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Abstract— Maritime simulation systems provide opportunities to acquire technical, procedural, and operational skills without the risks 

and expenses associated with on-the-job training. Maritime simulation systems are tools used to simulate real-world scenarios for 

training and research purposes, in which they are used to train seafarers in a safe and controlled environment. These systems are used 

to simulate different scenarios, such as navigation, maneuvering, and ship handling. The simulation systems allow users to learn and 

practice different scenarios without exposing themselves to real-life risks. However, at the moment, Vietnam's maritime simulators are 

dependent on other nations, which results in a lack of technological autonomy, a lengthy transfer of technology, high expenses, and a 

reduction in national security. Therefore, there is a lot of interest in developing a domestic maritime simulation system. With a rotation 

angle of α = [α1 α2 α3]T from the PLC controlling the DC/Servo system, the motion platform of the marine simulation system is built 

on the Stewart platform design principle. Due to the use of conventional control methods, this system suffers from a time delay of up to 

1200ms, which prevents it from reacting to real-time control. In this paper, we investigate a novel technique for controlling the dynamic 

model with three degrees of freedom (3 DOF) of a cockpit cabin deck using artificial neural networks. The findings demonstrate that 

the reaction to real-time control, rotation error, and drive/servo system movement are all greatly improved. 
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I. INTRODUCTION

Maritime simulation systems are tools used to simulate 
real-world scenarios for training and research purposes [1][2]. 
These systems are used to simulate different scenarios, such 
as navigation, maneuvering, and ship handling. They are 
essential in training seafarers, ship pilots, and other personnel 
who work in the maritime industry [3]. The simulation 
systems allow users to learn and practice different scenarios 
without exposing themselves to real-life risks [4]. The use of 
maritime simulation systems has increased over the years due 
to advances in technology [5]. These systems have evolved 
from basic 2D simulators to complex 3D simulators that 
simulate various environments such as the cockpit cabin deck, 
engine room, and bridge. Traditional maritime simulation 
systems have limitations that make it difficult to simulate 
complex scenarios accurately [6]. These systems rely on pre-
defined rules and data, which may not be accurate in real-life 
situations [7]. Another limitation of traditional maritime 

simulation systems is that they are not adaptive [8]. They 
cannot adjust to changes in the simulation environment, 
which may affect the accuracy of the simulation. The findings 
from the works are carried over into the article [9]–[11]. 
Based on the Stewart platform principle, the work developed 
a signal model for the Drive/Servo system to control the 
cockpit cabin deck with three degrees of freedom [9]. To 
operate the Drive/Servo combination with significant tracking 
errors, the host computer sends shake control signals (Roll �, 
Pitch �, and Heave z) over the Modbus TCP protocol to the 
PLC. Dang et al. [10] propose a fuzzy adaptive controller 
design for a class of networked control systems (NCS) with 
the presence of network induced delay, data packet dropout 
and unknown time-delay controlled plant. The mathematical 
model of Smith predictor, which is combined with fuzzy 
adaptive controller and fuzzy compensator time-delay, is 
designed to adjust online its parameters according to the 
changing of the system’s output [12]. The results based on 
TrueTime Beta2.0 simulation platform demonstrate that our 
design significantly improves the response of system over 
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unknown time-delay. Åström et al. [13] shows a closed-loop-
three-loop control structure that is typical of modern 
simulation systems and employs a controller to address the 
issue of significant latency brought on by the use of CAN 
networks. PLC control in conjunction with control algorithms 
and forecasting techniques like load noise compensation and 
error prediction [14][15]; however, the data from still contain 
some lags and inaccuracies [9], [10], [13]. In order to increase 
the system's response time, we directly concatenate the signal 
from the PLC controlling the Drive/Servo combination in this 
study and employ an artificial neural network of the MLP 
type. The organization of this paper is presented as follows: 
Section 2 describes the dynamic equations of the ship with 3 
degrees of freedom (DOF). Section 3 will provide the AI 
algorithms for cockpit cabin deck control. The simulated 
results are stated in Section 4. Finally, a conclusion is given 
in Section 5. 

II. MATERIALS AND METHOD 

Ship dynamics is obtained by applying Newton's laws. The 
marine vehicle has 6 DOF since six independent coordinates 
are necessary to determine the spatial position and orientation 
of a rigid body. The six different motion components are 
called: surge, sway, heave, roll, pitch, and yaw. Accordingly, 
the most generally used notation for these quantities is x; y; z; 
ϕ; θ; and ψ: Figure 1 shows all six-coordinate definitions and 
the most generally adopted reference frame. The position and 
orientation of the ship are described relative to the inertial 
reference frame OE xEyEzE (Earth-fixed reference frame). 

Excluding Surge (x), Sway (y), and Yaw (Ψ) motions, the 

3-degrees-of-freedom model of motion is derived from the 6-
degrees-of-freedom model of motion [16][17]. Figure 1 
shows a ship's motion in the horizontal plane based on the 
Stewart platform's structure [18]. Drive/Servo controls three 
model directions: Roll (�), Pitch (�), and Heave (z). Thus, 
the position vector � = [� � z]T describes 3 states of the 
cockpit cabin deck. The equation describes the mathematical 
model that models the motion of a ship with three degrees of 
freedom as Equation (1). 
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Fig. 1  Ships' kinematic parameters and motion components in the horizontal plane 
 

III. RESULTS AND DISCUSSION 
A. Multi-Layer Perceptron (MLP) 

 
Fig. 2  Diagram of Multi-layer perceptron 

 
Multi-Layer Perceptron (MLP) technology is a type of 

neural network that is used in machine learning [19]. An MLP 
normally consists of at least three layers of nodes, these being 
the input layer, a hidden layer, and an output layer. MLPs are 
composed of multiple layers of nodes, each of which performs 
a specific function [20]. The nodes in the input layer represent 
the input vector [21]. Each node in the hidden layer is 
connected to every node in the input layer and has an 
associated weight and bias [22]. The output layer produces the 
output vector. The nodes are connected by weights, which are 
adjusted during training to improve the accuracy of the 
network [23]. This is a completely black box model that 
accepts inputs and produces the desired output for the 
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processing dataset. MLP technology has been used in various 
applications, such as image recognition, speech recognition, 
and natural language processing [24]. MLP is an effective 
method for condition prediction, prospective failure 
detection, and nonlinear identification [25]. The MLP 
structure is shown in Figure 2, where: P: input vector; Wi: 
weight matrix of i-th layer; S: number of rows, R: number of 
columns; bi: bias, ni: net input, ai: net output, fi: activation 
function.  

While single-layer networks cannot be used to approximate 
mathematical functions, two-layer networks that use the 
identity function for the second layer and the sigmoid function 
for the first layer may [26]. In order to estimate the reference 
value for the Drive/Servo motor combination in this article, 
MLP is used. The neural network's output is in the form of 
Equation (5): 

1 1 1( )m m ma f n  
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The three-layer M = 3 with 12x10x3 MLP network that has 

been chosen will produce accurate prediction results because 
it has 12 inputs, 10 hidden nodes, and 3 outputs. The rotation 
angle signal, position, angular speed, and length values are the 
six inputs that make up the input layer. Choose an additional 
6 input layers going back in time �(t-1) and forward �(t-1). 
The output layer consists of three buttons that represent the 
three expected values of the rotation angle of the three servo 
motors: α = [α1 α2 α3]T to receive the floor's previous values 
for sliding in the horizontal, vertical, and vertical directions. 
The hidden layer will be chosen to have 12 nodes based on 
the network training procedure and results. According to this 
implementation, predictions and future forecasts are made in 
the range of 50 milliseconds to 1500 milliseconds using data 
from the present and the past. This relationship will be taught 
to the MPL neural network, and the outcomes after learning 
can be verified using another sample dataset (test file). 
Percent absolute error (APE) and mean percent absolute error 
(MAPE) are used to calculate the error and are defined as 
follows in Equation 7: 

 
Re

*100
Re

alangle Forecastangle
APE

alangle




 

        
(7) 

 

1

1 hN

h

MAPE APE
N

 
 

Where: Nh is the forecast time. 
 
Backpropagation is used in the MLP network training 

technique. The back-propagation algorithm provides an 
effective and straightforward method for calculating the 
objective function's derivative with respect to weight and bias 

Equation 11 at various stages. As in the forward propagation 
Equation 9 and backpropagation formulae, the weights and 
biases are computed and modified at the k + 1st step (Equation 
10). The error produced by the network, based on the 
percentage absolute error (APE) and the average percentage 
absolute error, is the condition for ending learning for the 
training process (MAPE) [27]. Following training, we move 
on to evaluate the network's error in order to select the most 
effective network for forecasting. 
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B. Building A Neural Network Using Matlab/Nntool 

MLP technology has several advantages over traditional 
maritime simulation systems. One of the main advantages is 
that MLPs can learn from data and adjust to changes in the 
environment. This means that the simulation systems can 
adapt to changes in the environment, which can improve the 
accuracy of the simulation [28]. Another advantage of MLP 
technology is that it can simulate complex scenarios 
accurately. MLPs are capable of processing large amounts of 
data, which can be useful in simulating complex scenarios 
such as ship handling in adverse weather conditions [29]. 
Neural networks are computational models that are designed 
to simulate the behavior of the human brain [30]. These 
networks are composed of multiple layers of nodes, each of 
which performs a specific function [31][32]. 

Network training process: The system configuration during 
network training includes input data from the roll, pitch, and 
height sensors of the suspended floor collected at the PLC 
[33]. These signals are transmitted to the PC/Matlab computer 
via the OPC tool module. In addition, the data of servo motor 
rotation angles are also collected by PLC and transferred to 
Matlab software as output data. 

Execution process: The configuration of the system during 
operation includes input data which are signals from roll, 
pitch, and heave inclination calculated from the PC/Unity 3D 
simulation model provided by the PC/Unity computer. 
supplied to a PC/Matlab computer with the learned 
ANN/MLP module will provide as output the predicted servo 
motor rotational angle values [34]. The proposed structure to 
integrate the ANN module into the Platform control system is 
shown in Figure 3. 

Data acquisition and direct control of the suspended floor 
is done through PLC; The supervisory control computer will 
communicate with the PLC through the OPC server module, 
this module provides data for the 3D simulation software and 
communicates with the Matlab software through the OPC 
toolbox [35]. The computer installs the Matlab/NN tool 
software, installs the ANN/MLP algorithm, performs network 
training and will receive input data from the platform, then 
executes the learned algorithm, and makes predictive 
decisions for the machine. computer so that the PLC 
controller makes handling situations earlier [36]. 
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Time delay is a significant challenge in maritime 
simulation systems. Time delay refers to the delay between 
the input and output of the system, which can result in 
inaccurate simulations [37]. In maritime simulation systems, 
time delays can be caused by factors such as the ship's 
response time, communication delays, and processing delays. 
MLP technology can be used to mitigate the effects of time 
delay in maritime simulation systems [38]. By using MLP 
technology, maritime simulation systems can provide more 
accurate and realistic simulations, even in scenarios with 
significant time delays. 

 

 
Fig. 3  Structure diagram of Cockpit cabin deck with integrated ANN/MLP 
module 

 

 
Fig. 4  Structure diagram of a neural network 

 

KEPServerEX 5 is an OPC tool/OPC server that transfers 
network training data from a PLC into Matlab software. Excel 
processes the test data from the cockpit simulation (20,000 
records). Signal samples from this data are chosen to 
reference times between 50 ms and 1500 ms. Figure 4 shows 
the developed neural network structure, which has 12 inputs, 
10 hidden layers, and 3 output layers. Figures 5 and 6 display 
the network training outcomes. According to the results, the 
training error is less than 0.007 after 60,000 training cycles, 
which is better than the parameter of a trustworthy MLP 
network (0.01). The network model (Figure 6) can be used to 
find fresh data after training. 

 

 
Fig. 5  Characteristic of errors MSE 

 
Fig. 6  Results of neural network training 

 

C. Simulation  

The model ship is a TT400 type, measuring 55 meters in 
length, 9.2 meters in width, 2.6 meters in the draft, and 429 
tons in the payload. The data used for network training is fed 
from the PLC into the Matlab software using the OPC 
tool/OPC Server: KEPServerEX 5. there are 1207 records in 
the database of the cockpit simulation system of the tests. This 
data is selected to produce samples with reference signals at 
times of 50ms - 1500ms. These 1207 records include the 
special motion states of the platform that occurred with 03 
wave levels that are level 3, level 7, and level 9 according to 
the Beaufort scale within 03 wind directions and 03 
movements (roll, pitch, heave) as shown in Figure 7-9. 
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Fig. 7  Record of the roll angle of the platform 

 
Fig. 8  Record of the pitch angle of the platform 

 
Fig. 9  Record of heave angle of the platform 
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Fig. 10  Diagram of a block model for AI 

 

Figure 10 shows the simulation scenario of the ANN 
predictor. Accordingly, this simulation is performed in the 
following sequence: firstly, each movement is predicted; then 
for a mixed motion of all 3 movements when the ship is under 
the impact of waves. Figure 11 illustrates the actual tracking 
response characteristics without a neural network for the 
cockpit cabin deck rotation angles. Figure 12 shows the 
measured value from the 3D host computer, which includes 
the Roll (“phi from Sim”) and the Pitch (“Beta from Sim”), 
and the heave (“Z from Sim”). The corresponding curves 
represent the value of the angles of the cockpit cabin deck. 
The motion response of the cockpit cabin deck always has a 
500–1500 ms delay, according to the data above, along with 

numerous surveys and measurements, and the floor's 
maximum tracking margin has an error of roughly 12%. The 
difficulty of doing correct Feedforward stages leads to all of 
them approximating them as differentials, which explains 
why there is always a delay in the signal transmission from 
the host computer to the PLC. The MLP neural network's 
prediction of the signals, and z reduces error and reaction time 
dramatically. The real inaccuracy is less than 2%, and the 
reaction time is around 50ms late as Figure 12. However, the 
phase always exceeded the control signal of the dynamic 
model by up to 1200ms and the Drive/Servo control signal α 
= [α1 α2 α3]T was shown in Figure 13. 

 

 
Fig. 11  The actual tracking response characteristics without a neural network for the cockpit cabin deck rotation angles. 
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Fig. 12  In the presence of a neural network, the output signal simulation's � (roll), � (pitch), and z (heave) 

 

 
Fig. 13  Specifications of neural network simulation for controlling Servo motors α1, α2, α3 

 

 
Fig. 14  The output signal simulation's � (roll), � (pitch), and z (heave) in detail 

307



However, the amplitudes of the output signals (horizontal 
shake, �, vertical shake, �, and heave, z) measured directly 
from the suspended platform do not fully capture the signals 
from the simulation system. There is a time when the noise 
pulse of the measured signal exceeds 5%. 

IV. CONCLUSION 
The use of multi-layer perceptron technology in maritime 

simulation systems has revolutionized the industry. MLPs are 
capable of simulating complex scenarios accurately and can 
adapt to changes in the environment. The use of MLP 
technology in maritime simulation systems has led to 
increased safety, efficiency, and cost savings in the industry. 
The cockpit cabin deck served as the target of this study's 
application of modern control algorithms (AI) in ship motion 
control. This study designed modern prediction in the form of 
an MLP artificial neural network using NNtool in 
Matlab/Simulink environment and OPC real-time tool. The 
MLP artificial neural network is built to predict the rotation 
angle of 03 suspended floor motion servomotors with a 
structure of 12 input layers, 10 hidden layers, and 3 output 
layers. The predictive controller has overcome the 
disadvantages of latency and improved the control quality to 
track in real-time the simulated signal to only about 50ms. 
This study has built a controller that tracks the motion signal 
ϕ, θ, z of the ship in 3D simulation by an accurate inverse 
kinematic model. The forward kinematics model applied to 
the Newton-Raphson algorithm was used to test the signal 
tracking response. The authors have also proposed the 
connection options between PLC and Drive, the method of 
designing control algorithms on PLC and Drive to improve 
the quality of control with simulated signals such as using 
methods such as Feedforward input, load noise compensation, 
and digital prediction. For detail, The MLP neural network's 
prediction of the signals, and z reduces error and reaction time 
dramatically. The study's results show how well the system 
responds to most training simulation settings, which 
highlights its early success. 
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