is 
considered suitable for studying thermodynamics, although 
shortcomings still need to be corrected. Experts gave a 
relatively high assessment of the Ease-of-Use aspect, with an 
average score of 4.5, with a range of Good and Very Good. 
With this visualization tool, students can easily access and 
visualize data from steam power plant trainer experiments in 
the form of graphs, diagrams, and predictive modeling using 
machine learning methods. This allows students to observe 
and understand complex patterns, cause-effect relationships, 
and parameter changes in thermodynamic concepts more 
deeply. Active use of data in visualization also allows students 
to explore independently. Additionally, this approach aligns 
with current trends where data is actively used for decision-
making, analysis, and innovation across industries and 

academic disciplines. 
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