
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Distributed Aerial Image Stitching on Multiple Processors Using

Message Passing Interface

Alif Wicaksana Ramadhan a, Fira Aulia a, Ni Made Lintang Asvini Dewi a, Idris Winarno b,*,

Sritrusta Sukaridhoto b

a Electrical Engineering Department, Politeknik Elektronika Negeri Surabaya, Jl. Raya ITS, Surabaya, 60111, Indonesia
b Information and Computer Engineering Department, Politeknik Elektronika Negeri Surabaya, Jl. Raya ITS, Surabaya, 60111, Indonesia

Corresponding author: *idris@pens.ac.id

Abstract—This study investigates the potential of using Message Passing Interface (MPI) parallelization to enhance the speed of the

image stitching process. The image stitching process involves combining multiple images to create a seamless panoramic view. This

research explores the potential benefits of segmenting photos into distributed tasks among several identical processor nodes to expedite

the stitching process. However, it is crucial to consider that increasing the number of nodes may introduce a trade-off between the speed

and quality of the stitching process. The initial experiments were conducted without MPI, resulting in a stitching time of 1506.63

seconds. Subsequently, the researchers employed MPI parallelization on two computer nodes, which reduced the stitching time to 624

seconds. Further improvement was observed when four computer nodes were used, resulting in a stitching time of 346.8 seconds. These

findings highlight the potential benefits of MPI parallelization for image stitching tasks. The reduced stitching time achieved through

parallelization demonstrates the ability to accelerate the overall stitching process. However, it is essential to carefully consider the trade-

off between speed and quality when determining the optimal number of nodes to employ. By effectively distributing the workload across

multiple nodes, researchers and practitioners can take advantage of the parallel processing capabilities offered by MPI to expedite

image stitching tasks. Future studies could explore additional optimization techniques and evaluate the impact on speed and quality to

achieve an optimal balance in real-world applications.

Keywords— MPI parallelization; image stitching; distributed tasks; parallel processing; optimization techniques.

Manuscript received 19 Jun. 2022; revised 4 Jul. 2023; accepted 23 Oct. 2023. Date of publication 31 Mar. 2024.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Image stitching is a process in which multiple images are

seamlessly combined to create a single, larger image. This

technique has become increasingly popular in recent years,

particularly in photography, where it allows for creating

panoramic shots and other wide-angle views. Image stitching

combines several images in the same scene into a single, high-
resolution panoramic image. Image stitching requires the

closest resemblance or match between overlapping images

and identical exposures to produce a seamless image [1].

Stitching algorithms have recently been applied in many

fields, particularly photography, creating wide field-of-view

(FOV) videos for surveillance and assisting automobiles [2].

Image stitching can be very helpful in many aspects. In the

microscopic image area, Boyuan et al. [3] create large

panoramas of tiny structure images to get the characteristics

information of a material, and Kaiyue et al. [4] produce

microscopic images of ceramic structures to get scientific data.

In health areas, image stitching can combine pictures of

deformity surgery to get exclusive photos of a person’s spinal

image [5] or hyperspectral imaging [6]. In industrial areas,

image stitching can assist inspection processes [7], [8]. More

promising, in aerial monitories and mapping systems, Image

stitching is also applicable. In [9] and [10], image stitching

has been implemented to create a large-scale image of a

farmland area.

There are many types of approaches to image stitching.

One of the famous approaches is feature-based image
stitching. The feature-based method establishes

correspondences between points, lines, edges, corners, or

other geometric entities [1]. Image stitching can be a very

lightweight task or vice versa, depending on the case. The

process can be very long for large-scale image stitching

because of the surplus of the data processed. There are many

approaches to improve the speed of the stitching process

409

JOIV : Int. J. Inform. Visualization, 8(1) - March 2024 409-416

based on the algorithm. One of the faster stitching approaches

is using a GPS sensor [11]. GPS helps predict the feature point

location to shorten the matching process and improve the

results' accuracy. An iterative optimization approach is used

to construct the transformation matrix between keyframes.

According to experiments, the suggested technique

outperforms the RANSAC algorithm [12] under the same

feature regarding matching outcomes and computing time

where 3–4 frames per second are the typical frame rate.

Problems facing low speed and low accuracy are often
experienced at the feature extraction stage of aerial images.

Another proposed method is to process aerial image mosaics

to obtain fast and accurate image stitching results [13]. This

study uses an improved method based on ORB features due

to its calculation speed. The work process is carried out in four

stages:

1. Comparing the performance and speed of ORB to the

other algorithms.

2. Setting up thresholding based on descriptor similarity

to produce fast and robust feature matching.

3. Using a progressive LMedS & LS algorithm to
eliminate spurious matches.

4. Using a multi-band fusion algorithm to fuse the

matched images and realize a panoramic mosaic.

5. The results show that the method used can increase the

efficiency of the captured images while ensuring the

stitching effect and reducing cumulative errors.

Another research combined two methods for better image

stitching performance [14]. Those methods are the FAST-

Tomasi feature, an efficient method for detecting corners in

an image by computing the smallest eigenvalue of the

gradient covariance matrix at each pixel, and Delaunay
triangulation, a computational geometry technique that is used

to triangulate a set of points in a 2D plane or 3D space. Utilize

the updated shape-preserving half-projective (SPHP) method

for registration after using the FAST-Tomasi algorithm for

feature recognition to get feature points rapidly and accurately.

Next, use Hamming distance for rough matching before

swiftly removing duplicate and incorrectly matched points

with Delaunay triangulation. Final experimental findings

demonstrate the stability and speed of the feature points

retrieved using the method in this work. Matching accuracy

and matching efficiency have significantly increased because

of the Delaunay triangulation feature point elimination
technique.

Another faster and more efficient approach has been

implemented for large-scale aerial image stitching [15]. This

research improves the stitching performance by optimizing

the size of overlapping areas of each image, so the images that

will stitch are manageable. The optimization is done by

utilizing an adaptive selection of the image set. The

overlapping areas estimation also improves the feature

detection and matching process. It determines whether it is

necessary or not to do feature detection and matching. This

research tested and compared the proposed method to other
stitching software. The processing time for the suggested

approach grows linearly, but the processing time for different

methods, particularly for Pix4d, Hugin, and Photoshop,

climbs considerably. To ensure a fair comparison, the pre-

processing time of the suggested procedure is also included.

The total processing time of the suggested technique is 67.1,

106.5, and 135.7 (seconds), respectively, for stitching 100,

150, and 200 photos with a resolution of 5472 x 3648.

Many methods are approached to handle the rising demand

for high-performance computation, and one of those is by

implementing parallel processing. The incredible

improvement in single-processor performance resulted from

integrated circuits using transistors as electronic switches in

ever-higher densities. Transistors' speeds can be raised as

their sizes shrink, which also speeds up the integrated circuit.

Nevertheless, as transistors in the embedded chip/CPU speed
grow, so does the energy they use. Most of this power is lost

as heat, and an integrated circuit loses reliability if it becomes

too hot [16]. Due to the mentioned problems, parallel

processing is the solution. The industry has combined several

simple, full processors on a single chip rather than creating

ever-faster, more sophisticated, monolithic CPUs [17].

One of the numerous approaches to using parallel

processing is implementing a message-passing interface (MPI)

[18]. MPI is used to create message-based parallel

programming. It is extensively utilized in applications for

high-performance computing and allows communication
between computers to complete a task over a network.

Implementing MPI provides a unique approach to building

software with a specific function. A wide range of hardware

and software platforms support it. MPI concepts utilize

communicators, data types, point-to-point communication

and collective communication [19].

Many tasks, including big data processing, have been

implemented using MPI-based parallel processing [20]. In

contrast to the ones now in use, a unique approach to

extensive data processing and management was put forth in

this work. The suggested strategy leverages memory space for
reading and handling vast data and memory-mapped extended

memory storage. From a methodological perspective, this

study is new in that it uses memory mapping to massive

partition data and then uses a parallel message-passing

interface to broadcast all segments to various processors.

From an application perspective, the study provides a high-

performance method based on a homogeneous network that

encrypts and decrypts massive data using the Advanced

Encryption Standard (AES) algorithm while operating in

parallel.

Jiang et al. have used MPI in the robotics industry to

improve the issue of the communication bottleneck in ROS2
[21]. They proposed an innovative method, the adaptive two-

layer serialization algorithm, which can effectively

communicate various messages. According to experimental

findings, our algorithm can significantly outperform

conventional techniques in ROS2 by up to 93% when using

our framework. Another MPI implementation is optimizing

the clustering process using K-Means [22]. In terms of

overhead costs and execution, the performance of the K-

means method for clustering the data is studied in this work

between the sequential run and the parallel run in the design

of message-passing interfaces.
Fajrianti et al. [23] discuss several scenarios of applying

CUDA and MPI to train the 14.04 GB corn leaf disease

dataset—the use of CUDA and MPI in the image pre-

processing process in their research. The results of the pre-

processing image accuracy are 83.37%, while the precision

value is 86.18%. In pre-processing using MPI, the load

410

distribution process occurs on each enslaved person, from

loading the image to cutting the image to get the features

carried out in parallel. The resulting features are combined

with the master for linear regression. In the use of CPU and

Hybrid without adding MPI, there is a difference of 2 minutes.

Moreover, in the usage between CPU MPI and GPU MPI,

there is a difference of 1 minute. The result demonstrates that

implementing accelerated and parallel communications can

streamline the processing of data sets and save computational

costs. In this case, using MPI and GPU positively influences
the proposed system.

In this research, we proposed implementing MPI to improve

the process of aerial image stitching. We used the MPI tool,

LAM/MPI, to create the environment because of its high

performance, free availability, and open source [24]. It was

researched, developed, and maintained at the Open Systems

Lab at Indiana University. Due to its stability and availability,

we also used a DJI drone to take aerial pictures. The rest of

this paper is organized as follows, the designs and methods of

the system and the method of approach are described in

Section II. Section III includes the experiment's setup, results,
and discussion. Finally, we conclude our study in Section IV.

II. MATERIALS AND METHOD

This section shows the system design, topologies, data and

server preparation. In this research, we implement parallel

processing using MPI for aerial large-scale image stitching.

The area of our university, Politeknik Elektronika Negeri

Surabaya (PENS), is chosen for the stitching area. Raw

images are obtained using drones that are flown over the
university area.

A. Data Collection

Using a DJI drone, the raw images were collected

autonomously. A DJI drone equipped for autonomous

mapping typically includes a high-resolution camera and

software that enables the drone to fly a pre-planned flight path

while taking images. The specifications of the camera used,

which is Hasselblad, can be seen in Table I.

TABLE I

CAMERA SPECIFICATIONS

No Items Specifications

1 Camera Hasselblad 11d-20c
2 Sensor size 20MP 1”
3 Storage FOV 77° (28 mm) f/2.2

In order to navigate and maintain its position to follow the

pre-planned flight path while in flight, the drone would also

usually have a GPS receiver and sensors such as an Inertial

Measurement Unit (IMU) and a barometer. Figure 1 shows

the pre-planned flight path while taking images. The drone

was flying at the height of 110 meters, with the size of area

332 x 205 meters2. The approximated total time taken from

the data collection process was about 25 minutes.

During the data acquisition process, overlapping is
required to help overcome problems such as shadows,

reflections, and noise that can occur in drone images taken

with a flat perspective. With sufficient overlapping, image

processing software can combine information from each

image to produce sharper and more detailed images, as well

as improve the quality of data measurement and analysis. In

this research, the applied overlapping is 75%-80%.

Fig. 1 Image capture route planning

B. MPI (Message Passing Interface)

The Message Passing Interface (MPI) is a key component

in managing tasks on multiprocessor computers. A common

standard communication mechanism called MPI makes it

easier for numerous processes operating on various

distributed system threads to send messages to one another.

Utilizing multiple processing capacities enables programmers
to build parallel applications that can quickly handle massive

databases and carry out intricate calculations.

One of the freely available standard implementations of

MPI is LAM. Since its inception in 1989, the LAM project

has developed into a mature code base that is feature-rich and

effective in its implementation, providing MPI users and

developers with high performance and convenience [25]. The

utilization of LAM/MPI has given the system the ability to

perform multiple tasks. However, the tasks are limited to one

computer. In order to make the LAM/MPI run on a cluster

network with multiple computers as nodes, the Network File
System (NFS) is used [24]. NFS allows a computer to share

its folder with another in a network cluster. After the

LAM/MPI is installed and configured on all the computers

that are members of NFS, the LAM/MPI will recognize the

computers as nodes. The LAM/MPI and the NFS setup is

shown in Figure 2.

C. Image Stitching

A preprocessing step was performed to prepare the dataset

for image stitching to eliminate unwanted noise or artifacts.
The method used to handle this is contrast enhancement or

histogram equalization, a technique used to improve an

image's contrast by adjusting the pixels' intensity levels. It

works by redistributing the pixel values in the image so that

they cover a more comprehensive range of intensities. Some

histogram equalization implementation has proven their

ability to improve image quality [26]–[28]. The equation of

histogram equalization is shown as follows.

(1)

(2)

411

Fig. 2 Local design of MPI architecture for 2D stitching

with is the x-axis index of the selected pixel, and is the

y-axis index of the selected pixel. is the equalized value of

, and is the equalized value of . and is the

index of the pixel with minimum value from the entire image.

After the image is enhanced with histogram equalization,

the next step is to get the feature points of each image. A

prevalent method, SIFT, is used for this task. SIFT is a feature

extraction technique used in computer vision for detecting and

describing local features in images. David Lowe developed it
in 1999 [29]. It has become a popular feature-based image-

matching and recognition method [1], [5], [9]. Four stages are

mainly involved in SIFT feature detection: scale-space

extreme value detection, key point placement, key point

direction determination, and feature descriptor construction

[5].

1) Scale-space extreme value detection: A method for

locating essential characteristics like borders and angles when

a picture is blurred to varying degrees. The method finds

regions of the picture where the image changes noticeably by

blurring it with a Gaussian filter at various blur levels and

comparing pixel values.

2) Key point placement: Finding important areas in an

image that are stable under different levels of blurring. These

areas are selected based on their contrast and presence of local

extrema in the Difference-of-Gaussian function. Key points

are used to create descriptors that encode the characteristics

of the feature at that location. These descriptors can be used

for matching and recognition.

3) Key point direction determination: Giving each

important area of a picture a direction. A histogram of

gradient orientations is constructed to achieve this. Gradient

orientation is assigned based on the apex in the histogram, and
the gradient magnitudes and orientations around the key point

are examined. If there are several summits, various angles

might be given. A rotation-invariant description is made using

alignment.

4) Feature descriptor construction: A local picture

patch's gradient orientations and magnitudes are captured in a

128-dimensional vector by making this vector around a focal

point. A histogram of gradient directions is created for each

subregion from the picture patch. The feature description,

invariant to translation, rotation, and scaling, is made by

joining the resulting histograms.

As shown in Figure 3, a key point descriptor is produced

by first calculating gradient amplitude and orientation at each

image sample point near the key point. These are given weight

by a Gaussian window, depicted by circular overlaid. These

examples are combined into orientation histograms that

summarize the contents over 4x4 subregions. Each arrow's

length is determined by adding gradient magnitudes in the

area close to that direction.

Fig. 3 SIFT descriptor generation [30]

The next step is featuring matching. Using the nearest

neighbor approach, a popular feature matching method, each
image feature will be matched with the other image. The result

of this step is pairs of matched features. From those pairs of

matched features, a homograph matrix is acquired. A

homograph matrix is a 3x3 transformation matrix that maps

points from one plane to another. The homograph matrix can

transform one image to match the other after it has been

estimated. It is frequently applied when stitching together

multiple images to create a panoramic view [1], [2], [6].

D. Stitching Scenarios

Three topologies configuration has been defined to

discover the scale-up factor of implementing the MPI in

stitching processes. The three topologies are shown in Fig. 4,

Fig. 5, and Fig. 6, respectively. The first stitching test is

412

processed using a single computer without using MPI shown

in Figure 4. This test is carried out to discover the required

processing time for the stitching process if MPI is not used.

All the images are directly stitched with only one routine in

one processor.

Fig. 4 Stitching Topology on single Processor (without MPI)

Figure 5 shows the topology of the stitching process using

MPI with two processors parallelly called nodes. The node

master is located on the first computer (first node). The node

master is intended to store data that must be worked on during

the image stitching. The obtained images will be divided

according to the number of existing nodes with several

additional overlapping images to keep the features point.

After the image stitching process at each node has been

completed, the stitched image results will be combined again

with the final image stitching process to get the final stitching

result.

Another image stitching test scenario is carried out to get

the scale-up factor of MPI implementation in the image

stitching task. It is shown in Figure 6, where there are four

computer nodes. The node master is located at the first node

working to divide work on other nodes. After that, the stitched

image results from the four nodes will be combined at the

node master to get the final stitched image result. The

stitching process that was carried out would be tested for their
speed performance, and each compared to the results obtained.

To implement MPI in the image stitching processes, a python

package, mpi4py [31]. The mpi4py package has developed to

become the most popular Python binding for the MPI (MPI).

III. RESULTS AND DISCUSSION

This section will show and discuss the results of the

experiments. To implement parallel processing, we need more
than 1 CPU processor. In this research, we created four virtual

machine server computers hosted in the cloud from the

university. Each used computer has the same specifications

that are shown in Table II.

Fig. 5 Stitching topology using 2 processors.

Fig. 6 Stitching topology using 4 processors.

413

TABLE II

COMPUTER SPECIFICATIONS EACH NODE

No Items Specifications

1 Processor Intel(R) Xeon(R) CPU E5-
2650 v2 @2.30 GHz

2 RAM 16 GB
3 Storage 20 GB

We obtained 86 images from the data collection process

using DJI Drone, which we explained in section IIA, which

took about 25 minutes. The total time taken from the data

collection process was about 25 minutes. The data was then

processed for the image stitching tests using several scenarios.

The designed scenarios for image stitching are:

1. Without MPI, as shown in Figures 4.

2. Using MPI with two computer nodes, as shown in

Figures 5.
3. Using MPI with four computer nodes, as shown in

Figures 6.

Multiple image stitching scenarios were designed to get the

time reduction of the image stitching processes and the scale-

up factor for using more than two computer servers. The

processing time in this research may also be

reduced exponentially in proportion to the number of nodes

employed. To verify the hypothesis, we propose several

configurations of the number of nodes, which are 1, 2, and 4

nodes. Timestamps were recorded during the image stitching

process to get the time of the image stitching process. The test
parameter is only focused on observing the time because this

research was aimed at reducing processing time while do

image stitching using MPI. The result from the image

stitching processes can be seen in Figures 7, 8, and 9,

respectively.

Fig. 7 Proceeded time needed for image stitching without MPI

There were only two phases when not using MPI, shown in

Figure 7: the image loading phase and the image stitching

phase. The time required to load 86 images is 35.7 seconds,

while the time required to carry out the stitching process is

1506.63 seconds or about 25.1 minutes.

When using MPI, there were four phases: image loading

phase, partial stitching phase, idle phase, and final stitching

phase. The images are split into the number of used computer

nodes with overlapping of five images to keep the overlapping

features for the stitching process in the final stage. The

number of overlapped images is eight images in these tests.

The result from the image stitching process with MPI using
two computer nodes shows that it needed 20 seconds to load

images, with 47 images in each node. The partial image

stitching process took 434.4 seconds in the first node and 561

seconds in the others.

Fig. 8 Proceeded time needed for image stitching using MPI 2 node

When one node finishes the job faster than the others, it

will be in the idle phase and wait for the next job. Then, for

the final image stitching process, the node master (node 1)

collects the stitched image from the other node and processes

the final stitching phase. It took 624 seconds. A vast time

reduction in the image stitching process has been obtained

when image stitching runs with MPI, with a reduction of

881.63 seconds.

Fig. 9 Proceeded time needed for image stitching using MPI 4 nodes

Considering the time reduction from non-MPI image

stitching to 2-node MPI image stitching, we expected to get

more reduction in time. Figure 9 shows the test result from the

4-node MPI image stitching scenario. It only took about 15.35

seconds for each node at the same time. The partial stitching

phase took variational time, 252.6 seconds for node 1, 242.34
seconds for node 2, 136.87 seconds for node 3, and 246.87 for

node 4. The required final stitching process is 94.2 seconds,

which takes longer compared to MPI 2 nodes. Those results

were caused by increased stitched images from the partial

stitching phase that need to be stitched in the final stitching

phase to produce the final result.
Figure 10 shows the relation between the number of nodes

and the image stitching time. The image stitching process has

significant improvement in time from the first scenario to the

second scenario. However, in contrast to what we had

414

expected, we found that the time decrements are not linear

after testing the image-stitching processes with three

scenarios. These unexpected results could be due to several

factors. When the number of nodes increases, overlapping

images also increase more than the number of nodes. These

overlapping images must have burdened the partial image

stitching processes. These findings have important

implications for developing the implementation of MPI for

image stitching tasks.

Furthermore, the number of MPI nodes also affects the
result of the stitched image. Figure 11 shows the stitched

image result from each scenario. Of course, there are

drawbacks in every stitching process produced both using

Non-MPI and MPI. Even though the non-MPI stitching

process takes longer, the final results obtained are clearer

when compared to stitching using MPI. The more MPI nodes

used, the less clear and less accurate as shown in Figure 11.

Fig. 10 Proceeded time needed for image stitching using MPI 4 nodes

(a) Non-MPI

(b) MPI 2 nodes

(c) MPI 4 nodes

Fig. 11 Final result

IV. CONCLUSION

In this study, we have investigated the effectiveness of MPI

used in the stitching process. MPI can boost up the time

needed for stitching processes by dividing the task into

several nodes. We conducted this analysis by running a

stitching process on MPI with two and four nodes and

compared the results with non-MPI stitching process. The
results show that the total time needed for stitching without

MPI was 1506.63 seconds. For MPI with two computer nodes,

it took 624 seconds, and it took 346.8 seconds for MPI with

four computer nodes. In conclusion, the higher number of

nodes that were used, the faster the stitching process can be.

However, there is a disadvantage as more MPI nodes are used.

Stitching results are becoming less accurate compared to

stitching non-MPI. This is due to the lack of detected features

due to the reduced capture area because the image is divided

into several nodes.

Our results suggest that further research is needed to
determine the optimal value of the number of nodes and the

number of overlapping images that may have contributed to

the unexpected results. In addition, MPI can be applied to 3D

stitching, which takes longer time to process than 2D stitching

[32].

ACKNOWLEDGMENT

We would like to express our deep appreciation to P3M

PENS (Pusat Penelitian dan Pengabdian Masyarakat) for their

generous funding, which has played a pivotal role in

supporting this research project. Their commitment to

advancing scientific knowledge in this research area has

enabled us to make significant progress and achieve important

milestones in our work. We are profoundly grateful for their

invaluable support, which has been instrumental in advancing

our research endeavors.

REFERENCES

[1] E. Adel, M. Elmogy, and H. Elbakry, “Image stitching based on feature

extraction techniques: a survey,” International Journal of Computer

Applications, vol. 99, no. 6, pp. 1–8, 2014.

[2] W. LYU, Z. ZHOU, L. CHEN, and Y. ZHOU, “A survey on image

and video stitching,” Virtual Reality & Intelligent Hardware, vol.

1, no. 1, pp. 55–83, Feb. 2019, doi: 10.3724/sp.j.2096-5796.2018.0008.

[3] B. Ma et al., “A fast algorithm for material image sequential stitching,”

Computational Materials Science, vol. 158, pp. 1–13, Feb. 2019,

doi:10.1016/j.commatsci.2018.10.044.

[4] K. Li and G. Ding, “A Novel Automatic Image Stitching Algorithm

for Ceramic Microscopic Images,” 2018 International Conference on

Audio, Language and Image Processing (ICALIP), Jul. 2018,

doi:10.1109/icalip.2018.8455766.

[5] X. Li et al., “Full length image stitching algorithm for spinal deformity

surgery,” Procedia Computer Science, vol. 209, pp. 93–102, 2022,

doi:10.1016/j.procs.2022.10.103.

[6] R. Xie et al., “Automatic multi-image stitching for concrete bridge

inspection by combining point and line features,” Automation in

Construction, vol. 90, pp. 265–280, Jun. 2018,

doi:10.1016/j.autcon.2018.02.021.

[7] G. Rosa et al., “Hyperspectral Images Acquisition: an Efficient

Capture and Processing Stitching Procedure for Medical

Environments,” 2020 XXXV Conference on Design of Circuits and

415

Integrated Systems (DCIS), Nov. 2020,

doi:10.1109/dcis51330.2020.9268658.

[8] S. Wang, C. Liu, and Y. Zhang, “Fully convolution network

architecture for steel-beam crack detection in fast-stitching images,”

Mechanical Systems and Signal Processing, vol. 165, p. 108377, Feb.

2022, doi: 10.1016/j.ymssp.2021.108377.

[9] Y. Liu, M. He, Y. Wang, Y. Sun, and X. Gao, “Farmland Aerial

Images Fast-Stitching Method and Application Based on Improved

SIFT Algorithm,” IEEE Access, vol. 10, pp. 95411–95424, 2022,

doi:10.1109/access.2022.3204657.

[10] T. Hovhannisyan, P. Efendyan, and M. Vardanyan, “Creation of a

digital model of fields with application of DJI phantom 3 drone and

the opportunities of its utilization in agriculture,” Annals of Agrarian

Science, vol. 16, no. 2, pp. 177–180, Jun. 2018,

doi:10.1016/j.aasci.2018.03.006.

[11] T. Zhang and M. Zhu, “GPS-assisted Aerial Image Stitching Based on

optimization Algorithm,” 2019 Chinese Control Conference (CCC),

Jul. 2019, doi: 10.23919/chicc.2019.8866089.

[12] O. Chum and J. Matas, “Optimal Randomized RANSAC,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no.

8, pp. 1472–1482, Aug. 2008, doi: 10.1109/tpami.2007.70787.

[13] G. Yang, X. Chang, and Z. Jiang, “A Fast Aerial Images Mosaic

Method Based on ORB Feature and Homography Matrix,” 2019

International Conference on Computer, Information and

Telecommunication Systems (CITS), Aug. 2019,

doi:10.1109/cits.2019.8862133.

[14] H. Zhao, Y. Du, H. Wang, and Y. Yue, “UAV aerial image mosaic

algorithm based on FAST-Tomasi feature and Delaunay triangulation,”

2020 IEEE International Conference on Mechatronics and Automation

(ICMA), Oct. 2020, doi: 10.1109/icma49215.2020.9233570.

[15] N. T. Pham, S. Park, and C.-S. Park, “Fast and Efficient Method for

Large-Scale Aerial Image Stitching,” IEEE Access, vol. 9, pp.

127852–127865, 2021, doi: 10.1109/access.2021.3111203.

[16] J. L. Hennessy and D. A. Patterson, “Fundamentals of quantitative

design and analysis,” Computer Architecture: A Quantitative

Approach, pp. 1–10, 2012.

[17] W. D. Hillis, “What is massively parallel computing, and why is it

important?,” Daedalus, vol. 121, no. 1, Art. no. 1, 1992.

[18] P. Czarnul, J. Proficz, and K. Drypczewski, “Survey of methodologies,

approaches, and challenges in parallel programming using high-

performance computing systems,” Scientific Programming, vol. 2020,

pp. 1–19, 2020.

[19] J. J. Dongarra, S. W. Otto, M. Snir, and D. Walker, “An introduction

to the MPI standard,” Communications of the ACM, vol. 18, 1995.

[20] S. A. Dheyab, M. N. Abdullah, and B. F. Abed, “A novel approach for

big data processing using message passing interface based on memory

mapping,” Journal of Big Data, vol. 6, no. 1, Art. no. 1, 2019.

[21] Z. Jiang et al., “Message passing optimization in robot operating

system,” International Journal of Parallel Programming, vol. 48, pp.

119–136, 2020.

[22] T. Ragunthar, P. Ashok, N. Gopinath, and M. Subashini, “A strong

reinforcement parallel implementation of k-means algorithm using

message passing interface,” Materials Today: Proceedings, vol. 46, pp.

3799–3802, 2021.

[23] E. D. Fajrianti, A. A. Pratama, J. A. Nasyir, A. Rasyid, I. Winarno, and

S. Sukaridhoto, “High-Performance Computing on Agriculture:

Analysis of Corn Leaf Disease,” JOIV: International Journal on

Informatics Visualization, vol. 6, no. 2, Art. no. 2, 2022.

[24] C. A. Swann, “Software for parallel computing: the LAM

implementation of MPI,” Journal of Applied Econometrics, vol. 16, no.

2, pp. 185–194, Mar. 2001, doi: 10.1002/jae.595.

[25] J. M. Squyres and A. Lumsdaine, “A Component Architecture for

LAM/MPI,” Lecture Notes in Computer Science, pp. 379–387, 2003,

doi: 10.1007/978-3-540-39924-7_52.

[26] S. M. Pizer et al., “Adaptive histogram equalization and its variations,”

Computer vision, graphics, and image processing, vol. 39, no. 3, Art.

no. 3, 1987.

[27] T. Arici, S. Dikbas, and Y. Altunbasak, “A histogram modification

framework and its application for image contrast enhancement,” IEEE

Transactions on image processing, vol. 18, no. 9, Art. no. 9, 2009.

[28] B. S. Rao, “Dynamic histogram equalization for contrast enhancement

for digital images,” Applied Soft Computing, vol. 89, p. 106114, 2020.

[29] D. G. Lowe, “Distinctive image features from scale-invariant

keypoints,” International journal of computer vision, vol. 60, pp. 91–

110, 2004.

[30] T. Lindeberg, “Scale Invariant Feature Transform,” Scholarpedia, vol.

7, no. 5, p. 10491, 2012, doi: 10.4249/scholarpedia.10491.

[31] L. Dalcin and Y.-L. L. Fang, “mpi4py: Status update after 12 years of

development,” Computing in Science & Engineering, vol. 23, no. 4,

Art. no. 4, 2021.

[32] J. Satriawan, “3D Object Mapping using Drone Based on Autonomous

Waypoint Navigation,” Unpublished Paper, 2023.

416

