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Abstract— Stress is a psychological condition that requires proper treatment due to its potential long-term effects on health and 

cognitive faculties. This is particularly pertinent when considering pre- and early-school-age children, where stress can yield a range of 

adverse effects. Furthermore, detection in children requires a particular approach different from adults because of their physical and 

cognitive limitations. Traditional approaches, such as psychological assessments or the measurement of biosignal parameters prove 

ineffective in this context. Speech is also one of the approaches used to detect stress without causing discomfort to the subject and does 

not require prerequisites for a certain level of cognitive ability. Therefore, this study introduced a hybrid deep learning approach using 

supervised and unsupervised learning in a stress detection model. The model predicted the stress state of the subject and provided 

positional data point analysis in the form of a cluster map to obtain information on the degree using CNN and GSOM algorithms. The 

results showed an average accuracy and F1 score of 94.7% and 95%, using the children's voice dataset. To compare with the state-of-

the-art, model were tested with the open-source DAIC Woz dataset and obtained average accuracy and F1 scores of 89% and 88%. The 

cluster map generated by GSOM further underscored the discerning capability in identifying stress and quantifying the degree 

experienced by the subjects, based on their speech patterns.  
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I. INTRODUCTION

Stress is a psychological problem that arises in response to 
the challenges experienced in daily life, affecting individuals 

of all ages [1], [2]. Stressors or stress triggers can stem from 

internal factors, such as feelings of inferiority and 

helplessness, or external factors, including bullying and 

academic pressure at school [3]. Different cross-disciplinary 

studies provide evidence of the complex relationship between 

mental development, social environment, and long-term 

health conditions [4]. The early years of a child's life often 

called the Golden Age period, represent a critical phase of 

development where their biological system rapidly 

assimilates diverse positive and negative experiences [5]. 
Intense and prolonged exposure to stress contributes closely 

to long-term health problems, including heart problems, 

diabetes, and premature death [6]. Different expressions of 

negative feelings, such as anger, sadness, nervousness, and 

fear characterize stress. 

Furthermore, this stressful condition also negatively 

influences the human nervous system. Several studies have 

shown that high-intensity chronic stress can lead to decreased 

brain mass, cognitive degradation, and memory problems. A 

growing child's physical and mental development may be 
adversely affected due to the occurrence of this circumstance 

[6], [7]. 

According to WHO data, the prevalence of mental illnesses 

in children is estimated to be 13% of the population aged 10 

to 19 worldwide, which is roughly equal to disorders in adults 

at 20 % [8]. Therefore, mental health issues, such as stress, 

can persist into adulthood when the underlying issues are 

unaddressed [9]. Stress, considered non-threatening in its 

mild stages, is a prevalent mental condition encountered in 

everyday life. However, when not managed effectively, the 

condition can lead to severe mental health issues [7]. 

Detecting stress in children, particularly those in the pre-early 
school age group, presents a considerable challenge. This is 

primarily due to their limited communication skills and a lack 
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of awareness regarding the various potential mental health 

issues encountered [10], [11]. The impact of stress on pre-

early school-age children can manifest in various ways, 

influenced by factors such as their personality, environmental 

context, and specific stressors [12]. Due to the restricted 

communication and cognitive abilities, children typically 

respond to stressful situations by exhibiting alterations in 

behavior and emotions. Common behavioral responses in 

children experiencing stress include heightened irritability, 

aggression, or withdrawal. Concurrently, typical emotional 
responses are nervousness, sadness, anger, and mood 

fluctuations. 

Detection of Stress in children is a multifaceted challenge, 

necessitating the exploration of technology-driven solutions 

capable of autonomously identifying stressors in this 

vulnerable demographic. Based on current technological 

developments, various approaches can be used to detect 

stress, including direct measurements of the human body's 

biosignal parameters using various sensors. Several related 

studies include detecting stress through heart rate and skin 

resistance (Galvanic skin response), monitoring stress 
through variable heart rate (HRV), and skin conductivity 

(Electrodermal Activity) using smart watch devices [13], 

[14]. Other studies have produced stress detection approaches 

using heart rhythm data through an electrocardiogram (ECG) 

combined with blood pressure measurements [15] and studies 

using stress detection through a combination of heart rhythm 

data and respiration rate (Respiration Rate) [16]. Despite the 

efficacy of these studies in using biosignal measurements to 

achieve a high level of accuracy in stress detection, their 

applicability is limited due to the potential discomfort and the 

inadvertent introduction of additional stressors associated 
with affixing sensors to a child's body [17]. 

An alternative child-friendly approach to stress detection 

includes the analysis of an individual's speech. Based on 

medical literature reviews, there is a correlation between 

stress experienced and human vocal reproduction where the 

conditions affect various body functions and tension of 

various muscles for supporting vocal reproduction. Therefore, 

the output of human vocal sounds can be used as a good 

marker in detecting stressful conditions [18]–[20]. Studies 

related to stress detection through speech have been carried 

out in recent years [17], [21]–[28]. These studies have 

detected stress through speech with fairly good accuracy, 
between 75-85%. Furthermore, these studies primarily 

concentrate on binary classifications of stress status, 

distinguishing between individuals with and without stress 

[18]. The model that can provide high accuracy in identifying 

stressful states experienced by the subject with the level of 

severity is needed to achieve effective management. This is 

because the treatment of a person's stressful condition 

depends on the level of stress experienced. At mild levels of 

stress, individuals do not necessitate medical intervention but 

are often sufficient to address and manage the underlying 

stressors that provoke their distress. Conversely, in cases of 
severe and protracted stress, medical treatment becomes 

important. The treatment includes the expertise of specialized 

medical professionals, including child psychologists, 

providing the requisite therapeutic assistance [29]. 

This study introduces a model using a deep learning-based 

hybrid approach, which integrates supervised and 

unsupervised approaches. The primary objective is to enhance 

stress detection accuracy by analyzing speech signals and 

applying clustering approaches to identify associative 

relationships between voice characteristics and stress levels. 

The proposed model constitutes the central contribution of 

this study. Additionally, a dataset is established for stress 

detection in children, supporting the contributions in this 

domain.  

According to the proposed detection model, the 

identification of stress in children can be conducted earlier, 
enabling the implementation of necessary preventive or 

therapeutic measures, contingent on the severity level. This 

proposed model stands apart from previous studies in two key 

aspects. Firstly, it is distinguished through explicitly 

constructing a supporting dataset for the stress detection 

model in children. Secondly, the model uses a novel hybrid 

approach, combining supervised and unsupervised learning 

elements to facilitate stress detection through speech analysis. 

This study is structured into four distinct sections, 

contributing to a comprehensive understanding of the result, 

and the introductory section provides the overview. The 
second section delves into the intricacies of the proposed 

approach, stating the details for a more comprehensive 

comprehension. Subsequently, the third section presents the 

results and engages in a thorough discussion. The fourth and 

concluding section encapsulates the entirety of the study 

content. 

II. MATERIAL AND METHOD 

This section describes the dataset, the proposed model, and 
the performance evaluation approach of the stress detection 

system. 

A. Dataset Preparation 

In building the dataset, direct voice samples were obtained 

from 10 pre-early-school children aged between 5-7 years 

directly from the school environment, and the parents 

expressed their consent. The study was accompanied by a 

child psychologist who designed and supervised the activities 
based on the Trier Social Stress Test approach. Activities 

based on the Trier Social Stress Test include working on 

complex arithmetic questions and public speaking to induce 

stress [30]. After the activity session, the children were called 

into an interview session guided by a psychologist. During the 

session, their voices were recorded, and the psychologist 

monitored the children directly to observe the symptoms of 

stress through behavior or gestures. Based on the 

observations, stress status labeling was carried out on the 

voice sample recordings in binary, namely Stress or Non-

Stressed.  

In the case of children experiencing stress, the psychologist 
documented their levels based on the Kessler standard 

instrument. This instrument classifies the condition into three 

categories. The first is mild stress, where the subject exhibits 

subtle gestures or mild stressful behaviors. The second is 

moderate stress, characterized by symptoms and noticeable 

stressful behaviors. The third is severe stress, which indicates 

intense and pronounced symptoms and behaviors [29], [31]. 

The voice recordings from each subject were cut into sound 

samples with a duration of 1 and 2 seconds. After the 
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validation and labeling process, 106 and 142 voice samples 

were labeled as Stressed and Non-Stressed.  

An open-source dataset known as The Distress Assessment 

Interview Corpus, abbreviated as DAIC-WOZ, was also used 

to evaluate the model developed against various state-of-the-

art counterparts [32]. The dataset consisted of a voice sample 

and questionnaire answers from participating subjects labeled 

with a degree of stress level according to the standard Patient 

Health Questionnaire (PHQ-8). This questionnaire consisted 

of eight question items that measured various aspects of 
depression with a scale of 0 to 3, with response options of "not 

at all," "several days," "more than half days," and "nearly 

every day." From the eight questions, a score of 0-24 was 

obtained, which indicated the degree of stress. This dataset 

consisted of 59 and 130 samples for Stressed and Non-

stressed subjects. 

B. The Architecture of the Proposed Model 

The proposed model consists of a combination of 
supervised and unsupervised learning approaches. The 

supervised approach uses the Convolution neural network 

(CNN) architecture. In the proposed model, CNN is based on 

its effectiveness in various tasks related to audio 

classification, such as speech recognition. This is because of 

its ability to understand various attribute representations in 

audio spectrograms, handle various input sizes, and use pre-

trained model and transfer learning to provide good 

classification performance. CNN architecture consists of a 

Convolution layer, a max-pooling layer, and a fully connected 

layer [28]. 

Furthermore, the convolution layer provides the main 

framework for the entire neural network and a set of kernels 

to be learned in the training process. The max pooling layer 

functions to reduce the feature map's dimensions, reducing the 

data's size and the number of parameters to be studied. The 

linear layer connects each neuron from the previous to the 

next layer. Meanwhile, the ReLu activation functions to 

overcome the vanishing gradient problem, the flattened layer 

between the convolution and the fully connected layer, the 

dense layer using SoftMax as activation function, and the 
drop-out layer, reducing the overfitting problem for the 

unsupervised approach using GSOM (Growing Self-

Organizing Map). GSOM is a type of unsupervised neural 

network used for dimensionality reduction and visualization 

of high-dimensional data to support models conducting audio 

data clustering. The model can categorize voice samples into 

clusters characterized by shared attributes using the support 

provided by GSOM, a variant of Self-Organizing Maps 

(SOMs) to elucidate the topological properties in data.  

In addition, providing a visual representation of cluster data 

is needed for stress analysis. The approach consists of four 
nodes as the initial configuration and learning using rules 

based on Euclidean distance. New nodes are formed when 

quantitation errors accumulate ahead of the growth threshold 

value. Combining two approaches based on supervised and 

unsupervised using CNN and GSOM architectures is a hybrid 

used in developing a stress detection model. Figure 1 

summarizes the stress detection model using this hybrid 

approach. 

 
Fig. 1  Architecture of proposed model 

 

The model receives input in the form of voice recordings 

from the dataset, and the sound samples are converted into a 

spectrogram, a visual representation of changes in the 

frequency of signals over time. Before conducting feature 

extraction, segmentation and data cleaning processes are 

carried out. This process is one of the critical stages since the 

sounds acquired are from subjects in a classroom environment 

susceptible to various noises. Segmentation is conducted to 

separate the sound signal from noise, including the detected 
silences on the recording. This study uses the Librosa library 

to perform segmentation, sound analysis, and feature 

extraction. 

The data balancing procedure is undertaken to rectify the 

imbalance within the dataset. In the case of DAIC-WOZ, the 

number of voice samples categorized as non-stressed exceeds 

stressed samples by more than a twofold margin. Similarly, 

the child voice dataset exhibits an imbalance, where non-

stressed voice is nearly 50% greater than stressed voice. To 

address this issue, the data imbalance is mitigated by 

increasing the number of stressed labeled samples through the 
use of data augmentation approaches. Subsequently, feature 

extraction is performed on the audio spectrogram to convert 

the audio signal into a format comprehensible by model. After 

training, model can classify speech into binary labels, namely 

`stressed and non-stressed. The output from CNN in the form 

of high-dimensional features is fed to GSOM to conduct stress 

clustering by generating and visualizing feature maps to 

determine the characteristics of model in identifying sounds 

with stress categories. 

C. Data Augmentation and Feature Extraction 

The issue of imbalanced data warrants attention due to its 

potential to introduce bias into the training process, impacting 

the accuracy of the proposed model's output. In the context of 

this study, the children's voice dataset and the Daic-Woz 

dataset encountered challenges associated with data 

imbalance. The children's voice dataset contains 106 and 142 

sound files labeled stressed and non-stressed. Similarly, in the 

open-source dataset DAIC-WOZ, there are 59 and 130 sound 

files labeled stressed and non-stressed, respectively. A way to 
overcome this imbalance problem is to use data augmentation 

approaches [33]. In addition to overcoming the problem, this 

2476



augmentation approach is also useful for increasing the 

diversity of datasets. In this study, data augmentation is 

carried out by creating a new synthetic audio file, which is a 

variation of the original audio file. To do this, we add two new 

samples of synthetic data for each original audio file. Using 

the Librosa audio library, we injected artificial noise as the 

first audio variation and performed pitch shifting as the 

second audio variation. So that the augmentation process is as 

bias-free as possible, we do several things to ensure this, 

including maintaining data balance.  
In this case, we ensure that the proportion of each audio file 

representing both categories, namely stress and non-stress, is 

balanced so that learning is not biased towards one category. 

In addition, we ensure that each original audio has two 

synthetic variations produced with the same method so that 

the proportion of data after the augmentation process remains 

consistently maintained. Figure 2 shows the audio signal 

changes through the graphical waveform of the augmentation 

process. After the augmentation process on the children's 

voice dataset, 300 sound samples were obtained, consisting of 

145 and 142 labeled stressed and non-stressed. For the open-
source DAIC-WOZ dataset, after the augmentation process, a 

total of 300 samples were obtained, consisting of 142 and 158 

sound samples labeled stressed and non-stressed. 

 
Fig. 2  Waveform of augmented speech sample, original sample (top), with 

artificial noise (mid), and pitch shifting (bottom) 

 

Audio feature extraction converts the audio signal into a 

vector form the model understands. Various audio 

applications, such as audio classification, speech recognition, 

speech separation, and audio fingerprinting, require proper 

audio feature extraction to produce good performance. Based 

on the level of abstraction, audio features can be divided into 

Low-level, Mid-level, and High-level. High-level audio 

features, such as keys and rhythms, are abstract features 

humans can immediately comprehend or understand. The 

sense of hearing can perceive mid-level audio features, such 

as pitch, beat descriptor, and MFCC. Low-level audio features 
are statistical features extracted directly from audio, and these 

features can only be understood by machines. The features 

include amplitude envelope, energy, spectral centroid, and 

zero crossing rate. In addition to the level of abstraction, audio 

features also depend on the signal domain, which states how 

the perspective of the signal is represented. 

The signal domain is divided into time, frequency, and 

cepstral [34]. Audio features in the time domain are extracted 

directly from the waveform represented in time. The 

amplitude of the sound signal is measured as a function of 

time, and examples of audio features in the time domain are 
Zero crossing rate, amplitude envelope, and Root mean 

square energy. Audio features in the frequency domain are 

signal characteristics that describe the analysis of the 

mathematical function of signal to frequency. Signals are 

converted from the time domain using the Fourier transform, 

and some examples of audio features in the frequency domain 

are spectral centroids, band energy ratio, and spectral flux. 

The audio features in the cepstral domain are obtained by 

performing an inverse Fourier transform of the logarithm 

spectrum Fourier. Mel Frequency cepstral coefficients 

(MFCC) and Mel-spectrogram belong to this cepstral domain. 
Furthermore, the Mel-spectrogram represents the cepstral 

domain for feature extraction in the stress detection model. 

The Mel-spectrogram has the advantage of imitating human 

auditory perception suitable for sound analysis. Figure 3 

shows an example visualization of sound samples in the 

dataset represented in the mel-spectrogram. 

 
Fig. 3  Visualization of one of the voice samples in mel-spectrogram 

D. Stress Detection Hybrid Model 

Based on the architecture of the proposed model, the stress 

detection model uses a hybrid approach through supervised 

and unsupervised learning. CNN architecture in the proposed 

model consists of 3 convolution layers mediated by a max 

pooling layer to maintain the dominant features of the feature 
map, with a flattened layer followed by two dense layers. In 

the Mel-spectrogram, a total of 131 features are extracted, and 

these features are used as inputs into the initial layer, with 

dimensions (131,1). The output of this layer undergoes a 

transformation resulting in a (131, 256) shape, achieved 

through the use of 256 channels with 5x5 filters. Therefore, a 

dimension-reduction process is implemented using a max-

pooling layer with a 5x5 filter and a stride of 2. 

The second and third convolutional layers consist of 256 

and 128 channels using 5x5 filters. These layers are followed 

by max-pooling layers, which maintain the same 

configuration as the initial max-pooling layer. Furthermore, a 
flattened layer converts the feature map to a linear form. 
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There is a dense layer with 32 neuron units, and the dropout 

layer is used with a value of 0.3. The SoftMax layer is 

configured with two units of neurons in the training phase for 

50 epochs and a batch size of 50 using the ADAM optimizer. 

The training and test distribution is 75:25, with training data 

of 225 voice samples with 110 and 115 labeled stress and non-

stressed. There are 75 voice samples for the test data, with 35 

and 40 voice samples labeled Stress and Non-Stressed. In the 

training process, the ReduceLRonPlateau configuration is 

used to reduce the learning rate when the metric values begin 
to slope. 

The output from CNN becomes input data to GSOM and is 

categorized into stress and non-stressed clusters. GSOM is 

initialized with four parallel nodes forming a quadrilateral 

with 131 dimensions of input data. The model is dynamically 

organized until the 131-dimensional mapping to 2-

dimensional space is completed. Parameters for GSOM are 

set to 50 learning iterations, threshold 75, and spread factor 

from 0.1 to 0.9. 

To evaluate model's performance, several metrics are used, 

namely accuracy, which measures the accuracy of predictions 
by calculating the ratio between correct predictions compared 

to those made by model. Furthermore, recall, precision, and 

F1-Score are also used to understand the effects of model on 

stress detection. The metric recall offers insight into model's 

ability to predict stress by examining the ratio of samples 

correctly predicted as stress to the total number of samples 

labeled as stress. Precision provides the ratio of correct stress 

predictions to the entire sample predicted as stress, and F1-

Score indicates model performance by combining precision 

and recall values in a single value, balancing the trade-off 

between the recall and precision. 

III. RESULT AND DISCUSSION 

The system platform used is a Windows 10 64-bit computer 

with Intel Core I7 2.8 GHz CPU specifications, 16GB of 

RAM, and NVIDIA GTX 1060 4GB GPU, and model training 

process takes 4 min 25 s. The accuracy of the training model 

and validation with 50 epochs is 0.97 and 0.94 with a loss of 

0.05 and 0.16, respectively. The graph of training accuracy, 

training loss, validation accuracy, and validation loss is 

shown in Figure 4. Based on the graph, models have a good 
learning rate with increasing model accuracy as the number 

of epochs increases before sloping at 40 epochs. The 

parameter loss values from the training and validation phases 

are also very small at 0.05 and 0.16, indicating an effective 

learning model. 

 

 
Fig. 4  Graph represents training and testing accuracy and loss vs number of epochs 

 

Model performance results were measured using 

evaluation metrics for the constructed dataset and from the 
DAIC-WOZ dataset as presented in Figure 5.  

 
Fig. 5  Model performance with built dataset vs DAIC WOZ dataset 

The benchmarking process was carried out to assess the 

proposed model's performance compared to the state-of-the-
art model. Several deep learning model using the DAIC-WOZ 

dataset were examined, including model discussed in 

references [26] and [27]. These models use CNN with feature 

extraction from image spectrograms. Additionally, model 

[28] was evaluated, which uses a combination of CNN and 

LSTM while adopting MFCC as the extracted feature. Based 

on the performance benchmark results in Table 1, the 

proposed model succeeded in exceeding the performance of 

the deep learning-based model. 

TABLE I 

PERFORMANCE BENCHMARK OF THE STATE-OF-THE-ART MODEL USING THE 

DAIC-WOZ DATASET 

Model Accuracy F1-Score (N) 
F1-Score 

(S) 

RNN [26] 76 % 85% 45% 
CNN [27] - 70% 52% 
CNN+LSTM [28] 76% 82% 64% 
Our Model 89% 99% 78% 

88,2

95

90,2

95,4

90,5

95,2

89,8

94,7

0 20 40 60 80 100
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For the DAIC-WOZ dataset of 46 data, 21, 11, and 5 

samples have a PHQ-8 score between 0 to 4, 5 to 9, and 10-

14 showing non-stressed psychological, mild stress, and 

moderate symptoms, while the remaining 9 have a PHQ score 

above 15, indicating severe stress. From 21 sample subjects 

who showed non-stressed psychological conditions based on 

a PHQ-8 score <= 4, model correctly classified 19 samples as 

non-stressed conditions. Meanwhile, 14 samples with a PHQ-

8 score >= 10 indicated a real state of stress, and model 

correctly classified 11 of the samples. These results show 
model has high sensitivity and specificity in detecting stress. 

In the augmentation process for training the classification 

model using CNN algorithm, synthesis data was added to 

increase the voice dataset labeled with stress to overcome the 

problem of imbalanced data. In cluster analysis using GSOM, 

feature vectors from the original dataset were used without 

augmentation to avoid bias. The groups of these feature 

vectors were divided into stressed and non-stressed clusters. 

Each node in the cluster was labeled according to the data 

label in the dataset. Nodes from data marked as stressed and 

non-stressed were given red and blue labels before plotting 
onto the cluster map. High-density areas with nodes labeled 

stressed and non-stressed were then identified as stressed and 

non-stressed clusters. 

Fig. 6 shows the analysis of the distribution of nodes on the 

cluster map. The area marked with a rectangular marker 

indicates the collection of voice nodes of the subject under 

stress conditions, and the surrounding area shows the density 

of subject nodes under stress conditions. Meanwhile, the 

subject nodes under non-stress conditions are concentrated 

from clusters with stress nodes. From the comparisons made 

according to the child's stress level, dense areas with a 
distribution of stress nodes originated from child subjects 

with moderate and severe levels. Meanwhile, stress subject 

nodes scattered in the minority into dense areas with non-

stressed are mostly subjects with a mild level. 

 
Fig. 6  Distribution node of built dataset 

The cluster analysis of the DAIC-WOZ dataset also shows 

similar results (Fig.7). From the comparisons made according 

to the degree of stress, dense areas with a distribution of nodes 

came from subjects with a high PHQ-8 score level above 10, 

indicating a medium to a high degree. Furthermore, areas 

densely packed with non-stressed nodes were almost entirely 
from subjects with low PHQ-8 score levels below 10. The 

proposed model had a good differentiation ability in 

identifying stress and the degree of stress level of the subject 

through speech. 

 
Fig. 7  Distribution node of DAIC-WOZ dataset cluster map 

IV. CONCLUSION 

In conclusion, the average accuracy and F1-Score results 

were 94.7% and 95%, respectively, using the child voice 

dataset built to support this study. For benchmark testing 

compared to the state-of-the-art model using the DAIC-WOZ 

dataset, the model also obtained results that exceeded these 

results with accuracy and an average F1-score of 89.8 and 

88.2. Therefore, the model had generalization abilities over 

various voice samples. According to the cluster analysis, the 

model had good differentiation capabilities in identifying the 

subject's stress level with the unsupervised learning approach 

using GSOM. This was conducted by grouping nodes 

representing voice samples into appropriate clusters based on 
similarity.  

Future studies could analyze the viability of detecting and 

monitoring stress in real-time from the child's activity 

environment. This will provide more information on the 

source of stress and stressors in children. However, a 

challenge to be overcome was optimizing model processing 

time in more complex audio pre-processing and audio 

separation approaches. Future model development can also 

integrate natural language processing methods into the model 

to detect stress through lexical speech analysis. With this 

integration, the model can detect stress more accurately by 
combining the signal and contextual properties of the subject's 

speech. 
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