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Abstract—Cardiovascular disorders are among the primary causes of death. Regularly monitoring the heart is of paramount 

importance in preventing fatalities arising from heart diseases. Heart disease monitoring encompasses various approaches, including 

the analysis of heartbeat sounds. The auditory patterns of a heartbeat can serve as indicators of heart health. This study aims to build 

a new model for categorizing heartbeat sounds based on associated ailments. The Phonocardiogram (PCG) method digitizes and records 

heartbeat sounds. By converting heartbeat sounds into digital data, researchers are empowered to develop a deep learning model 

capable of discerning heart defects based on distinct cardiac rhythms. This study proposes the utilization of Mel-frequency cepstral 

coefficients for feature extraction, leveraging their application in voice data analysis. These extracted features are subsequently 

employed in a multi-step classification process. The classification process merges a convolutional neural network (CNN) with a long 

short-term memory network (LSTM), forming a comprehensive deep learning architecture. This architecture is further enhanced 

through optimization utilizing the Adagrad optimizer. To examine the effectiveness of the proposed method, its classification 

performance is evaluated using the "Heartbeat Sounds" dataset sourced from Kaggle. Experimental results underscore the effectiveness 

of the proposed method by comparing it with simple CNN, CNN with vanilla LSTM, and traditional machine learning methods (MLP, 

SVM, Random Forest, and k-NN). 
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I. INTRODUCTION

According to the World Health Organization (WHO), 

cardiovascular disease is the most significant cause of 

mortality worldwide, accounting for around 17.9 million 

deaths every year [1], [2]. Additionally, acute myocardial 

infarction is responsible for 85% of cardiovascular events. 

Cardiovascular conditions encompass various ailments 

involving blood vessels and the heart, such as rheumatic heart 

disease, cerebrovascular disorders, and coronary heart disease, 

among others. Individuals afflicted with hyperlipidemia, 
diabetes, hypertension, etc., face elevated risks of 

cardiovascular issues [3], [4]. This disorder gradually 

becomes a more integral aspect of our lives as we age. In the 

elderly, cardiovascular disease can have more severe 

repercussions compared to younger individuals due to 

diminished recovery rates [5]. Thus, the early identification of 

cardiac abnormalities [6]  plays a crucial role in patient care.  

Clinical practice employs numerous tools for diagnosing 

cardiovascular disease. Auscultation, a fundamental 

diagnostic technique, involves listening to heart sounds 

through a stethoscope placed on the patient's chest to facilitate 

diagnosis [7], [8]. While auscultation remains precise, 

diagnosing cardiovascular and heart-related disorders, 
especially for non-clinical and inexperienced individuals, 

proves challenging. Despite its accuracy, auscultation 

demands extensive experience and prolonged training to 

diagnose cardiovascular disease effectively [9]. 

Phonocardiogram (PCG) is a particularly suitable general 

heart disease screening method. PCG involves digitally 

recording and storing heart sounds [10]. This can be achieved 

through microphones connected to the patient's chest or 

digital stethoscopes, enabling signal analysis and processing 

via computer-based methods. The aim is to aid doctors in 

diagnosing heart disease through computer-assisted heart 
sound analysis. 

There is a wealth of medical data and advanced artificial 

intelligence technology, with an increasing emphasis on 

developing deep learning approaches for heart sound 

classification. Most research has predominantly focused on 

distinguishing between regular and irregular heartbeat sounds. 

Notably, a study utilizing an artificial neural network (ANN) 
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model has attained a precision rate of 90% [11]. Furthermore, 

the fusion of Variational Mode Decomposition (VMD) with 

CNN-LSTM has yielded an impressive accuracy of 98.65% 

[12]. In addition, a one-dimensional convolutional neural 

network has achieved an accuracy of 93% [9], and MFCC-

CNN-RNN has showcased a remarkable precision of  98.63% 

[13].  While the accuracy is commendable, prior studies have 

limited themselves to the classification of only two classes. 

However, given the requirement for more specific 

information, a model capable of classifying data based on its 
inherent characteristics or original labels is necessary. 

The traditional method for computer-based heart sound 

analysis consists of three stages: (1) pre-processing (filtering 

and segmentation), (2) feature extraction, and (3) classifier 

design [13]. In stages 1 and 2, Deng et al. [13] employ a 

Butterworth bandpass filter of fifth order (25-400 Hz) for pre-

processing and Mel-frequency cepstral coefficients (MFCC) 

for feature extraction in detecting heart sound abnormalities. 

In stage 3, classification primarily relies on deep learning, as 

demonstrated by the work of Yazan Al Issa et al. [14], who 

employ a CNN-LSTM classifier for multiclass cardiovascular 
detection. 

This study pioneers the integration of two state-of-the-art 

technologies in the field of cardiovascular anomaly detection: 

a hybrid CNN-LSTM framework for classification tasks, and 

MFCC for precise feature extraction. MFCC helps the 

network focus on essential features while reducing noise and 

irrelevant information in the raw audio, CNN can 

significantly reduce the dimensionality of the input data while 

preserving important information, and LSTM is good for time 

series data. These combined innovations substantially elevate 

the model's accuracy and effectiveness. 
The subsequent sections of the paper are organized as 

follows: Section II describes the approach, which includes 

data pretreatment, feature extraction, and the classification 

algorithm. Section III presents the experimental setup, 

datasets, evaluation metrics, results, and discussions. Section 

IV concludes the work by suggesting future research 

alternatives. 

II. MATERIAL AND METHOD 

This study develops a method to classify heart disease 

based on heartbeat sounds. The proposed method utilizes 

MFCC for feature extraction and combines CNN and LSTM 

for the classifier. The overall method is illustrated in Fig. 1. 

A. Dataset 

The dataset was initially generated for a machine learning 

competition focused on categorizing heartbeats and was 

obtained from Kaggle 

(https://www.kaggle.com/datasets/kinguistics/heartbeat-
sounds ) [15]. The information originated from two distinct 

origins: (A) the broader public through the iStethoscope app 

and (B) a medical study conducted in hospitals using the 

digital stethoscope DigiScope. 

 

 
Fig. 1  Architecture of the proposed methods. 

 

The dataset comprises sound files in *.wav format and label 

data in *.csv format. The data is categorized into five classes, 
totaling 767 pieces, with the percentages shown in Fig. 2. 

These classes encompass normal, murmur, artifact, 

extrasystole, and extrahls, as illustrated in Fig. 2. 

 

 
Fig. 2  Class distribution of the Heartbeat sound dataset.  

 

This dataset has been employed in numerous studies. Some 
studies utilize two classes, categorizing data as normal and 

abnormal [9], [12], [13]. In this particular study, we focus on 

three labels/classes. The labels or classes utilized in this study 

include typical, murmur, and artifact and remove extrasystole 

and extrahls. 

B. Preprocessing 

 First, the heartbeat dataset in *.wav format undergoes 

processing to convert it into signal data. Sound transmits air 

pressure waves to our ears. A digital audio file is generated by 
detecting these sound waves and transforming them into 

electrical signals through a sound sensor. This process 

provides insights into wave displacement and its temporal 

evolution. 

Fig. 3 illustrates a heartbeat sound signal. The x-axis 

represents the time duration of the heartbeat, and the y-axis 

represents the displacement of air molecules. Amplitude 

quantifies the extent of this displacement from the molecule's 

equilibrium position. 
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Fig. 3  Heartbeat sound signal. 

 

Secondly, the heartbeat signal is transformed into a 

spectrum. The spectrum concisely depicts a sound by 

showcasing vibration intensity at various discrete frequencies. 

Typically presented as a graph, it illustrates power or pressure 

against frequency. Power or pressure is often quantified in 

decibels, while frequency is measured in hertz (Hz) or 

kilohertz (kHz). 
The spectrum, obtained through sound analysis, represents 

the frequency composition of the sound. A sound spectrum is 

commonly visualized on a coordinate plane, where the 

frequency (f) is shown horizontally (abscissa), and the 

amplitude (A), or intensity, of a specific frequency's harmonic 

component is plotted along the vertical axis (ordinates). The 

spectrum is illustrated in Fig. 4. 

 

 
Fig. 4  Spectrum from the heartbeat. 

 

Human perception of sound is influenced not only by its 

instantaneous intensity but also by its pitch, which correlates 
with frequency. A higher pitch corresponds to a higher 

frequency, and vice versa. To create a representation more in 

line with human cognition, we introduce a spectrogram, as 

depicted in Fig. 5. A spectrogram serves as a visual 

representation of how a signal's frequency spectrum changes 

over time [16]. In the context of audio signals, spectrograms 

are also commonly known as sonographs, voiceprints, or 

voicegrams. 

C. Feature Extraction  

Machine learning relies heavily on feature extraction and 

selection. Audio signal axes include frequency, amplitude, 

and time. An audio signal's spatial and temporal 

characteristics give clear information [17], [18]. The audio 

signal, a time-varying entity, can be digitally quantified. It 

comprises numerous frequency sound waves with varying 

amplitudes. 

 
Fig. 5  Spectrogram from the heartbeat. 

 

Each sample may be broken into sine and cosine signals 

utilizing the Fourier Transform, resulting in a spectrum. A 

frequency content spectrogram is a time-based representation 

of frequency content. Over time, sound content reveals 

abnormalities and variations. To address this, multiple Fast 

Fourier Transform (FFT) operations are performed on distinct 

windows of the sound source. For spectrum analysis, these 
windowed signals are subjected to the FFT technique. Mel-

filtering is a human perception-inspired process that merges 

frequency components from Mel-filter bands into a single 

energy intensity. The logarithm of all Mel-filter band 

intensities is used in the non-linear transformation. The 

Modified Discrete Cosine Transform (DCT) is then applied to 

convert the altered intensities into MFCC [19]. The overall 

process of MFCC is illustrated in Fig. 6. 

 

 
Fig. 6  MFCC Architecture. 

 

The computation of MFCC involves constructing Mel-

Scale filter banks according to the formula [1]: 

 � � 1127 log	
 �

�� � 1� (1) 

where, f represents the frequency in the linear scale, while m 

signifies the frequency in the Mel-Scale. The Spectrum from 

the signal is transformed using power spectral density (PSD) 

onto the Mel-Scale through multiplication with the generated 

filter banks, and the logarithm of the energy output from each 
filter is calculated as outlined below: 

 �
�� � log	
∑ |�
��|���
����
��
� � (2) 

where m the number of filter banks and ��
�� is the filter 

banks. The MFCC is estimated utilizing the spectrum's 

discrete cosine transform (DCT): 
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where M is the total number of filter banks. 

 

 
Fig. 7  MFCC Feature. 

 

There are several ways to extract characteristics from audio. 

We focus on the main qualities that accurately describe an 

audio clip in our study. Turning an audio stream into a 

spectrogram depicted on the Mel scale filtering is known as 
spectrogram imaging. These photos are saved and sent into 

the algorithm. On the Mel scale filtering, MFCC gives a 

concise depiction of the spectral envelope [20]. Higher-order 

coefficients gather pitch and tone, whereas the first 13 

coefficients define spectral structure. We used 52 MFCC 

features in this investigation. Fig. 7 depicts the MFCC Feature. 

D. CNN 

CNN is a deep learning network capable of identifying and 

classifying image attributes within computer vision. The 
configuration and functioning of the CNN are influenced by 

the organization of the brain's visual cortex, which aims to 

mimic the neural connections found in the human brain [21]. 

Each neuron within CNN assesses information in its 

respective receptive zone. The sequential CNN layers are 

designed to detect elementary features like lines and curves 

before progressively moving on to more complex patterns 

such as faces and objects. This implies that integrating a CNN 

could potentially enhance computational capabilities [22]. 

The convolutional layer lies at the heart of the CNN 

architecture and plays a critical role, as illustrated in Fig. 8. 

 
Fig. 8  Convolution Layer [23] 

 

 

E. LSTM  

LSTM emerged as a network model to tackle the persistent 

issues of gradient expansion and gradient vanishing that 

plagued RNNs [24]. With its inherent memory and capacity 
for accurate predictions, it has been widely adopted in 

applications such as speech recognition, sentiment analysis, 

and text analysis [25]. Moreover, it has gained recent 

popularity in the realm of stock market forecasting [26]. In 

contrast to the traditional single recurrent module structure of 

an RNN, typically using a tanh layer, LSTM boasts four 

distinct interacting modules [27]Fig. 9 depicts the LSTM 

memory cell's three components: the forget gate, the input 

gate, and the output gate. 

 

 

Fig. 9  Architecture of  LSTM memory cell [28] 

 

The process of LSTM computation progresses in the 

following manner: 

1) The forget gate utilizes the output value from the 

previous time step and the input value from the current time 

step. Subsequently, through calculation, it produces the forget 

gate output value using this formula [28]: 

 )* � +
,� . -ℎ*�
, /*0 � 1�� (4) 

where f3 lies in the range (0, 1), ,� represents the weight of 

the forget gate, 1�  is the forget gate's bias, /*   denotes the 

input at the current time, and ℎ*�
  is the output from the 

previous moment. 

2) The input gate obtains the output from the preceding 

time step and the input from the present time step. It computes 

the output value and the candidate cell state for the input gate 

using these equations: 

 4* �  +
,5 . -ℎ*�
, /*0 � 15�, (5) 

 6*7 � 89�ℎ
,: . -ℎ*�
, /*0 � 1:�, (6) 

where, 4*  lies in the range (0, 1), ,5 represents the weight of 

the input gate, 15 is the bias of the input gate, ,: stands for 

the weight of the candidate input gate, and 1: is the bias of the 

candidate input gate. 

3) Apply the subsequent modifications to the current cell 

state: 

 6* �  )* ∗ 6*�
 � 4* ∗ 6* (7) 

where 6* ranges between (0, 1). 
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4) At time t, the output ℎ*�
 and input /* are utilized as 

input values for the output gate, and the output  *  of the 

output gate is computed as follows: 

  * �  +
,� . -ℎ*�
, /*0 � 1��,  (8) 

where  *  ranges between (0, 1), ,�  represents the 

weight of the output gate, and 1� is the bias of the 

output gate. 

5) The LSTM's output value is determined by multiplying 

the output of the output gate by the cell state, as depicted in 

the subsequent formula:  

 ℎ* �  * ∗  89�ℎ
6*� (9) 

F. Proposed CNN-LSTM 

Feature extraction is a pivotal stage in numerous machine 

learning applications, as it generates valuable insights for 
prediction models, enhancing their accuracy [25][29]. Time-

series problems are no exception in this context. They 

encompass diverse dynamics that necessitate comprehension 

and adaptation for regression/classification models, often 

with expert guidance. Moreover, feature extraction not only 

demands significant time but also exhibits considerable 

variability across applications [30]. 

Recently, convolutional techniques have gained 

prominence as an automated alternative to human-driven 

feature extraction, mainly through CNN architectures, which 

have achieved groundbreaking results in addressing computer 

vision challenges [31]. However, this approach is not limited 
to image data and can be adapted for time-series data. For this 

purpose, let Y and X represent the output and input of the 

convolution operation, respectively. W symbolizes the matrix 

of learnable parameters, and ⊛ denotes the valid cross-

correlation operator. The variables C and L signify the number 

of features and the sequence length, respectively. An 

automated feature extraction framework can be established by 

undergoing the convolution process and instructing the model 

on efficient feature extraction by optimizing the weights (W). 

In the present scenario, the C variable is set to 7, 

representing the number of features, while L is designated as 
256, consistent with the LSTM architecture. The architecture 

incorporates three sequential convolutional layers with 2048-

512 kernels, accompanied by kernel sizes of 256 and 128, 

respectively, using a stride of one. 

At the culmination of each convolutional layer, both max 

pooling and layering are implemented. All convolutional 

operations are executed through a Time Distributed layer to 

preserve temporal dimensions. After applying the spatial 

feature extraction capability of the convolutional layers, we 

introduce the LSTM component to advance the temporal 

understanding of the data. The predictor was constructed 
using the same LSTM architecture outlined earlier, 

encompassing flattened and fully connected layers. This 

integration effectively merged the spatial feature extraction of 

CNN with LSTM's aptitude for capturing sequential 

dependencies. The final cascaded architecture is illustrated in 

Table 1. 

 

 

 

TABLE I 

PARAMETER SETTING PROPOSED CNN-LSTM 

Layer(type) Output Shape Param# 

Conv 1D (None, 52, 1024) 6144 
Max Pooling 1D (None, 26, 1024) 0 
Batch Normalization (None, 26, 1024) 4096 
Conv 1D (None, 26, 512) 2621952 
Max Pooling 1D (None, 13, 512) 0 
Batch Normalization (None, 13, 512) 2048 

Conv 1D (None, 13, 256) 655616 
Max Pooling 1D (None, 7, 256) 0 
Batch Normalization (None, 7, 256) 1024 
LSTM (None, 7, 256) 525312 
LSTM (None, 128) 197120 
Dense (None, 64) 8256 
Dropout (None, 64) 0 
Dense (None, 32) 2080 

Dropout (None, 32) 0 
Dense (None, 3) 99 

Total params: 4,023,747 
Trainable params: 4,020,163 
Non-trainable params: 3,584 

G. Adagrad Optimizer 

Adagrad is a gradient-based optimization algorithm that 

employs learning rates to adjust parameters. It implements 

slight modifications for parameters connected to prevailing 

characteristics yet executes more substantial adjustments for 

parameters tied to distinct attributes. This approach 
demonstrates notable efficiency in managing sparse data, 

enhancing the performance of stochastic gradient descent 

(SGD), and finding wide applications in the training of 

expansive neural networks [32]. The Adagrad optimizer is a 

gradient-based optimization approach that is well-suited for 

handling sparse gradients. The learning rate governs the 

extent to which parameter adjustments are influenced by the 

inverse direction of a gradient estimate (g). This learning rate 

is modulated according to the characteristics of the data. 

The essential formula for updating parameters is depicted 

in Equation (10), where =* stands for the parameter at a given 

time 8, >, denotes the learning rate, indicates the estimated 

gradient ?*, and ⊙ symbolizes element-wise multiplication: 

 =*A
 �  =* $ B
CDA∑ EFG

⊙ ?* (10) 

H. Fitness metrics 

To assess the effectiveness of the proposed method, this 

study employs Mean Squared Error (MSE) and F1-score 

derived from the confusion matrix. MSE represents the 

average of squared errors, quantifying the disparity between 

estimated and actual parameter values. MSE indicates the 
predictive model's accuracy, with superior outcomes tending 

to be non-negative and closer to zero. Therefore, a lower MSE 

signifies enhanced performance of the prediction model [33]. 

Moreover, a reduced MSE signifies a closer alignment of 

the prediction model with the ideal model. The calculation of 

MSE is expressed as follows: 

 (�H �  

� ∑ 
 I5 $  IJ5���5�
  (11) 

where IJ5  and I5  represent the model predictions and actual 

outputs, respectively. Here, IJ5  is the mean output, and m 

signifies the sample count. The data used in this research is 
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imbalanced, we utilized the F1 score results for model 

assessment. The confusion matrix is depicted in Fig. 10 for 

reference.  

 

 
Predicted 

Positive 

Predicted 

Negative 

F1 Score: 

2 / KLM�4�4 � / NM�9OO
KLM�4�4 � �  NM�9OO  

Actual 

Positive 

TP 

True 

Positive 

FN 

False Negative 

Sensitivity (recall): 

PK

PK � QR� 

Actual 

Negativ

e 

FP 

False 

Positive 

TN 

True Negative 

Specificity: 

PR

PR � QK� 

 

Precision: 

PK

PK � QK� 

Negative 

Predicted 

Value: 

PR

PR � QR� 

Accuracy: 

PK � PR

PK � PR � QK � QR� 

Fig. 10  Confusion matrix 

III. RESULTS AND DISCUSSION 

The proposed method utilizes MFCC for feature extraction 

and combines CNN-LSTM for classification. Table I presents 

the parameters of the CNN-LSTM settings for this study. 

 

 
Fig. 11  MSE training error and validation error 

 

In this study, feature extraction using MFCC produces 52 

features from the input data of heartbeat sounds. To 

accommodate the resulting 52 features from MFCC, the first 

layer of CNN-LSTM is configured as (None, 52, 1). This 

undergoes several rounds of processing through convolutional 
layers, followed by the LSTM layer. Finally, a dense layer is 

employed and optimized for the classification stage with 

Adagrad. The proposed method is set with 200 epochs during 

the training process, where MSE serves as the error metric. 

The training process involves calculating MSE values for 

each epoch; the best result of MSE at cross-validation is 

shown in Fig. 11. 

Fig. 11 indicates a consistent decrease in training MSE 

values, while validation MSE appears somewhat inconsistent. 

The inconsistency in results on the validation data is caused 

by the characteristics of Adagrad, which is a derivative of 

stochastic gradient descent with high variance in parameter 

updates, thereby affecting the results on the validation data 

[34]. However, despite this disparity, the outcomes do not 

deviate significantly from the training error. Subsequently, 

the trained model is evaluated using test data, and the 

assessment results are presented in the confusion matrix 

shown in Fig. 12.  

 
Fig. 12  Confusion matrix 

 

The confusion matrix depicted in Figure 12 reveals that the 

precision rates for the artifact, murmur, and normal classes are 

0.83, 0.78, and 0.93, respectively. The corresponding recall 

rates are artifact at 1, murmur at 0.78, and normal at 0.89. 

Overall, the method we propose achieves an accuracy rate of 

88%. 

TABLE II 

PERFORMANCE EVALUATION WITH 10 K-FOLD CROSS-VALIDATION 

No Method 
Average  

F-1 Score 

Average 

Accuracy 

1 MLP 0.81 0.66 
2 SVM 0.80 0.66 
3 Random Forest 0.68 0.65 

4 k-NN 0.67 0.64 
5 CNN 0.54 0.53 
6 Simple CNN-LSTM 0.63 0.61 
7 Proposed method 0.87 0.81 

 

We evaluated the efficacy of our proposed technique by 

comparing it with several other classification methods, 

including multi-layer perceptron (MLP), random forest, 

support vector machine (SVM), k-nearest Neighbor (k-NN), 

Convolution Neural Network (CNN), and a simplified CNN-

LSTM model that is using vanilla LSTM for the architecture. 
The input data for all methods except the proposed method 

are derived from spectrogram feature extraction. We used 10-

fold cross-validation to assess the performance of each 

approach. The comparative results are summarized in Table 

II. The performance comparison from Table II demonstrates 

that the suggested approach surpasses traditional 

classification methods regarding f1 score and accuracy in the 

realm of heartbeat categorization based on sound. Notably, 

the CNN-LSTM model combined with MFCC excels in 

handling imbalanced datasets, as indicated by its top-ranking 

f1 score in the comparison table. 

IV. CONCLUSION 

This study employed a publicly available "heartbeat sound" 

dataset from Kaggle. We processed it using our proposed 

method, which combines MFCC for feature extraction and a 

CNN-LSTM model for classification. This approach yielded 

a predictive accuracy of 88%. The precision values for the 

individual classes were 0.93 for normal, 0.78 for murmur, and 
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0.83 for artifact. Additionally, we achieved an f1-score of 0.87 

and an accuracy of 0.81 using 10-fold cross-validation. Future 

studies might further focus on enhancing preprocessing and 

feature extraction strategies to fine-tune the distinction 

between murmurs and normal heart sounds. 
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