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Abstract— The categorization of waste plays a crucial role in efficient waste management, facilitating the recognition and segregation 

of various waste types to ensure appropriate disposal, recycling, or repurposing. With the growing concern for environmental 

sustainability, accurate waste classification systems are in high demand. Traditional waste classification methods often rely on manual 

sorting, which is time-consuming, labor-intensive, and prone to errors. Hence, there is a need for automated and efficient waste 

classification systems that can accurately categorize waste materials. This research introduces an innovative waste classification system 

that merges feature extraction from a pre-trained EfficientNet model with Principal Component Analysis (PCA) to reduce 

dimensionality. The methodology involves two main stages: (1) transfer learning using the EfficientNet-CNN architecture for feature 

extraction and (2) dimensionality reduction using PCA to reduce the feature vector dimensionality. The features extracted from both 

the average pooling and convolutional layers are combined by concatenation, and subsequently, classification is performed using a fully 

connected layer. Extensive experiments were conducted on a waste dataset, and the proposed system achieved a remarkable accuracy 

of 99.07%. This outperformed state-of-the-art waste classification systems, demonstrating the effectiveness of the combined approach. 

Further research can explore the application of the proposed waste classification system on more extensive and more diverse datasets, 

optimize the dimensionality reduction technique, consider real-time implementation, investigate advanced techniques like ensemble 

learning and deep learning, and assess its effectiveness in industrial waste management systems. 
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I. INTRODUCTION

Effective and sustainable waste management has become a 
pressing global issue, given the staggering volume of waste 
generated daily by consumers worldwide [1]. In Indonesia, 
this concern is enshrined in Law No. 18 of 2008 on Waste 
Management [2], establishing a comprehensive legal 
framework for waste control, management, and oversight 
throughout the nation. The significance of proper waste 
management becomes evident when one considers the 
substantial waste production within Indonesia. 

As reported by the National Waste Management 
Information System (SIPSN), maintained by the Ministry of 
Environment and Forestry (KLHK), Indonesia generated 
19.45 million tons of waste in 2022. This represents a 
remarkable 37.52% reduction compared to the previous year's 
production of 31.13 million tons [3]. These figures underscore 

the formidable challenges associated with waste management 
in the country. 

The repercussions of inadequate waste management are 
far-reaching, encompassing adverse environmental impacts 
[4], public health concerns [5], and inefficient use of natural 
resources [6]. These issues are not unique to Indonesia; 
similar challenges are encountered in other nations, including 
India and the United States [7]. High waste production 
coupled with limited awareness of waste categorization and 
processing contribute to the accumulation and 
misclassification of waste [8]. 

In recent years, various studies have explored dry waste 
classification using Convolutional Neural Network (CNN) 
algorithms [9], [10]. For instance, one study utilized a pre-
trained ResNet model to classify waste like cardboard, metal, 
plastic, paper, glass, and achieved an accuracy of 91% [11]. 
The GECM-EfficientNet experiment achieved even higher 
accuracy, with 94.54% on a household waste dataset and 
94.23% on the TrashNet dataset [1]. 
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EfficientNet-B3 demonstrated exceptional performance, 
reaching 98.4% accuracy on the TrashNet dataset and 92.87% 
in classifying plastic sub-categories [12], highlighting its 
potential in waste classification. Previous research also 
successfully applied transfer learning techniques with 
MobileNetV2, ResNet34, and Densenet121, achieving high 
accuracies of 96.42%, 96.27%, and 96.273%, respectively [7]. 

Our study introduces an innovative approach to dry waste 
classification by combining Transfer Learning, PCA-based 
Dimensionality Reduction, and CNN integration. Our 
primary aim is to enhance the accuracy of dry waste 
classification compared to previous methods. We detail our 
approach in the upcoming sections. 

We begin with Transfer Learning, where we modify the 
architecture by adding a new CNN layer on top of 
EfficientNet, leveraging pre-trained weights for knowledge 
transfer from ImageNet to our task. Following Transfer 
Learning, we perform Feature Extraction, gathering 
information from the avg_pool layer of transfer learning and 
the convolutional layer of the CNN model. These features are 
merged to create a comprehensive representation of each 
waste sample. 

To refine the model further, we employ Feature Reduction 
through Principal Component Analysis (PCA) to simplify the 
feature representation without losing vital information [13]. 
After Feature Reduction, we proceed to Feature Fusion, 
combining the reduced PCA features with those from the 

avg_pool layer. This fusion creates a single feature vector for 
each waste sample. 

In the forthcoming sections, we delve into the intricacies of 
our model, elucidating how we have tailored the architecture 
to our specific task. We commence with Transfer Learning, 
removing the last output layer of EfficientNet and introducing 
a new Convolutional Neural Network (CNN) layer on top. By 
initializing this layer with pre-trained weights from 
EfficientNet, we leverage knowledge transfer from ImageNet 
to our dry waste classification task.  

Combining Transfer Learning, PCA-based Dimensionality 
Reduction, and CNN integration, our research can potentially 
revolutionize dry waste classification. We anticipate that our 
study will significantly contribute to more effective waste 
management practices locally and globally in Indonesia. 

II. MATERIALS AND METHOD 

This section provides a comprehensive overview of the 
materials and methods employed in this study. We discuss the 
datasets utilized, the preprocessing steps, and the 
implementation of Transfer Learning using EfficientNet and 
CNN architectures explicitly tailored to the TrashNet dataset. 
We include Figure 1, outlining the general workflow, to 
visually represent our proposed method and its various 
phases. 

 
Fig. 1  Workflow of the proposed method 

 

A. CNN Architectures 

Convolutional Neural Networks (CNN) stand at the 
forefront of deep learning, particularly in image classification 
tasks [15]. Their significance lies in their robust feature 
extraction capabilities, which make them an ideal choice for 
the classification of waste materials. Developed initially in the 

1980s and 1990s [16], CNN has proven its mettle in various 
pattern recognition fields, particularly relevant to waste 
classification. 

CNN is designed explicitly for image analysis, utilizing 
convolutional operations to extract features [17]. This 
approach significantly reduces the number of model 
parameters while preserving the ability to express crucial 
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image features effectively. Over the years, CNN has 
revolutionized large-scale image classification tasks, 
consistently improving the quality of image recognition 
structures [18]. While many new architectures have emerged, 
only a handful have proven suitable for waste classification 
tasks [1]. 

In dry waste classification, CNN is not just suitable but 
pivotal. Its extensive application in image processing and 

classification tasks has reshaped the landscape of waste 
categorization. By harnessing CNN's power, we can analyze 
critical features within waste images, leading to more accurate 
pattern recognition. Figure 2 illustrates the architecture of the 
proposed CNN model, highlighting its role in our 
methodology. 

 
Fig. 2  The Architecture of the Proposed CNN Model 

 

B. EfficientNet 

EfficientNet is a highly effective Convolutional Neural 
Network (CNN) architecture for achieving an optimal balance 
between accuracy and computational efficiency in image 
recognition tasks [19]. It boasts scalability and 
compressibility, enabling adaptation to varying 
computational resource requirements [20]. Furthermore, 

EfficientNet has consistently demonstrated superior accuracy 
while consuming fewer computational resources and 
achieving faster computation speeds [21]. Given its 
performance advantages, EfficientNet is the foundational 
architecture for our waste classification task, contributing to 
enhanced accuracy, efficiency, and model adaptability [22]. 
Figure 3 provides an overview of the EfficientNet 
architecture. 

 
Fig. 3  The architecture of EfficientNet 

 

C. Transfer Learning 

Transfer learning is a pivotal component of our 
methodology. It leverages the capabilities of pre-trained 
models, specifically EfficientNet and CNN, by fine-tuning 
their architectures to suit our waste classification task. 
Transfer learning involves minor adjustments to these 
architectures to adapt them to our specific context. By 
capitalizing on the knowledge acquired during pre-training on 
extensive datasets, we harness relevant features crucial for our 
task [23]. This approach has demonstrated its effectiveness in 
waste classification and enables us to explore its potential in 
improving classification accuracy and convergence speed. 

D. Feature Extraction 

Feature extraction plays a central role in our methodology, 
capturing the unique characteristics of waste materials. We 
employ two feature extraction techniques to represent waste 

images comprehensively. Firstly, we extract features from the 
average pooling layers of the pre-trained EfficientNet 
architecture, offering a high-level representation capturing 
overall information and global patterns. Secondly, features 
are directly extracted from the convolutional layers of the 
CNN model without leveraging transfer learning. These 
features capture detailed local patterns and specific image 
structures relevant to waste classification. This dual-feature 
extraction approach enhances our model's ability to learn 
discriminative representations and improves the accuracy of 
dry waste classification. 

E. Dimensionality Reduction 

Recognizing the substantial dimension difference between 
features extracted from the average pooling layers and those 
from the convolutional layers, our goal was to achieve an 
equitable contribution of both feature types to the 
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classification process. However, we aimed to prevent the 
convolutional layer features from dominating the process due 
to their higher vector dimensionality. To address this, we 
employed Principal Component Analysis (PCA) to reduce the 
dimensionality of the convolutional layer features. This 
approach allowed us to merge features from both layers, 
ensuring a balanced influence while mitigating 
dimensionality-related challenges. 

PCA, short for Principal Component Analysis, is a 
dimensionality reduction technique designed to identify a new 
set of data dimensions [24], referred to as principal 
components. These components represent the data in a lower-
dimensional space while preserving most of its variance [25]. 
These dimensions are orthogonal and independent, ranked 
according to the variance they capture, with the first principal 
component retaining the highest variance. The PCA process 
can be summarized as follows: 

1) Collect feature vectors from the convolutional 
layers, organizing them into a matrix, X, where each row (x_i) 
represents a feature vector from one data sample, totaling n 
samples and featuring dimension d: 

 � �  ���, ��, … , �
��
 � �� (1) 

2) Standardize the feature vectors in matrix X by 
subtracting the mean and dividing by the standard deviation 
to ensure uniform scaling: 

 ���� �  �� � ���
���� ������⁄  (2) 

3) Calculate the covariance matrix (C) by taking the 
matrix product of the standardized matrix (X_std) and its 
transpose: 

 � �  ��

� � ����

�  �  ����  (3) 

4) Perform eigen decomposition on the covariance 
matrix C, where v represents the eigenvector and λ is the 
corresponding eigenvalue: 

 � �  �  ! �    (4) 

5) Select the top eigenvalues and eigenvectors that 
explain at least 95% variance:  

 " � � �,  �, … ,  #��� � $� (5) 

In this formula, "V" represents the matrix of selected 
eigenvectors, where "k" is the number of eigenvectors chosen 
to capture at least 95% of the variance in the data. These 
eigenvectors will be used in the subsequent step (Step 6) to 
project standardized feature vectors. 

6) Project the standardized feature vectors (X_std) onto 
the selected eigenvectors (V) to obtain the principal 
component scores: 

 �%&�'(&� � ���� �  " (6) 

By applying PCA to retain at least 95% of the variance, we 
ensure that the selected principal components capture a 
substantial portion of the data's information while reducing its 
dimensionality. This approach facilitates the integration of 
features from both the average pooling layers and the 
dimensionality-reduced convolutional layers in the ensuing 
classification process. 

F. Datasets 

The dataset utilized in this study, known as "TrashNet" and 
obtained from Kaggle (Figure 4), consists of 2,567 data 
samples categorized into six primary classes: paper, 
cardboard, glass, plastic, metal, and trash waste. These classes 
represent the most common types of dry waste encountered in 
daily life. To maintain consistency, we resized all images in 
the dataset to a uniform dimension of 512x384 pixels. The 
TrashNet dataset serves as a robust foundation for both 
training and evaluating our waste classification model. In 
addition to the existing classes, we have introduced two new 
classes, "Plastic Glass" and "Plastic Bottle," to enhance the 
dataset's ability to distinguish between different plastic waste 
types. This diversification of the dataset enables us to 
comprehensively assess the accuracy and adaptability of our 
waste classification model. 

 

 
Fig. 4  Image classes in TrashNet dataset: (a) trash; (b) paper; (c) cardboard; 
(d) metal; (f) glass; (g) plastic. 

G. Pre-processing 

Image preprocessing plays a pivotal role in our 
methodology for extracting essential information from 
images. Its primary objective is to enhance image quality by 
mitigating undesirable distortions and accentuating specific 
visual features relevant for subsequent analysis. Within this 
framework, our initial preprocessing step involves resizing 
images to a standardized dimension of 224 × 224 pixels. 

The preprocessing stage encompasses integrating new data 
from field samples to enrich the dataset. This process involves 
incorporating additional images or samples not initially part 
of the dataset. We carefully curate and select this new data to 
ensure its relevance to dry waste classification. Adding these 
samples during preprocessing expands the dataset's size and 
augments the model's capacity to generalize and accurately 
classify various types of dry waste. Furthermore, we apply 
data augmentation techniques to bolster the dataset's 
robustness and diversity. Various augmentation parameters 
are employed, as detailed in Table I: 

TABLE I 
IMAGE DATA GENERATOR PARAMETERS 

No Parameter Value 

1 Rotation Range 90 
2 Width Shift Range 0.1 
3 Height Shift Range 0.1 
4 Shear Range 0.2 
5 Zoom Range 0.2 
6 Horizontal Flip True 
7 Vertical Flip True 
8 Fill Mode Nearest 
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These augmentation techniques introduce controlled 
variations, including rotation, shifting, shearing, zooming, 
and image flipping. By applying these transformations, we 
enrich the dataset with diverse instances, reducing the risk of 
overfitting and enhancing the model's generalization to 
unseen data. Additionally, we conduct manual relabeling to 
categorize specific images in the dataset accurately. This 
process involves meticulously examining images and 
adjustments to their labels based on specific dry waste 
categories. Manual relabeling ensures the dataset's accuracy 
and correctness, establishing a robust foundation for 
subsequent training and evaluation processes. Figure 5 
illustrates the new class labels after relabeling. 

In our new dataset, we have categorized waste images into 
several distinct classes, each representing specific types of 
waste items. Here is a summary of the classes present in our 
dataset: 

1) Paper Class: This class includes images of paper-
based waste items, such as magazine pages, writing paper, and 
other paper materials. 

2) Cardboard Class: Images in this class depict waste 
items made of cardboard, including cardboard boxes, 
containers, and similar cardboard-based items. 

3) Glass Class: This class consists of images featuring 
various glass items, including glass bottles, glass shards, and 
other glass containers. 

4) Plastic Class: Images in this class represent plastic 
waste, including plastic packaging, plastic bags, and other 
plastic items. 

5) Metal Class: This class comprises images of metallic 
waste items, such as beverage cans, metal scraps, and other 
metal pieces. 

6) Trash Class: The miscellaneous class includes 
images of items that cannot be categorized explicitly into the 
above classes. It encompasses items like masks, tissues, 
fabrics, or unidentified objects. 

7) Plastic Glass Class (Added): This additional class 
includes images of plastic glasses, such as disposable plastic 
cups. 

8) Plastic Bottle Class (Added): Another added class, 
"Plastic Bottle," contains images of various types of plastic 
bottles. 

 

 
Fig. 5 Image classes after relabeling dataset: (a) metal; (b) cardboard;  
(c) trash; (d) glass; (e) plastic cup; (f) plastic; (g) paper; (h) plastic bottle. 

H. Experimental Setup  

The simulations were conducted on different hardware 
setups to ensure robustness and versatility. The hardware 
configurations included a MacBook Pro M2 Pro with 16 GB 
of RAM and Colab Pro, which employed the GPU T4 with 

12.5 GB of RAM. The simulations were executed efficiently 
using the TensorFlow library. 

Our experimental setup was designed to encompass critical 
steps in alignment with the specified methodology. Initially, 
all input images were uniformly resized to a dimension of 
224x224 pixels, accounting for the RGB channels. 
Subsequently, the dataset was partitioned into a training set 
(70%) and a testing set (30%) to facilitate feature extraction 
and evaluation. As outlined in the previous survey study, a 
series of preprocessing techniques were meticulously applied 
to prepare the data for analysis. The experimental setup 
unfolded in two distinct phases to investigate dry waste 
classification comprehensively: 

1) Phase 1 - Transfer Learning: We employed transfer 
learning techniques using the EfficientNet and CNN models 
in the initial phase. Specifically, we leveraged a pre-trained 
EfficientNet-CNN model, retaining the deep architecture's 
parameters to extract features from the average pooling layer. 
Simultaneously, feature extraction was executed on the CNN 
model, focusing exclusively on the convolutional layers. The 
extracted features from both sources were thoughtfully 
concatenated and subsequently subjected to classification 
using a fully connected layer. 

2) Phase 2 - Feature Extraction and PCA Reduction: 

The second phase of our survey study aimed to enhance 
classification performance through feature extraction and 
dimensionality reduction via Principal Component Analysis 
(PCA). For feature extraction, we harnessed two distinct 
layers from the EfficientNet-CNN model. One layer 
consistently represented the average pooling layer, while the 
other layer corresponded to the convolutional layer within the 
EfficientNet-CNN model. The selection of these specific 
layers and networks was informed by insights gained from the 
initial simulations. 

To facilitate the seamless integration of features, we 
applied PCA transformation to the features extracted from the 
convolutional layer. This transformation reduced their 
dimensionality while preserving critical information. 
Subsequently, we normalized the average pooling and PCA-
derived features to ensure fair comparison and compatibility. 
These normalized features were then effectively concatenated 
into a unified representation. Classification was performed 
using a fully connected layer to ascertain the class labels. 

This comprehensive experimental framework 
encompassed a spectrum of essential steps for dry waste 
classification. These steps included image resizing, dataset 
partitioning, transfer learning, feature extraction from 
different layers, dimensionality reduction via PCA, and fine-
tuning hyperparameters. This rigorous approach ensured the 
robustness and effectiveness of our classification model. 

I. Performance Parameter 

True positive (TP) refers to the number of images correctly 
classified in a specific class in the evaluation parameter. False 
positive (FP) indicates the number of images incorrectly 
classified as belonging to a particular class when they are not. 
False negative (FN) represents the number of images that are 
mistakenly recognized as belonging to another class when 
they should have been assigned to the specified class. True 
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negative (TN) signifies the number of images that do not 
belong to a class and were correctly not assigned to that class. 
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III. RESULTS AND DISCUSSION 

A. Classification based on Extracted Features from Transfer 

Learning EfficientNetB3-CNN 

As described in the experimental setup, the first scenario 
focuses on classification using features extracted from the 
transfer learning model, EfficientNetB3-CNN. We 
anticipated that features extracted from this architecture 
would yield high accuracy. The evaluation results of this 
scenario are depicted in Figure 6 (training and validation 
visualization of EfficientNetB3 avg_pool layer) and Figure 7 
(training and validation visualization of EfficientNetB3-CNN 
last conv layer). Further insights into performance are 
provided in Table II, summarizing classification accuracy. 

 

 
Fig. 6  Training and Validation Visualization of EfficientNetB3 (avg_pool layer extraction) 

 
Fig. 7  Training and Validation Visualization of EfficientNetB3-CNN (last conv layer extraction) 

 

628



TABLE II 
MODEL PERFORMANCE COMPARISON OF SCENARIO 1 

Method Accuracy 

EfficientNetB3 (avg_pool layer) 92.59% 

EfficientNetB3-CNN (last conv layer) 98.15% 

 

Accompanying these results are confusion matrices, 
providing visual representations of classification outcomes 
for both methods. The confusion matrix for feature extraction 
using EfficientNetB3 (avg_pool layer) is shown in Figure 8, 
while the confusion matrix for EfficientNetB3-CNN (last 
conv layer) is presented in Figure 9. These matrices enable an 
in-depth assessment of classification accuracy across different 
waste categories. 

 
Fig. 8  Confusion Matrix for Feature Extraction using EfficientNetB3 (avg_pool layer) 

 
Fig. 9  Confusion Matrix for EfficientNet-CNN (last conv layer) 

 
Upon careful analysis of this scenario, it is evident that 

feature extraction using the EfficientNetB3-CNN architecture 
has performed remarkably well. However, this approach 
relies more heavily on features extracted from the CNN's 
convolutional layers than those from the average pooling 

layers. These findings have provided insights for our second 
scenario. In scenario 2, we will still extract features as in the 
first scenario. However, considering the significant impact of 
the convolutional layers on accuracy, we will perform feature 
transformation or reduction using PCA on the convolutional 
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layers of the EfficientNetB3-CNN. Additionally, we will 
combine the reduced features obtained through PCA with the 
average pooling layers from the pre-trained EfficientNetB3-
CNN. By adopting this approach in the second scenario, we 
aim to improve the classification performance. 

B. Classification based on Concatenated Features with 

PCA Transformation 

In the second scenario, we present the outcomes of a 
technique that involves the classification of features obtained 
by combining the average pooling layer features with the 
convolutional layer features reduced by PCA, similar to the 
approach used in the first scenario. During the PCA 

decomposition, we retained the components that account for 
95% of the variance. The objective of attaining 95% variance 
is to balance the available features. To assess the classification 
accuracy of this technique, we compare it with the 
classification accuracy achieved in our experiments. 

Figure 10 illustrates the training and validation 
visualization for combining the EfficientNetB3-CNN average 
pooling layer with the last convolutional layer. The obtained 
classification accuracy for this approach is 98.84%. 
Additionally, Figure 11 showcases the training and validation 
visualization for the combination of EfficientNetB3-CNN 
average pooling layer with the last convolutional layer after 
applying PCA for dimensionality reduction. 

 

 
Fig. 10  Training and validation visualization for EfficientNetB3-CNN average pooling layer concatenated with the last convolutional layer 

 

 
Fig. 11  Training and validation visualization for EfficientNetB3-CNN average pooling layer concatenated with the last convolutional layer after applying PCA 
for dimensionality reduction 
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The classification accuracy achieved with this approach is 
99.54%. The comparison between these two approaches 
allows us to assess the effectiveness of incorporating PCA in 
improving the classification accuracy of dry waste categories. 
The performance of different techniques is showcased in 
Table III, which represents the performance of the feature 
concatenation technique. The confusion matrix corresponding 
to the classification results obtained from the concatenated 
features is presented in Figure 12 and Figure 13.  

TABLE III 
MODEL PERFORMANCE COMPARISON OF SCENARIO 2 

Method Accuracy 

EffecientNetB3 project_conv layer (PCA) + 

EfficientNetB3-CNN avg_pool layer 
98.84% 

EffecientNetB3 avg_pool layer + 

EfficientNetB3-CNN last_conv layer (PCA) 
99.07% 

 

 
Fig. 12  Confusion matrix from the concatenated features of EfficientNetB3 project_conv (PCA) and avg_pool EfficientNetB3-CNN 

 
Fig. 13  Confusion matrix from the concatenated features of EfficientNetB3 avg_pool and last_conv of EfficientNetB3-CNN (PCA) 

 
These evaluations provide insights into the technique's 

effectiveness that combines the average pooling layer with the 
features reduced by PCA. The second scenario presents a 
comprehensive analysis of the technique that combines the 

average pooling layer with PCA-reduced features from the 
convolutional layers. Through this approach, we aim to 
exploit the unique characteristics of both the average pooling 
layer and the PCA-reduced features to improve the 
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classification accuracy of the proposed method for dry waste 
classification.  

The evaluation results provide valuable insights into the 
effectiveness of this technique and offer a detailed 
comparison with the achieved classification accuracy. The 
confusion matrix, along with the accompanying 
visualizations, presents a comprehensive overview of the 
classification performance, showcasing the ability of the 
technique to accurately classify different types of dry waste. 
The confusion matrix allows us to analyze the true positive, 
true negative, false positive, and false negative predictions, 
enabling a deeper understanding of the model's performance. 

By leveraging the strengths of the average pooling layer, 
which captures global information, and the PCA-reduced 
features, which represent the most informative aspects of 
convolutional layers, our approach demonstrates significant 
improvements in the classification accuracy. The combination 
of these features allows for a more robust and comprehensive 
representation of the dry waste images, enabling the model to 
capture both local and global patterns effectively. 

Furthermore, the utilization of dimensionality reduction 
through PCA helps to overcome the curse of dimensionality 
by reducing the feature space while retaining most of the 
important variance in the data. This reduction not only 
improves the efficiency of the classification process but also 
helps to mitigate the risk of overfitting, resulting in a more 
generalized and reliable model. 

Overall, the findings from the second scenario highlight the 
effectiveness of combining the average pooling layer and 
PCA-reduced features in enhancing the classification 
accuracy for dry waste classification. This approach 
demonstrates the potential of leveraging advanced techniques 
in feature extraction and dimensionality reduction to optimize 
the performance of classification models in challenging tasks. 
The confusion matrix and visualizations provide a 
comprehensive understanding of the effectiveness of this 
approach in enhancing classification accuracy in our proposed 
method. 

C. Result Comparison 

The evaluation and comparison of the proposed model 
system, which combines PCA dimensionality reduction and 
feature extraction from pre-trained EfficientNetB3-CNN, 
against the state-of-the-art waste classification system are 
presented in Table III. The table showcases the performance 
accuracy of both systems. The results demonstrate that the 
proposed model system outperforms the state-of-the-art 
system, achieving higher accuracy and overall performance. 
This highlights the effectiveness of the combined approach of 
PCA and feature extraction from pre-trained EfficientNetB3-
CNN in improving the classification accuracy and 
performance of the waste classification system. The 
comparison in Table III emphasizes the superior performance 
of the proposed model system, validating its potential as an 
advanced solution in waste classification.

TABLE IV 
EVALUATION COMPARISON RESULTS OF THE PROPOSED MODEL SYSTEM AND STATE-OF-THE-ART WASTE CLASSIFICATION SYSTEM 

No Reference Feature Extraction Approach Classifier Dataset 
Accuracy 

(%) 

1 [26] 
Classification of Waste using BoF and PCA for 
feature extraction 

LR 
KNN 
SVM 

TrashNet 
78%  67% 
77%  72% 
81%  84% 

2 [27] 
Classification of Waste using SIFT and PCA for 
feature extraction 

SVM TrashNet 62% 

3 [28] Deep features extraction of MLH-CNN CNN TrashNet 92% 

4 [29] 
CNN 
LeNet-5 
VGG16 

CNN 
LeNet-5 
VGG16 

Huawei Garbage 
Classification Data 

90.12% 
90.39% 
92.56% 

5 [30] 
Image Segmentation using PSPNet and GLCM for 
feature extraction 

SVM TrashNet 76.49% 

6 [8] MobileNetV2 MobileNetV2 Trash Classification 82.92% 

7 [31] 
The feature was extracted by PCA in MobileNetV2 
Architectures 

N/A 
Huawei Garbage 
Classification Data 

90.7% 

8 [23] Deep feature extraction using MobileNetV2 SVM TrashNet 98.4% 

9 [32] 
Deep feature extraction using ResNext and DCA 
for feature fusion 

N/A TrashNet 97.81% 

10 [33] 
ResNet-50 
VGG-19 
XBoost 

ResNet-50 
VGG-19 
XBoost 

Taco Dataset 
86% 
86.4% 
69% 

11 [34] Deep feature extraction using pre-trained model ELM TrashNet 93.97% 

12 
Proposed 

Model 

Feature extraction from EfficientNetB3-CNN 

and PCA for dimensional reduction 
CNN TrashNet 99.07% 

D. Discussion 

Our research introduces innovative approaches to waste 
classification that set it apart in the field. Notably, we combine 
feature extraction from convolutional layers with Principal 

Component Analysis (PCA) dimensionality reduction, 
resulting in improved accuracy in waste classification. Our 
model surpasses existing methods, including a state-of-the-art 
system, in terms of accuracy, making a substantial 
contribution to resolving the current challenge of accurate 
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waste classification. The utilization of PCA for 
dimensionality reduction not only enhances accuracy but also 
addresses the challenge of handling high-dimensional data 
often encountered in image classification tasks. Furthermore, 
our research ensures balanced feature utilization by 
harnessing the strengths of both the average pooling layer and 
PCA-reduced features, capturing both local and global 
patterns in waste images. This approach not only improves 
efficiency but also generalizes the model, making it 
applicable to a broader range of waste classification scenarios. 
The potential impact of our research extends to waste 
management and recycling efforts, as improved accuracy in 
waste classification can lead to better waste sorting practices, 
reduced contamination, and more effective recycling 
processes. Looking ahead, our work opens up avenues for 
applying our model to larger and more diverse waste datasets 
and exploring various hyperparameter settings to further 
optimize performance. 

IV. CONCLUSION 

In this study, we introduced an innovative approach to 
waste classification by combining feature extraction from 
convolutional layers with Principal Component Analysis 
(PCA) dimensionality reduction. Our model, integrating PCA 
and feature extraction from pre-trained EfficientNet-CNN, 
exhibited superior performance with an accuracy of 99.54% 
on the TrashNet dataset. This surpasses contemporary waste 
classification models, highlighting the efficacy of our 
combined approach. 

Discrepancies in accuracy among studies may stem from 
variations in feature extraction techniques and model 
architectures. Prior research often relied solely on PCA for 
feature extraction, utilizing a single layer that might be less 
effective in capturing intricate patterns in waste images. 

Acknowledging our study's limitations, particularly its 
generalization to different waste types and settings, is crucial. 
Results should be interpreted considering these limitations. 
Therefore, testing the model's performance in real-world 
situations and identifying practical implementation 
challenges is essential. 

Our research offers substantial potential for future 
exploration by encouraging performance evaluations on more 
extensive, diverse waste datasets and assessing adaptability 
across various waste categories. Research recommendations 
involve exploring different hyperparameter settings to refine 
the model's performance. 

Our model system holds promise for extension to other 
related tasks, including sorting and identifying specific waste 
materials. Exploration of advanced techniques, such as deep 
reinforcement learning and attention mechanisms, is desired 
further to enhance the model's capabilities in waste 
classification. 
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