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Abstract—Concentration denotes the capability to direct one's attention to a specific subject matter. Presently, within the era 

characterized by an overwhelming abundance of information inundating human existence, distractions frequently impede human 

concentration, thereby influencing the depth of knowledge acquisition. Various elements contribute to the decline in human 

concentration, including diminished metabolic states, inadequate sleep, and engaging in multiple tasks simultaneously. The cognitive 

state of an individual during the process of thinking can be assessed through the analysis of electroencephalography signals. The 

primary objective of this investigation is to facilitate experts' interpretation of electroencephalography signal outcomes for categorizing 

concentration levels. The dataset utilized in this examination comprises unprocessed EEG data obtained from observing individuals in 

both relaxation and concentration states. After data preprocessing, feature extraction is executed, and classification is performed using 

the Support Vector Machine technique. The outcome of this study reveals an accuracy rate of 84%. These developments allow for 

continual monitoring of brain function, an enhanced comprehension of cerebral activities, and increased operational efficacy of end-

effectors. The implications of these advancements on prospective research opportunities are evident in the potential for more accurate 

diagnosis of neurological disorders and the progression of sophisticated BCI applications designed to support healthcare and monitor 

cognitive states. The evolution of EEG technology is paving the way for novel research pathways in neuroscience and human-computer 

interaction. 
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I. INTRODUCTION

Concentration is the ability to focus entirely on an object. 

A person’s state of mind when thinking can be determined by 

using electroencephalography (EEG) signals. EEG signals 

can be detected by the state of mind, even without physical 

movement. EEG signals are used to provide information on 

brain function. EEG signal cannot be viewed directly because 
it has a small electric wave size. EEG signal recording 

includes information on electrical activity in the brain. EEG 

can provide convenience in signal recording because it can 

detect a person’s state of mind, such as concentration [1]. 

Every human being needs concentration when doing an 

activity. Many factors affect concentration loss, such as 

reduced metabolic states, drug consumption, sleep 

deprivation, and multitasking. Therefore, a system is needed 

that can read brain wave signals by classifying concentration 

levels. Numerous studies have been conducted on 

electroencephalographic signals, including one that 

determined a person’s emotional state by Liu et al. [2] using 

a library of emotional video clips chosen in real-time from 

over a thousand film clips. The accuracy rate for classifying 

the three positive emotions was 86.43%, whereas the accuracy 

rate for classifying the four negative emotions was 65.09%. 

The accuracy for emotions as a whole was 92.26%. 

Saha et al. [3] conducted follow-up research in 2017 by 
employing signals from the EEG with alert and non-alert 

categories for online detection of cognitive failure while 

driving. The type-2 fuzzy method defines a neural classifier 

that removes uncertainty in motor planning categorization. 

The accuracy obtained is 88%. Utilizing the discrete wavelet 

transform to analyze EEG signals, Chiang et al. [4] diagnosed 
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epilepsy patients and minimized entropy using Fuzzy for the 

characteristics of each brain wave, and the classification used 

was the associative Petri net. The accuracy obtained reached 

98.6%. Furthermore, Krishna et al.’s [5] study from 2019 

classified the four fundamental emotions—happy, fearful, 

sad, and relaxed—by breaking down the EEG data into time 

domain feature extraction. The retrieved characteristics are 

fed into the extreme learning machine classifier to classify 

emotions such as happiness, fear, sorrow, and relaxation. The 

accuracy obtained from this investigation reached 87.1%. In 
a follow-up study published in 2015, Cheong et al. [6] used 

the discrete wavelet transform to examine EEG signals from 

autistic individuals and trained the multilayer perceptron 

(MLP) neural network to categorize signals into three severity 

levels of autism (mild, moderate, and severe). The accuracy 

obtained reached 92.3%.  

A prediction model was created in 2023 due to research by 

Zhou et al. to determine a regression relationship between the 

EEG signals from many different channels and the EEG 

signals from a select few. Instead of directly employing 

recorded multiple-channel EEGs, estimated full-channel 
EEGs enable acquiring additional MI-related data and 

improved classification accuracy. The regression model can 

calculate other channel EEGs from multiple-channel EEGs 

acquired. The suggested approach produces equivalent or 

even better performance compared to the conventional way 

using directly recorded full-channel EEG and achieves 

significant accuracy improvements over the standard method 

using directly recorded multiple-channel EEG [7].  

In a paper published in 2023, Harvey and Shahwan 

recommended that the authors concentrate on assessing facts 

and information on potential drivers or factors that may 
impact the result and prognosis, notably by thoroughly 

examining all research on EEG data in particular. The clinical 

characteristics of the IGE syndromes that make up TAS share 

a lot of similarities, the authors found, which often 

complicates prognostication. TAS's clinical and EEG 

diagnostic characteristics are well recognized, but little is 

known about the prognosis characteristics of each syndrome, 

whether clinically or electroencephalographically connected. 

In addition, the authors found that the predictive value of EEG 

in TAS is unknown in clinical practice and that prognostic 

markers, especially those associated with EEG, are rarely 

adequately studied. The authors came to the conclusion that 
factors that might influence the treatment response, result, or 

natural history of TAS are not well understood or supported 

by research as a result of conflicting findings and varied study 

techniques [8].  

In 2023, Parsa et al. [9] concluded that deep learning 

algorithms are incredibly effective at categorizing different 

neuropsychiatric diseases from EEG patterns. The review 

highlights the effects of several parameters, such as subject 

count, network design, and frequency bandwidth, on how well 

deep neural networks do in classifying EEG. This work 

highlights the significance of EEG feature extraction in 
enhancing classification accuracy. To increase the 

effectiveness of deep neural networks in classifying EEG, the 

authors propose that future research should concentrate on 

creating new techniques to automatically learn relevant and 

interpretable aspects of input signals. Deep learning criteria in 

EEG classification are also necessary for better clinical 

communication and implementation.  

A deep learning-based neural decoder leveraging pre-

motion EEG inputs for 3D hand kinematics was proposed by 

Jain and Kumar [10]. This work investigates the feasibility of 

using EEG signals during reach and handheld activities to 

decipher intersubject 3D hand movements. In intra-subject 

and between-subject settings, the proposed CNN-LSTM 

decoder can achieve significant correlations in the three axes 

of up to 0.730 and 0.627, respectively. Therefore, it can offer 
helpful information regarding hand position decoding of 

premovement EEG signals for real-world Brain-Computer 

Interface (BCI) applications. This study finds that numerous 

EEG pause windows have been used to determine trajectory 

intentions, and premovement neural signals contained in 

electrical brain waves can be used to decode hand trajectories 

effectively.  

EEG reactivity with electrical stimulation and quantitative 

analysis, according to Liu et al.’s [11] analysis may be a 

promising predictive indicator for neurologic prognosis in 

critically ill patients with severe hemispheric infarction. The 
study demonstrates that electrical stimulation and quantitative 

analysis can significantly enhance prognosis accuracy in 

clinical practice. Gallotto et al. [12] discussed the need for 

precise and rapid EEG biomarkers to identify epilepsy. 

Epilepsy is a prominent comorbidity with several 

neurological diseases in elderly people. Interictal epileptiform 

discharge (IED), a well-known epilepsy biomarker, is only 

found in a small portion of EEGs. Thus, identifying additional 

trustworthy biomarkers will aid clinicians in diagnosing 

illnesses absent overt epileptic activity, permitting prompt 

prescription of the necessary treatments.  
A more precise understanding of the relative contribution 

of different brain inputs to the EEG signal was provided by 

Thio and Grill [13]. EEG modeling, analysis, and 

interpretation can be made more accurate with the help of this 

information. This further highlights the significance of 

considering all brain activity sources when interpreting EEG 

measurements. This publication can benefit researchers and 

medical professionals who utilize EEG to diagnose and treat 

neurological problems. A method to enhance EEG/ERP 

signals using Kalman filters and metaheuristically tuned 

parameters was published by Yadav et al. [14]. The social 

mimic optimization method optimizes the adaptive Kalman 
filter parameters. The suggested approach was evaluated in 

various chaotic conditions before being compared to industry-

standard optimization techniques. The outcomes demonstrate 

that the proposed approach performs better than existing 

methods in the literature and can be applied to improve 

EEG/ERP signals. The proposed methodology may thus be a 

helpful tool for enhancing EEG/ERP signals, as this paper says.  

According to Dash et al. [15], a new filter-bank-based 

hybrid technique has been developed to eliminate ocular 

aberrations from EEG signals. The suggested method is based 

on a dyadic cutoff point based on empirical wavelet transform 
and a Savitzky–Golay-driven total variation filter. The 

proposed technique’s effectiveness in removing ocular 

artifacts caused by blinking and eye movements was proven. 

The suggested approach has also been verified using wearable 

EEG with sensor inputs by ocular artifact removal. Existing 

techniques for eradicating eye motion and eye blinking 
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anomalies from EEG recordings were compared to the 

proposed technique’s denoising performance.  

In 2023, Frescura et al. [16] investigated how nearby 

sounds affected EEG alpha waves, revealing individual 

preferences and relaxed moods. The study's results 

demonstrated that participants’ alpha wave reactions to noise 

from neighbors were significantly higher in those with low 

noise sensitivity and favorable sentiments toward neighbors 

than in those with high noise sensitivity and unfavorable 

attitudes. The study also discovered that music played through 
a wall partition with minimal sound attenuation elicited a 

significantly higher alpha wave response than footsteps 

audible through the floor at a low-impact sound pressure 

level. The autocorrelation function’s practical duration was 

established to research subjective preferences. Speech and 

music sounds heard at varied SPLs differed significantly from 

one another. An enormous alpha wave response is produced 

by footsteps in combination with an air source rather than by 

single footsteps.  

Sarma and Barma [17] proposed an emotion recognition 

technique using an EEG signal by selecting the appropriate 
EEG segment for the target emotion. The matching EEG 

segments were identified using random matrix theory and a 

multivariate systems analysis framework. The proposed 

method achieves high accuracy for emotion analysis on two 

EEG data sets—SEED and DEAP. Features and channels of 

CWT in the brain's frontal, temporal, and occipital regions 

match the k-NN classifier exceptionally well. Furthermore, 

the chosen EEG segments with the lowest entropy variation 

coefficient attained the maximum classification accuracy. 

Numerous analyses—in particular, the appropriate EEG 

segment length, channel choice, and chosen segment 
characteristics—have been looked into.  

Mumtaz et al. [18] outlined the shortcomings of EEG 

artifact reduction methods in 2021 and provided 

recommendations for improvement. This study outlines the 

general and algorithm-specific difficulties associated with 

EEG artifact reduction techniques. The MATLAB and 

Python-based toolbox developed for EEG preprocessing is 

also covered in this publication. This study also gives an 

overview of EEG artifact removal techniques and briefly 

describes the many kinds of EEG artifacts. The 

recommendations provided in the paper can be used as a 

reference when selecting the best instruments and methods for 
eliminating EEG artifacts. This study suggests that the EEG 

artifact reduction approach can be used to its full potential 

while effectively addressing the problems that may cause the 

inferred interference from EEG data to rise. 

A new automatic ICA classifier algorithm named iMARA 

was presented by Haresign et al. [19]. It was created 

specifically to work with infant EEG data and EEG data 

gathered during parent-infant naturalistic interactions. The 

iMARA classifier outperforms the original MARA, an adult-

trained classifier, in terms of classification accuracy and is 

superior at eliminating stereotype artifacts from simple visual 
attention ERP studies. Researchers studying EEG 

development now have a versatile tool for automatically 

detecting and eliminating fake ICA components, thanks to 

this new method. 

In 2021, Chen et al. [20] develop a general framework for 

accurately identifying sleep spindles using features in the 

sleep EEG’s macroscale and microscale entropy. This system 

uses a compact convolutional neural network with spatial 

pyramid coupling to infer deeply controlled aspects of 

variable-length EEG epochs and an “elastic” time window to 

adjust to changing spindle durations in EEG. The 

classification of spindles is then supported by combining 

these depth features and EEG-age entropy. The suggested 

framework performs better than its cutting-edge competitors 

with an F1-score of 0.66 while adding 0.034 more information 

entropy to the equation. Generally speaking, the framework’s 
essential nature opens the door to general recognition of 

complex EEG waveforms or time series.  

In 2021, Rahman et al. [21] analyzed studies that employed 

EEG signals to find potential links between emotional state 

and brain activity. The authors explain basic emotions 

theoretically and discuss the appropriate feature extraction, 

selection, and classification procedures used. Additionally, 

they go through structured methods for selecting subjects, 

stimuli, feature extraction, and selection procedures. A 

discussion of possible future approaches and the main 

challenges for researchers developing EEG-based emotion 
analysis tools concludes the report.  

Min et al. [22] created a portable driver tiredness detection 

framework in 2021 using prefrontal EEG signals and a hybrid 

model that is rapid and effective on entropy analysis 

methodologies to boost detection quality significantly. By 

using a multi entropy measure, this study shows how the 

proposed method may analyze a very robust representation of 

single-channel EEG data. The trial outcomes show a notable 

improvement in the model’s performance and show how 

effective and practical the suggested method is for detecting 

driver fatigue. This study presents a novel approach for real-
time single-channel signal analysis with enormous potential: 

using prefrontal brain waves to create a highly efficient 

system to detect driver fatigue.  

Albaqami et al. [23] presented a computerized binary 

categorization system to classify brain signals in multichannel 

EEG scans using the wavelet packet decomposition (WPD) 

method in 2021. This technique divides an EEG signal into 

frequency sub-bands and obtains statistical properties for 

every selected coefficient. The obtained features are 

categorized utilizing CatBoost, XGBoost, and LightGBM, 

examples of frameworks based on gradient-boosting decision 

trees. On identical datasets, the suggested approach outperforms 
existing methods regarding sensitivity and precision by more 

than 1 percentage point and 3 percentage points, respectively. It 

also obtains 87.68% accuracy in binary classification. 

Researchers conclude that the findings of this study offer 

important insights into the classification effectiveness of WPD, 

the extraction of features, and the gradient-boosting decision tree 

classification algorithm for EEG.  

A novel method for identifying aberrant EEG signals is 

presented by Tuncer et al. [24]. It integrates WPD and chaotic 

one-dimensional local binary pattern (CLBP) methods. This 

technique extracts features by first applying CLBP to the 
decomposed signal after applying WPD to the EEG signal. 

Minimum redundancy reduction maximum relevancy was 

employed to select clinically significant characteristics, and a 

support vector machine (SVM) classifier was utilized to divide 

them into normal and abnormal EEG classifications. The built 

model has the best performance to date with this database, with 
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98.19% accuracy for the PZ channel. Advanced approaches are 

outperformed by the suggested strategy.  

Several recent studies related to the use of EEG have been 

published, including research conducted by Monge et al. that 

illustrates the potential of wireless EEG devices in 

educational settings, shedding light on students' cognitive and 

emotional states. This facilitates collaboration between 

educators and researchers. The discourse delves into the 

equilibrium between the advantages of EEG utilization in the 

academic domain, such as gaining fresh perspectives on the 
learning processes, and the obstacles encountered, including 

disruptions to regular classroom activities and financial 

constraints. The study presents empirical support indicating 

that despite the disruptions to the daily school routine, 

integrating EEG devices could pave the way for 

advancements in pedagogy and learning methodologies, 

ultimately benefiting all stakeholders [25].  

Ruchika et al. [26] emphasize the significance of EEG in 

managing individuals with neurological disorders, a 

diagnostic tool that monitors the brain's electrical functions. It 

discusses the recent advancements in EEG technology that 
enable neurosurgeons to closely observe brain activity during 

surgical procedures, enhancing their clinical judgment and 

ensuring brain safety. Furthermore, the study anticipates the 

development of wearable devices in the future, facilitating 

continuous monitoring of brain health and potentially 

expediting patient recovery processes. Johri et al. propose a 

method for recognizing brain activity through EEG signals, 

categorizing it into listening to music, watching movies, and 

meditating. They use a convolutional neural network with 

Temporal, Spatial, and Separable convolutions to effectively 

analyze and interpret complex brain signals. The study 
showcases the effectiveness of Depthwise Convolution and 

Separable Convolutions in EEG signal processing.  

Comparing different networks like EEGNet, EEGNet-

SSVEP, and DeepConvNet, it emphasizes the significance of 

adding more layers to achieve higher accuracy, with 

DeepConvNet reaching 99.94% accuracy [27]. Volkova et al. 

[28] present a review on decoding movements from brain 

activity using electrocorticography (ECoG) for assistive 

devices. ECoG offers advantages like better temporal/spatial 

resolution and lower risks, making it a promising 

neuroprosthetic solution. The authors discuss how decoding 

algorithms extract relevant information from ECoG for BCIs. 
They also stress the importance of generalization in decoding 

algorithms and the need for regularization methods to prevent 

overfitting in ECoG-based BCIs. Patel et al. [29] present an 

extensive overview of advancements in BCI technology, 

emphasizing its significance for assisting disabled individuals 

and enabling innovative applications such as hands-free game 

playing and controlling home appliances using brain signals. 

The text explains the process of capturing and processing 

brain signals, including signal acquisition, data preprocessing, 

feature extraction, and classification, to facilitate beginner 

comprehension regarding BCI system workflow. The study 
thoroughly examines diverse BCI applications, demonstrating 

various techniques for feature extraction and classification 

and elucidating the adaptability and potential of BCI 

technology across different domains.  

Finally, it addresses the current challenges and limitations 

hindering the effectiveness of BCI systems, highlighting areas 

requiring enhancement for future BCI technology 

development. Lahane et al. [30] present an extensive 

overview of BCI technology advancements, emphasizing its 

significance for aiding disabled individuals and creating 

innovative applications such as hands-free game playing and 

controlling home appliances through brain signals. The article 

elucidates capturing and processing brain signals, including 

signal acquisition, data preprocessing, feature extraction, and 

classification, to facilitate comprehension for novices in BCI 

system workflow. A thorough examination of diverse BCI 
applications demonstrates various feature extraction and 

classification techniques, thus illustrating the adaptability and 

potential of BCI technology across different domains. Lastly, 

the paper outlines the current challenges and limitations 

affecting BCI system efficiency, highlighting areas requiring 

enhancement for future BCI technology progress. 

II. MATERIALS AND METHODS 

A. Dataset 

This research processed two types of EEG data: low 

concentration and high concentration. The data used is in the 

form of an EEG signal dataset sourced from the Mendeley 

databases [31]. Figure 1 (a) shows Examples of EEG signal 

data in humans at low concentrations, and Figure 1(b) shows 

EEG signal data at high concentrations. 

 

(a) (b) 
 

Fig. 1  Example of human EEG signal data with (a) low concentration and 

(b) high concentration 

 

Out of 250 data, 200 are used to train and 50 for 

assessment. Table 1 depicts the distribution of these points. 

TABLE I 

ALLOCATION OF DATASET 

Dataset Training data Test data Total 

Low concentration 100 25 125 

High concentration 100 25 125 
Total 200 50 250 

B. General Architecture 

In this investigation, there are multiple stages of the 
technique. A high-pass filter filters the EEG's frequency at the 

beginning of the process, preprocessing. The second stage is 

feature extraction utilizing PyEEG [32]Then, enter the 

classification stage using the SVM approach. After going 

through all these stages, the resulting output is high and low 

concentration levels. The phases are arranged in a general 

architecture, as seen in Figure 2. 

 

926



 
Fig. 2  General architecture 

C. Preprocessing 

At this preprocessing stage, the EEG signal data is 

processed to remove unnecessary signals that can interfere 

with data processing so that the required data can be produced. 

The EEG signal is subjected to the signal-filtering process, 

which is a filter that passes high frequencies and rejects low 

frequencies. The findings obtained in this process are to 

segregate the delta, theta, alpha, and beta signals. Figure 3 

depicts EEG signals before and after applying the high-pass 

filter. 

 
(a) (b) 

Fig. 3  EEG signals: (a) before being given a high-pass filter and (b) after 

being given a high-pass filter 

 

The frequency of the EEG signal is divided into four parts: 

delta, theta, alpha, and beta. Delta is in the 0.5Hz–4Hz range, 

theta is in the 4Hz–7Hz range, alpha is in the 7Hz–12Hz 

range, and beta is in the 12Hz–30Hz range. 

D. Feature Extraction 

Moreover, the feature extraction procedure uses PyEEG on 

the EEG signal. In the filtering stage, the EEG signal has been 

separated into four parts: delta, theta, alpha, and beta. The 

following code contains the PyEEG script for this research: 

FUNCTION def extract_features(signal): 
    a = pyeeg.bin_power(signal,[0.5,4,7,12,30],173) 
    aa = list(a) 
    aa[0] = aa[0].tolist() 

    aa[1] = aa[1].tolist() 
    b = [[hfd(signal,Kmax=5), 
          svd_entropy(signal,Tau=4,DE=10), 
          fisher_info(signal,Tau=4,DE=10), 
          dfa(signal)]] 
    return list(chain.from_iterable(b)) 
ENDFUNCTION 

The explanation for the script is as follows: The code defines 

a function called extract_features that accepts a signal as 

input and extracts specific features. The bin_power function 

from the pyeeg module is called the signal input, a frequency 

range list [0.5, 4, 7, 12, 30], and a sampling rate of 173. The 

power is calculated within designated frequency ranges [0.5–

4Hz, 4–7Hz, 7–12Hz, 12–30Hz]. The result of bin_power is 

converted to a list, and the first and second elements of the list 

(aa[0] and aa[1]) are converted to lists as well using the 

tolist() method. This step seems unnecessary since bin_power 
likely returns the results as listed already. A nested list b is 

created, which contains the results of four different functions: 

hfd, svd_entropy, fisher_info, and dfa. These functions are 

applied to the signal input. The specific parameters used for 

each function are Kmax=5, Tau=4, and DE=10 for 

svd_entropy and fisher_info. It’s thought that the other 

functions (hfd and dfa) use default parameter values. The 

nested list b is flattened using chain.from_iterable, and the 

flattened list is returned as the function's result. 

E. Classification 

Modeling in SVM is to find the best-dividing line, also 

known as a hyperplane, by maximizing the distance between 

classes, which is utilized for categorizing high-dimensional 

classes. The kernel used in this research is the RBF kernel. 

The dataset is subsequently partitioned into K subsets using 

K-fold cross-validation. The K value used in this study is 5, 

which is fivefold. 

III. RESULTS AND DISCUSSION 

Figure 4 illustrates some examples of datasets that show 

low-concentration and high-concentration conditions. 

 
Fig. 4  Part of the dataset with low-concentration conditions 

 

This stage is a system test to see the results of the 

preprocessing process, feature extraction, and classification 

using the SVM method. The EEG signal is categorized into 

two parts: high and low concentrations. Testing the system in 

the classification process using SVM. The data used is 250 

EEG data consisting of 200 training data and 50 test data. 

Table 2 displays some of the examination results. 

 

927



 
Fig. 5  Part of the dataset with high-concentration conditions 

 

TABLE II 

TEST RESULTS 

No. EEG data 
Actual 

output 

Desired 

output 
Status 

1 

 

Low 

concern. 

Low 

concern. 
Succeed 

2 

 

Low 

concern. 

Low 

concern. 
Succeed 

3 

 

Low 

concern. 

Low 

concern. 
Succeed 

4 

 

Low 

concern. 

Low 

concern. 
Succeed 

5 

 

Low 

concern. 

Low 

concern. 
Succeed 

6 

 

Low 

concern. 

Low 

concern. 
Succeed 

7 

 

Low 

concern. 

High 

concern. 
Failed 

8 

 

Low 

concern. 

Low 

concern. 
Succeed 

No. EEG data 
Actual 

output 

Desired 

output 
Status 

9 

 

 

Low 

concern. 

Low 

concern. 
Succeed 

10 

 

Low 

concern. 

High 

concern. 
Failed 

11 

 

High 

concern. 

High 

concern. 
Succeed 

12 

 

High 

concern. 

High 

concern. 
Succeed 

13 

 

High 

concern. 

High 

concern. 
Succeed 

14 

 

High 

concern. 

High 

concern. 
Succeed 

15 

 

High 

concern. 

High 

concern. 
Succeed 

16 

 

High 

concern. 

High 

concern. 
Succeed 

17 

 

High 

concern. 

High 

concern. 
Succeed 

18 

 

High 

concern. 

High 

concern. 
Succeed 

19 

 

High 

concern. 

High 

concern. 
Succeed 

20 

 

High 

concern. 

High 

concern. 
Succeed 

 

Based on the classification test of the EEG signal testing 

data in Table 2 using SVM, an accuracy value of up to 84% is 
obtained based on implementing the machine learning 

method, namely, the confusion matrix. Figure 6 illustrates the 

results of the EEG signal evaluation using the confusion 

matrix. 
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Fig. 6  The results of the confusion matrix on the EEG signal test data 

 

In Figure 6, the 0th index is the testing data for the low-

concentration class, and the 1st is the testing data for the high-

concentration class. Table 3 presents the outcomes of the 

formulas for true positive, false positive, precision, macro 

averaged precision, and weighted averaged precision. 

TABLE III 

TP, FP, PRECISION, MAP, AND WAP VALUES 

 Low High 

TP 17 25 

FP 0 8 

Precision: TP/(TP+FP) 1.00 0.76 

Macro Averaged 0.88 

Weighted Averaged 0.88 

 

Recall is the percentage of anticipated positives from total 

positives. Calculations of true positive, false negative, recall, 

macro averaged recall, and weighted averaged recall can be 

seen in Table 4. 

TABLE IV 

TP, FN, RECALL, MAR, AND WAR VALUES 

 Low High 

TP 17 25 

FN 8 0 

Precision: TP/(TP+FN) 0.68 1.00 
Macro Averaged 0.84 

Weighted Averaged 0.84 
 

Table 5 displays the F1 score and accuracy. 

TABLE V 

F1-SCORE AND ACCURACY 

 Low High 
F1-Score 0.81 0.86 

Accuracy 0.84 

IV. CONCLUSIONS 

The SVM method can accurately classify low and high 

concentration levels of EEG signals. The accuracy value 

obtained from the experimental findings is 84%. Explore how 
EEG can measure cognitive workload and mental fatigue, 

which are closely related to concentration levels. Research 

could concentrate on designing adaptive interfaces and 

environments that respond to a person’s cognitive state. 

Future research should aim to develop personalized 

concentration level assessment models that account for these 

differences. Combine EEG with other physiological and 

behavioral data sources, including eye tracking, heart rate 

monitoring, and facial expression analysis, to provide a 

complete picture of concentration levels. This could lead to 

more accurate assessments. 
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