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Abstract—Diabetes Mellitus (DM) as a non-communicable disease (NCD) continues to increase every year. Continuous glucose 

monitoring (CGM) is essential for effective DM management. However, existing disposable glucose monitoring methods still rely on 

invasive techniques, cause pain, and lack continuous monitoring capabilities. On the other hand, non-invasive techniques are not 

feasible for CGM due to the biometric data's complexity and the classification system's inadequate performance. This study aims to 

develop a non-invasive technology to improve the performance of a non-invasive blood glucose classification system using Artificial 

Intelligence (AI), specifically Convolutional Neural Network (CNN) and an oversampling technique. The oversampling technique could 

improve data quantity by balancing the amount of data for each class. This study recruited twenty-three participants in the age range 

of 20 to 22 years comprising seven females and fifteen males. During data recording sessions, blood glucose levels were simultaneously 

assessed using a gold-standard glucometer and a non-invasive CGM prototype. The proposed CNN model successfully improved the 

classification accuracy of non-invasive blood glucose monitoring significantly. With the implementation of oversampling for augmenting 

the data, the accuracy of the proposed model increased to more than 88%. This study concludes that non-invasive approaches combined 

with AI technology have the potential to provide a convenient and pain-free alternative to traditional monitoring methods, significantly 

improving diabetes management and enhancing the overall quality of life for those affected by this condition. These findings could 

revolutionize the field of diabetes management, offering a more comfortable and accurate monitoring solution that could potentially 

transform the lives of millions of diabetes patients. 
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I. INTRODUCTION

The prevalence of NCD, such as DM, continues to surge 

annually, with Indonesia currently holding the unsettling 

distinction of being ranked third globally for undiagnosed 

DM cases. This alarming statistic is based on data from the 

International Diabetes Federation Diabetes Atlas of 2021, 

revealing that an astonishing 73.7% of the entire Indonesian 

population remains undiagnosed for diabetes [1]. Lack of 

knowledge, attitude, and behavior toward early detection of 
DM is the cause of the increase in cases, coupled with the 

difficulty of accessing health facilities for ongoing blood 

sugar checks [2]. Invasive blood collection techniques, e.g., 

venous puncture, skin puncture, and arterial puncture, are 

problematic for individuals who have a phobia of needles, 

resulting in discomfort, pain, and potential risk of infections 

[3]. DM is a non-communicable disease whose number 

continues to increase every year. DM is a chronic condition 
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that occurs when the pancreas cannot produce insulin or the 

body cannot use the insulin produced properly. This NCD 

leads to high BGL that has the potential to cause severe 

complications if not appropriately managed [4]. In healthy 

conditions, blood sugar levels range from 60 to 140 milligrams 

per deciliter (mg/dL). In contrast, blood sugar levels in diabetic 

patients are irregular. Blood sugar levels that exceed normal 

limits, such as 140 to 500 mg/dL, are known as hyperglycemia, 

while levels below 60 mg/dL are known as hypoglycemia [5]. 

Continuous monitoring of blood glucose levels is crucial for 
patients with DM to uphold their health and enhance their 

quality of life. 

Biometric measurements to determine the patient's 

condition have been widely implemented with non-invasive 

methods, e.g., blood pressure, heartbeat, and oxygen saturation 

levels. However, the development of non-invasive devices for 

CGM faces significant challenges. One of the primary 

challenges is ensuring accurate and reliable glucose readings 

[6]. The CGM sensors should maintain consistency in glucose 

measurements while overcoming issues such as sensor drift, 

calibration inaccuracies, and signal noise [7]. Interference 
from external factors, such as temperature changes or 

medication intake, can also impact the accuracy of CGM 

readings [8]. Addressing the challenge of non-independently 

and Identically Distributed (non-IID) data also poses a barrier 

to enhancing the performance of decision-making systems. 

The continuous stream of glucose data requires efficient 

algorithms and systems to provide meaningful insights for 

both patients and healthcare providers [9]. Addressing the 

challenges posed by non-IID datasets in medical data silos has 

emerged as a critical focus.  

The nature of medical data often exhibits significant 

variations due to diverse sources, patient demographics, and 

data acquisition protocols, rendering them non-IID [10]. In 

recent research, the application of AI techniques to non-IID 

medical data has garnered substantial attention. Data 

oversampling approaches have been explored to mitigate the 

impact of non-IID characteristics [11], [12]. Oversampling 

strategies leverage knowledge gained from one domain to 
enhance performance in another, addressing the challenge of 

limited labeled data in non-IID settings. These advancements 

underscore the importance of developing robust AI models 

capable of effectively handling the complexities inherent in 

diverse medical datasets [13], thereby paving the way for 

improved diagnostic accuracy and personalized healthcare 

solutions. 

This study utilizes a PPG sensor to monitor Blood Glucose 

Levels (BGLs) using two data sensors, red and infrared 

signals. It also incorporates AI technology, using CNN and 

oversampling techniques to classify blood glucose patterns 
accurately. This approach is anticipated to significantly 

contribute to overcoming challenges in developing 

sustainable, noninvasive blood glucose monitoring 

technology, ultimately enhancing the DM healthcare 

experience for patients. 

The remainder of this paper is structured as follows: Section 

II details the study materials and the proposed method. Section 

III elaborates on and discusses the results. Finally, concise 

conclusions are summarized in Section IV. 

 

Fig. 1  A non-invasive prototype [14] was used to record PPG signals. 

 

II. MATERIALS AND METHOD 

CGMs have emerged as a pivotal technology in diabetes 

management, offering real-time insights into an individual's 

glucose levels [15]. DM patients often face challenges in 

maintaining optimal blood glucose levels, leading to the 

need for a proactive monitoring system. CGM systems, 

consisting of small sensors implanted under the skin, 
continuously measure glucose levels in interstitial fluid, 

providing a more comprehensive understanding of glucose 

fluctuations throughout the day. The real-time data 

generated by CGM enables early detection of abnormal 

glucose patterns [16], allowing for timely interventions and 

personalized treatment adjustments. This proactive 

approach empowers healthcare providers and patients with 

the tools to prevent hypoglycemic or hyperglycemic events, 

ultimately enhancing the quality of diabetes care. The 

integration of CGM with a decision-making system based on 

AI technology represents a significant stride towards 

personalized and precision medicine, promising improved 
health outcomes for individuals living with diabetes [17]. 
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AI, particularly CNN models, has revolutionized medical 

signal processing [18] and prediction[19], demonstrating 

substantial promise in healthcare applications [20]. CNNs 

excel in extracting intricate features from complex data, 

making them particularly well-suited for analyzing 

physiological signals. In predictive analytics, AI-driven 

models can leverage large datasets to identify patterns and 

correlations within medical signals, contributing to early 

disease detection and prognosis. In medical signal processing, 

CNNs have been instrumental in tasks such as image 
recognition in medical imaging, enabling more accurate and 

rapid diagnoses. The effective management of medical data in 

healthcare institutions is particularly challenging, given the 

non-IID nature of the data recorded by various practitioners 

and medical institutions. 

This research focuses on optimizing an AI model, 

specifically CNN, to enhance the performance of a non-

invasive blood glucose classification system. The 

classification system, i.e., CGM, utilizes an experimental 

prototype [14] powered by ESP32 microprocessor and a PPG 

sensor MAX30102. As depicted in Figure 1, this prototype 
records PPG signals in the infrared and red spectrum and then 

transmits them to the smartphone or computer for AI 

inferencing. By leveraging the capabilities of CNN, this study 

aims to extract relevant features and patterns from the non-

invasive blood glucose data, enabling more accurate and 

reliable classification of BGLs. The proposed methodology 

utilizes CNN’s ability to learn hierarchical representations 

from the data, leading to improved classification results. This 

optimization of the deep CNN holds the potential to 

revolutionize non-invasive blood glucose monitoring 

technologies and contribute to more effective healthcare 
practices.  

A. Designing an AI Model from the Scratch 

1) Deep Learning (DL): Deep learning is a subset of 

machine learning that utilizes artificial neural networks to 

handle large datasets, making it particularly effective in 

supervised learning. It involves the study of artificial neural 

networks and related machine learning algorithms with 

multiple hidden layers, also known as deep structured 

learning, hierarchical learning, or deep machine learning. 

These deep nets have demonstrated significant capabilities in 

tackling complex tasks and patterns within data [21], [22]. 

2) Convolutional Neural Networks (CNN): CNN is one 

part of the neural network method. CNN is not much different 

from ordinary neural networks, which consist of neurons that 

have weights, biases, and activation functions [23]. CNN is 

the development of an Artificial Neural Network (ANN) 
algorithm that uses the same principle as the working system 

of human neurons. CNN is similar to ANN, consisting of 

neurons that optimize themselves through learning. Each 

neuron will still receive input and perform operations (i.e., a 

scalar product followed by a non-linear function) based on 

countless ANNs. From the raw image vector input to the final 

output of class scores, the entire network will still express one 

perceptive score function (weight). The last layer will contain 

the loss functions associated with the class, and all the usual 

tips and tricks developed for ANNs still apply. An essential 

difference between CNN and ANN is that CNN is mainly 
used in the field of pattern recognition in images. This allows 

us to encode image-specific features into the model 

architecture, making the network more suitable for image-

focused tasks, thereby reducing the parameters required to 

prepare the model [24]. 

3) Data Oversampling: Oversampling is a method that 

balances a non-IID dataset by adding new samples to the 

minority class. There are two main approaches to 

oversampling: random oversampling and synthetic 

oversampling. In random oversampling, existing minority 

samples are duplicated to increase the size of the minority 
class. On the other hand, synthetic oversampling generates 

artificial samples for the minority class. These additional 

samples provide crucial information to the minority class, 

helping prevent misclassification of its instances. By 

employing oversampling techniques, the dataset becomes 

more balanced, leading to improved performance in 

classification tasks [25], [26], [27]. 

 
Fig. 2 The comprehensive research flow encompasses key stages such as data input, preprocessing, AI training, and AI testing. 

 

4) Google Colaboratory: Google Colaboratory or 

Google Colab is an executable document that can be used to 

store, write, and share programs via Google Drive [28]. Like 

Jupyter Notebooks, Google Colab is a cloud program that runs 

on a browser. Google Colab allows developers to execute AI 

code without the installation process and other settings [29]. 
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B. The Proposed Optimization Framework  

As illustrated in Figure 2, the data files are initially 

uploaded to Google Drive (G-Drive), then loading the PPG 

data into the Google Collaboratory (G-Colab) environment. 
Subsequently, data preprocessing is undertaken to partition the 

data into training and testing subsets. An oversampling 

technique is then applied to equalize the number of samples in 

each class. The subsequent step involves constructing a Deep 

Learning (DL) model based on the LeNet-5 architecture. The 

DL model is trained to minimize error concerning the selected 

target, necessitating the setting and tuning of hyperparameters, 

including the number of neurons, epochs, learning rate, and 

batch size. Upon completion of the training phase, validation 

is conducted using a confusion matrix and classification report 

to assess the model's performance. This method is designed to 
yield a more accurate and reliable blood glucose classification 

system for non-invasive health monitoring. 

1) PPG Data Acquisition: 

For this research, twenty-three participants aged between 20 

and 22 were enrolled. The group consisted of seven females 

and fifteen males. Before the recording sessions, all 
participants received thorough instructions and explanations 

about the measurement protocol. They were requested to 

attend the measurement sessions in the evening, one hour after 

breakfast. BGLs were assessed during the sessions using a 

gold-standard glucometer. Following breakfast, BGL and PPG 

signals were measured at the same time. Twenty seconds of 

measurements were collected (i.e., non-invasive data), 

encompassing a range of glucose levels between 65 and 245 

mg/dL. 

The data acquired from the CGM prototype [14] is 

systematically organized into files corresponding to each 
subject, employing the *.csv file format. The non-invasive 

series data, comprising 200 infrared data points and 200 red 

data points, extracted from the prototype, serves as the input 

for the AI model, while the invasive data functions as the 

corresponding labels. Subsequently, the data is uploaded to the 

Google Drive cloud storage. The data is then loaded into the 

Google Colab (G-Colab) environment to execute modeling, 

training, and performance validation of the prediction system. 

The data input procedure encompasses various steps, 

including: 

 Prepare noninvasive blood glucose data: Noninvasive 

blood glucose data consists of PPG signals recorded 
using a CGM prototype and BGL data measured using 

a gold-standard glucometer. 

 Upload non-invasive blood glucose data to cloud 

storage: The non-invasive blood glucose data is 

uploaded to G-Drive to facilitate data access and 

management for further analytics. 

 Access the data from G-Drive into G-Colab: Data stored in 

G-Drive is accessed from the G-Colab environment for 

further preprocessing, AI modeling, and pattern validation. 

2) Preprocessing the PPG Signals 

During the preprocessing stage, essential steps are 

undertaken to adequately prepare the data for training and 

testing the system. These critical steps encompass: 

 Normalize the data: Data is converted into a uniform and 

appropriate scale to facilitate model processing. In this 

case, the blood glucose data was normalized to have 

values between 0 and 1. 

 Manage non-IID challenge: An oversampling technique 

is employed to address the non-IID nature of the blood 

glucose monitoring dataset. This method enhances data 

representation in minority classes by augmenting data 

points, thereby mitigating imbalances within the dataset. 

 Shuffle the data: Data is randomized to reduce bias and 

ensure representativeness when divided into training 

and testing data. 
 Dataset division: Non-invasive blood glucose data is 

divided into two parts, namely the training subset (80%) 

that will be used to train the model and the validation 

subset (20%) that will be used to test the performance of 

the proposed classification system. 

3) Training the Proposed AI Model 

During the training phase, the AI model, represented by a 

combination of neuron weights, undergoes iterative updates. 

The primary focus is on a subset of the training data, 

constituting 80% of the entire dataset. This training subset is 

pivotal in enhancing the Convolutional Neural Network 

(CNN) model's optimal weights by implementing the 

backpropagation algorithm. 

 Prepare training subset: In this stage, a figure 

representing the training subset will be visualized as 

depicted in Figure 3. This visualization provides an 

overview of the distribution and patterns in the training 
data, making it easier to understand the characteristics 

of the input data. 

 Build CNN model architecture: CNN is a type of deep 

learning architecture highly effective in image 

recognition tasks, making it suitable for use in non-

invasive blood glucose classification. This research uses 

the LeNet-5 CNN architecture [30] which has been 

proven to classify spatial data points, e.g., data series 

and images. 

 Determine the hyperparameters: At this stage, the 

number of neurons, the number of epochs, learning rate, 
and batch size will be determined. The number of 

epochs determines how often the entire training dataset 

will be used to train the model. The learning rate defines 

how aggressively the neuron's weights are updated, 

while the batch size refers to the number of data 

instances processed before the model weight update. 

This research uses 500 epochs, a learning rate of 0.001, 

and a batch size of 5. 

 Plot training results: The training accuracy and loss are 

monitored so that researchers can observe how the 

model's performance evolves with each epoch. This 

visualization helps track the training progress and 
identify potential problems, such as overfitting or 

underfitting. 

4) Validating the Trained AI Model 

A validation subset, constituting 20% of the dataset, is 

utilized during the testing stage. Testing is executed using the 
optimal model determined through the preceding training 

process. The subsequent paragraphs outline the critical stages 

of the AI testing process. 
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 Confusion matrix: A confusion matrix measures the 

model's performance on the testing data. It is used to 

visualize the model prediction results and compare them 

with the actual value of the testing data. From the 

confusion matrix, the number of True Positive (TP), 

True Negative (TN), False Positive (FP), and False 

Negative (FN) can be identified, which will be used to 

calculate various evaluation metrics. 

 Classification report: The report encompasses diverse 

model performance evaluation metrics, including 

accuracy, precision, recall, and f1-score. Precision 

gauges the accuracy of optimistic predictions made by 

the model, recall assesses the model's ability to identify 

positive data correctly, and the f1-score represents the 

harmonic mean between precision and recall. Based on 

testing data, this comprehensive report thoroughly 

explains the model's efficacy in non-invasive blood 

glucose classification. 

 

 
Fig. 3 Raw data visualization without oversampling 

 
Fig. 4 Data visualization with oversampling reveal that the number of data increased by augmenting minority classes. 
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Fig. 5 Line diagram of training and testing accuracy of CNN(8,12) without oversampling 

 

 
Fig. 6 Line diagram of training and testing accuracy of CNN(16,24) without oversampling 

 

 
Fig. 7 Line diagram of training and testing accuracy of CNN(32,48) without oversampling 

 

 

Fig. 8 Line diagram of training and testing accuracy of CNN(8,12) with oversampling. 
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Fig. 9 Line diagram of training and testing accuracy of CNN(16,24) with oversampling 

 

 

Fig. 10 Line diagram of training and testing accuracy of CNN(32,48) with oversampling. 
 

III. RESULTS AND DISCUSSION 

This research focuses on optimizing the AI method using 

the CNN model to improve the performance of the 

noninvasive blood glucose classification system in non-IID 

settings. The procedure involves oversampling the data to 

increase the number of minority classes. It involves several 

stages of experimentation to achieve the desired results, 

which will be explained later. 

In the training stage, Figure 3 visualizes figures 
representing the training subset, illustrating the features 

extracted from the red and infrared signals. Notably, these 

figures depict data before the application of the oversampling 

technique. Conversely, Figure 4 displays the training subset 

with random oversampling applied. Subsequently, a 

Convolutional Neural Network (CNN) model is established to 

process the data and extract meaningful features adeptly. 

Parameters, including the number of neurons, epochs, and 

batch size, are meticulously determined to refine the training 

process. 

Following the training stage, the model undergoes testing 

using a dedicated testing data subset, constituting 20% of the 
dataset. The model's accuracy is assessed by comparing its 

predictions with the actual values of the testing data. The 

evaluation process entails constructing a confusion matrix to 

visually depict the model's performance and calculating 

diverse metrics such as precision, recall, and f1-score. These 

metrics collectively offer comprehensive insights into the 

model's classification performance. 

 

 

TABLE I 

THE PERFORMANCE OF CNN(8,12) WITHOUT OVERSAMPLING 

Classification 

Label 
Precision Recall 

F1-

score 
Support 

Low 0.50 0.50 0.50 2 
Normal 1.00 1.00 1.00 1 
High 0.00 0.00 0.00 1 
Overall Accuracy 0.50 4 

TABLE II 

THE PERFORMANCE OF CNN(16,24) WITHOUT OVERSAMPLING 

Classification 

Label 
Precision Recall 

F1-

score 
Support 

Low 0.50 0.50 0.5 2 
Normal 1.00 1.00 1.00 1 
High 0.00 0.00 0.00 1 
Overall Accuracy 0.50 4 

TABLE III 

THE PERFORMANCE OF CNN(32,48) WITHOUT OVERSAMPLING  

Classification 

Label 
Precision Recall 

F1-

score 
Support 

Low 1.00 0.50 0.67 2 
Normal 0.50 1.00 0.67 1 
High 0.00 0.00 0.00 1 
Overall Accuracy 0.50 4 

TABLE IV 

THE PERFORMANCE OF CNN(8,12) WITH OVERSAMPLING  

Classification 

Label 
Precision Recall 

F1-

score 
Support 

Low 1.00 1.00 1.0 1 
Normal 0.80 1.00 0.89 4 
High 1.00 1.00 1.00 3 

Overall Accuracy 0.88 8 
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TABLE V 

THE PERFORMANCE OF CNN(16,24) WITH OVERSAMPLING  

Classification 

Label 
Precision Recall 

F1-

score 
Support 

Low 1.00 1.00 1.00 1 
Normal 0.80 1.00 0.89 4 
High 1.00 1.00 1.00 3 
Overall Accuracy 0.88 8 

TABLE VI 

THE PERFORMANCE OF CNN(32,48) WITH OVERSAMPLING 

Classification 

Label 
Precision Recall 

F1-

score 
Support 

Low 1.00 1.00 1.00 1 
Normal 1.00 1.00 1.00 4 
High 1.00 1.00 1.00 3 
Overall Accuracy 1.00 8 

 
This research aims to create a robust and accurate non-

invasive blood glucose classification system by optimizing 

the AI model and utilizing the power of the CNN model. 

Random oversampling is a valuable technique used to 

enhance the performance of PPG data analysis. In the context 

of PPG, the imbalance between different classes of 

physiological events can negatively impact the accuracy of 

predictive models. Random oversampling addresses this issue 

by generating synthetic data points for the minority class, 

thereby increasing its representation in the dataset. By 

duplicating or creating new instances of the underrepresented 

class, the model becomes better equipped to recognize 
patterns and make more precise predictions for all classes. 

This approach effectively mitigates the bias towards the 

majority class and prevents the model from being overly 

influenced by its prevalence. As a result, random 

oversampling is crucial in improving the performance and 

reliability of PPG data analysis, empowering researchers and 

healthcare practitioners to derive more accurate insights and 

make better-informed decisions in various applications, 

including disease detection, monitoring, and overall 

physiological assessment. 

The CNN is employed for BGL prediction when 
developing the proposed AI model. During the training phase, 

the data undergoes preprocessing and is visually represented. 

Subsequently, the data is fed through modified convolution 

filter layers inspired by LeNet-5. The CNN, known for 

automatically extracting features from image data, effectively 

recognizes patterns and variations within blood glucose data. 

The number of neurons and filters is fine-tuned to enhance 

model performance. Moreover, the CNN model processes and 

classifies the data based on the data label, often acquired 

through a comparative device, i.e., a gold-standard 

glucometer. 

In the training scenario without oversampling, 18 samples 
are backpropagated on the proposed CNN model with 500 

epochs, a learning rate of 0.001, and a batch size of 5. The 

training results showed that the highest accuracy achieved 

was 0.6111, while the lowest loss was 0.9451. These results 

show that the model has successfully recognized patterns and 

variations in BGL data. The visualization of the training 

results for 500 epochs is shown as a line graph in Figure 5, 

Figure 6, and  Figure 7. These figures reveal how the model 

performance increases along with the number of epochs 

performed. Then, in the testing stage, the optimal model 

generated from the training stage is used to test the model's 

performance on the testing data. Tables I, II, and III show the 

test results. 

In the training scenario with oversampling, 39 samples are 

backpropagated on the proposed CNN model with 500 epochs 

and several batches of 8. The training results showed that the 

highest accuracy achieved was 1.000, while the lowest loss 

was 0.1051. This evaluation indicates that the deep learning 

model used in this study is very effective in classifying non-

invasive blood glucose data with a very high level of 
accuracy. The visualization of the training results for 500 

epochs is shown as a line graph in Figure 8, Figure 9, and 

Figure 10. The charts show how the model performance 

increases along with the number of epochs performed and 

consistently increases until it reaches the highest accuracy. 

The test results provide precision, recall, f1-score, and 

accuracy information. Tables IV, V, and VI show the test 

results' details. 

The results of using the oversampling method in training 

DL models are very effective in improving model 

performance. Before oversampling, the model's precision, 
recall, and f1-score only reached 50%, which showed that the 

model had limitations in classifying non-invasive blood 

glucose data with high accuracy. However, with 

oversampling, the test results showed that the model's 

precision, recall, and f1-score increased to 100%. This 

evaluation indicates that the model can classify the data well 

and achieve high accuracy, making it reliable in predicting 

non-invasive blood glucose classification. The significant 

improvement in these evaluation metrics indicates that the use 

of the oversampling method successfully overcomes the 

problem of imbalance in the number of data samples in the 
minority class, as suggested by [25], [31]. Therefore, the 

model generated from training with oversampling is better 

able to recognize and classify data for each class, thus 

improving the accuracy and reliability of the overall non-

invasive blood glucose classification system. 

IV. CONCLUSION 

This study introduces an innovative approach to medical 

data processing using the proposed DL framework. (1) This 
research successfully optimized a DL model by implementing 

a novel CNN technique, enhancing the efficacy of a non-

invasive blood glucose classification system. The proposed 

CNN model demonstrates a high accuracy in blood glucose 

classification for both subset training and subset validation. 

The pinnacle of accuracy is attained through meticulous 

tuning of the CNN model. The best results are performed by 

the CNN(32,48), which utilized 32 and 48 filters for the first and 

the second layer, respectively. (2) This research successfully 

increased the number of data samples from 23 to 39 by 

applying the random oversampling technique, resulting in an 
increase of about 77.27% in the number of relevant data 

samples to improve the performance of the deep learning 

model in non-invasive blood glucose classification. The 

oversampling technique successfully overcomes the problem 

of non-IID dataset. (3) This study successfully demonstrated 

a significant improvement reaching 88% to 100% accuracy 

using the oversampling technique. This result shows that the 

random oversampling technique is effective in overcoming 

the problem of imbalance in the amount of data and improving 
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the performance of the non-invasive blood glucose 

classification system. (4) Finally, this study successfully 

showed an increase in F1-Score for class 1 from 67% to more 

than 89% and for class 2 from 0% to 100% after using the 

random oversampling technique on the CNN model. For 

future research, non-invasive applications of PPG could be 

extended to predict hypoglycemic and hyperglycemic events 

and to investigate glucose levels in non-diabetic individuals, 

such as athletes or individuals interested in optimizing their 

health and performance. 
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