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Abstract— Face recognition has made significant progress because of advances in deep convolutional neural networks (CNNs) in 

addressing face verification in large amounts of data variation. When image data comes from different sources and devices, the 

identifiability of other classes and the presence of profile face data can lead to inaccurate and ambiguous classification because other 

classes lack discriminatory power. Furthermore, using a complex architecture with many deep convolutional layers can become very 

slow in the training process due to a huge amount of Random Access Memory (RAM) usage during the reverse pass of backpropagation. 

In this paper, we design a light CNN architecture that addresses these challenges. Specifically, we implemented Max-feature-map 

(MFM) into each convolutional layer to improve the accuracy and efficiency of the CNN. The strength of the support vector-guided 

SoftMax (SV-SoftMax) is also used in the proposed method to emphasize misclassified points and adaptively guide feature learning. 

Experimental results show that the 9-Layers CNN with MFM layer and SV-SoftMax outperform VGG-19 with 96.22% validation 

accuracy and the second rank below FaceNet tested on the same dataset with fewer parameters. Moreover, the model performed well 

on data that is obtained from various capture devices such as webcam, CCTVs, phone cameras, and DSLR cameras. The implications of 

this research could extend to scenarios requiring face recognition technology implementation with light size, such as surveillance and 

authentication systems. 
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I. INTRODUCTION

Over the past ten years, convolutional neural networks 

(CNNs) have grown in popularity as one of the methods for 

resolving computer vision issues. Strong and recognizable 

representations learned by CNNs have helped many visual 

tasks, including image classification, object detection, and 

face recognition [1]. Face recognition is a fundamental and 

important practical task in computer vision and pattern 

recognition. There are two types of face recognition tasks: 
face identification, which links a particular person, and face 

verification, which assesses if two face photographs belong to 

the same identity [2]. Deep convolutional neural network 

technology has recently been used to address the difficulty of 

learning discriminative features in face recognition [3] and to 

enhance performance on a huge data set with a lot of noisy 

labels and efficient computational cost using Max-Feature-

Map (MFM) technique [4]. MFM is an extension of Maxout 

activation and can be treated as a special activation to separate 

informative signals from noisy signals [5]. The proposed 

network of MFM claimed to perform well in utilizing large-

scale noisy data and prevent biased results by performing 
semantic bootstrapping.  

CNNs is a special network with a classification loss 

function within the layers. The currently dominant 

classification loss function is the SoftMax loss. However, as 

pointed out by recent studies, face recognition relies on face 

features discriminative, i.e., They have well-maximized intra-

class compactness and inter-class separability, and SoftMax 

loss typically is not strong enough to handle this particular 

task [6]–[9]. The classification loss function has been 

redesigned by many researchers in order to create deep face 

recognition models. Recently, novel metric learning loss 
functions such as contrastive or triplet loss were developed. 

However, both methods are typically computationally 

expensive [3], [10], [11].  

Hard-mining SoftMax (HM-SoftMax) was created in a 

recent study to enhance feature recognition through the 

creation of mini-batches from high-loss samples [12]. A 

similar contrasting study was also conducted to design a soft-
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mining SoftMax called Focal Loss (F-SoftMax) [13]. They 

claimed that by concentrating training on a few difficult 

examples, many simple negatives are prevented from 

overloading the model while training. The results are more 

promising than simple hard-mining SoftMax [14]. The other 

researchers, Deng et al. [6] and Wang et al. [8], prefer to 

design margin-based loss functions that directly increase the 

functional margins between different classes. Later, Angular 

distance SoftMax (A-SoftMax) was constructed between the 

ground truth class and other classes to increase the variance 
across classes [15]. Angularly discriminative features can be 

learned by CNNs using A-SoftMax and represent a nice 

geometric interpretation by limiting learned characteristics to 

discriminant on a super spherical manifold, which is 

inherently consistent with the a priori assumption that the 

faces also lie on a non-linear manifold. However, it is usually 

unstable, and it is difficult to determine the optimal 

parameters. 

Certain techniques [10] and [16] combine SoftMax losses 

based on Euclidean margins to create joint supervision. 

However, the characteristics learned by the SoftMax loss have 
an inherent angular distribution. Furthermore, Euclidean 

amplitude is said to be inconsistent with SoftMax loss [16], 

[17]. Most margin losses extend the feature margin to 

discover distinguishing features from the point of view of the 

underlying ground truth class. However, they often ignore the 

discriminant power of other non-ground truth classes. The 

definition of specific hard examples for mining-based losses 

is unclear and frequently determined empirically, so concrete 

examples remain an open problem. In addition, it is still 

unclear how mining and margin losses are related. A novel 

loss function designed by Liu et al. [15], called Support 
Vector guided SoftMax (SV-SoftMax), claimed that it can 

remove ambiguity from difficult examples and absorb the 

discriminant ability of other classes by concentrating on the 

support vectors and semantically merge mining-based and 

margin-based losses into a single base framework. They 

tested the method on the LFW [18] and MegaFace 

benchmarks [2], proving effective. 

This paper studies the CNNs with Max-Feature-Map 

operation combined with SV-SoftMax losses. The carefully 

designed architecture consists of a 9-layer CNN with MFM 

embedded and customized Support Vector Guided SoftMax. 

The proposed architecture is designed to obtain a fewer 
parameters model with a low computational cost capable of 

absorbing the discriminative strength of other classes using 

support vectors. The MFM technique is proposed to test the 

assumption against the general Rectified Linear Unit (ReLU) 

activation, which can suppress low-activation neurons in each 

layer in order to distinguish between relevant and noise 

signals but also to make the model perform well in terms of 

speed or computational cost. However, the noisy signals in 

our dataset case are not the main issue since the dataset is also 

collected carefully using Webcam, DSLR, Phone Camera, 

and CCTV and labeled properly corresponding to their classes. 
Finally, SV-SoftMax losses are proposed instead of the 

general SoftMax to adaptively emphasize the misclassified 

points and lead to better discriminative feature learning.  

CNNs are recognized as a robust feature extractor and are 

still one of the most active research in modern face 

recognition [11]. In the past, deep network-based methods for 

face recognition used an intermediate bottleneck layer to 

generalize the recognition learned during training and a 

classification layer trained on a collection of known face 

identities [19]. Recently, Schroff et al. [20] introduced 

FaceNet, which proposes tripled loss and achieves 95.12% 

accuracy on the YouTube Faces dataset. Similar work by 

Simonyan and Zisserman [21] trained VGG Network on the 

LFW dataset [18] and achieved 98.95% accuracy. They 

improved the model by using a tripled-based metric approach 

that is similar to FaceNet. Other researchers also studied the 
triplet loss's effectiveness combined with k-NN and SVM 

classifier for face recognition and achieved 96% and 95% 

accuracy, respectively [22]. 

Then, DeepID2 is introduced, which aims to utilize face 

identification to boost inter-personal variations and decrease 

intra-personal variations derived from the same identity using 

verification signals [10]. DeepID2 achieved 99.15% accuracy 

on the large LFW dataset and reduced the error rate by 67% 

against a similar method tested on LFW. Large datasets 

collected from the internet often contain massive noisy labels 

that can decrease the accuracy performance [23]. Therefore, 
Wu et al. [4] proposed a Max-Feature-Map network and used 

a semantic bootstrapping method to make the network 

predictions better match noisy labels. Other methods, 

however, concern the fraction of CNN architecture that can 

cost the training performance and lead to slow training time. 

Therefore, Zagoruyko and Komodakis [24] introduced a 

simple 16-layer CNN-wide residual network similar to 

ResNet blocks [25] and managed to attain state-of-the-art 

results on CIFAR-10 dataset [26]. Like MFM, 9-layer CNN 

with MFM Convolution is trained without adjusting and has 

low computing expenses.  
A neural network that predicts a multinomial probability 

distribution uses the SoftMax function as the activation 

function in its output layer. Meanwhile, SoftMax loss 

computes the multinomial logistic loss of the SoftMax input 

and is generally identical to the SoftMax layer with a more 

numerically stable gradient. Some methods implemented 

customized SoftMax loss and managed to achieve promising 

results. For example, Wang et al. [7] designed additive margin 

(AM-SoftMax) loss to keep the optimization stable and 

incorporate with the classification model's margin. This 

approach was developed because face verification tasks can 

be seen as metric learning issues. Then, Deng et al. [6] 
introduced Additive Angular Margin Loss (ArcFace) to 

improve the ability to distinguish discriminative power when 

dealing with noisy labels by proposing sub-center ArcFace.  

Sub-center ArcFace boosted the model performance by 

purifying raw web faces under massive noise. Another 

method focuses on mining-based SoftMax to improve the 

discriminative features by focusing on the informative 

examples. For example, Focal loss (F-SoftMax) [13] and 

Hard-mining strategy SoftMax (HM-SoftMax) [12]. Several 

SoftMax loss methods proposed margin-based SoftMax, such 

as A-SoftMax [16] and Ensemble soft-Margin SoftMax (EM-
SoftMax) [7]. However, because they only achieve the feature 

margin from the perspective of the ground truth class y, these 

methods are unaware of the significance of non-ground truth 

classes. Utilizing SV-SoftMax is driven by the need to remove 

the ambiguity of hard-mining based methods and their 
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capacity to absorb the discriminative force of additional 

ground truth, resulting in more discriminative features. 

II. MATERIALS AND METHOD 

This part examines face recognition tasks using 9-layer 

CNN with MFM models based on an image dataset collected 

using a webcam, DSLR, CCTV, and phone camera. First, we 
introduce the data preprocessing method and datasets. Then, 

the model's architecture method and the support vector-

guided SoftMax are presented. 

A. Datasets and Preprocessing Method 

The datasets are collected using four devices: webcam, 

DSLR camera, CCTV, and phone camera. We grabbed the 

face ROI using haarcascade face detection model throughout 

the entire dataset. On top of that, Open-Source Computer 
Vision (Open CV) library and Python are employed for the 

rest of the preprocessing technique. In total, there are 23 

classes with frontal and variant poses. 

 

 
Fig. 1  Dataset sample. Face dataset sample collected and preprocessed with 

haarcascade face detection. The ROI for face is cropped and saved for the 

model training phase. 

 

Datasets are collected by image capture and video streams. 

The haarcascade can detect real-time video streams [27]. 

Thus, it is easy to extract many frames from the videos, 

contributing to additional images in our datasets. We gathered 

8,020 images belonging to 23 classes and then split them into 

80/20 train and test split. Since the datasets collected are not 

balanced, we do not depend on accuracy as the main 

evaluation metric.  

Studies by Wu et al. [4] used grayscale color face images 
rather than Red Green Blue (RGB) for both training and 

testing. Furthermore, the images are aligned to 144x144 

pixels. This is also one of the main reasons why the model 

they constructed has fewer parameters than the one we 

designed with similar architecture. On the other hand, [28] 

observed that image classification performance is better for 

higher image resolution since more information can be 

captured within the network. We set the face images to 

225x225 pixels, and all the pixels are normalized to range 

between 0 to 255 by dividing each pixel by 255. We employed 

tensor data batch Image Data Generator, which can perform 

image transformation with real-time augmentation. Certain 
deep learning studies used image data augmentation 

approaches [28]. However, in this case, image augmentation 

is not implemented. 

B. Light CNN 

In a neural network, activation function plays a crucial role 

in determining the feature importance and detecting important 

patterns throughout the feature vector of the given input 

image. Rectified Linear Unit (ReLU) [29] activation 

distinguishes informative features by comparing a maximum 

value to a 0 value. However, this feature may cause the loss 

of some crucial information, especially in the initial few 

convolutional layers. Features that fit inside the hidden layers 

also depend on weight and biases. There is no exact number 

of hidden layers in a convolutional neural network, and 

adding more layers increases the number of weights in the 

network and improves model complexity. While it is possible 

to reduce the possibility of overfitting and improve model 

performance, the trade-off is that the model takes more time 
to train, especially for image classification. Considering the 

problem of model complexity, we propose a Max-Feature-

Map with a simple 9-layer CNN. CNN models based on MFM 

are light and robust because, in contrast to Maxout activation, 

MFM works to suppress the activations of a select few 

neurons [4]. Similar to Maxout, MFM utilizes the max 

function for neuron activation. 

 
           (a) MFM: h(x)=max(x1, x2)               (b) ReLU : h(x)=max(0,x1) 

Fig. 2  Example Comparison of several types of activation: (a) MFM 

suppresses a neuron due to a competing connection. (b) ReLU suppresses a 

neuron by thresholding magnitude responses with element-wise max(0,x). 

 

By combining two feature maps, the MFM operation 

generates the element-wise maximum. Using element-wise 
maximum operation across all feature channels, MFM can 

extract 50% of informative neurons from the input feature 

map [4]. In contrast to MFM, ReLU only returns element-

wise max (0, x) where x is the given feature from features, 

weights, and biases calculation. During backpropagation, 

MFM chooses the best feature at each layer learned by various 

nodes when adjusting the weights of the connections between 

neurons. Choosing the best features to use in subsequent 

layers can greatly improve the model's performance.  

MFM suppresses neurons from binary gradients (1 and 0). 

It has a similar role to ordinal scales and is frequently utilized 

in biometrics [30]. MFM allows for a condensed display on 
CNN. On the one hand, the sparse gradients of MFM allow 

Stochastic Gradient Descent (SGD) to influence responding 

neurons only during the backpropagation of the training phase. 

By getting more competitive filters from previous 

convolutional layers up to two feature maps, MFM can perform 

feature selection and facilitate creation of sparse links [4]. 

Here, we will discuss the architecture for our Light CNN 

with MFM. To do feature selection between convolution 

layers similar to VGG and Network in Network [31], 

performing reduction in the convolution filters size by 

increasing the depth is the motivation for our network to 
acquire less number of parameters and balance between 

model complexity and accuracy, thus speeding up the learning 

process. The implemented constructed 9-layers CNN consists 

of 5 Max-Feature-Map and convolution layers, 4 NIN layers, 

and 4 max pooling layers from Wu et al. [4]. This helps 

produce more robust representations of images, keep the 

number of parameters low, and improve the quality of feature 

maps. 
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TABLE I 

LIGHT 9-LAYERS MFM CNN WITH SV-SOFTMAX 

Type Filter 

Size/Stride, 

Padding 

Output Shape Number of 

params 

Conv2d 
MFM 

5x5/1, 2 225x225x128 
225x225x48 

9,7K 
- 

Pool 2x2/2 112x112x64 - 
Conv2d 
MFM 
Conv2d 
MFM 

1x1/1 
- 
3x3/1,1 
- 

112x112x64 
112x112x32 
112x112x64 
112x112x32 

4,1K 
- 
18,4K 
- 

Pool 2x2/2 56x56x32 - 

Conv2d 
MFM 
Conv2d 
MFM 

1x1/1 
- 
3x3/1,1 
- 

56x56x32 
56x56x16 
56x56x32 
56x56x16 

9,2K 
- 
4,6K 
- 

Pool 2x2/2 28x28x16 - 
Conv2d 
MFM 
Conv2d 

MFM 
Conv2d 
MFM 
Conv2d 
MFM 

1x1/1 
- 
3x3/1,1 

- 
1x1/1 
- 
3x3/1,1 
- 

28x28x16 
28x28x8 
28x28x16 

28x28x8 
28x28x16 
28x28x8 
28x28x16 
28x28x8 

272 
- 
1,1K 

- 
144 
- 
1,1K 
- 

Pool 2x2/2 14x14x8 - 
Flatten - 1568 - 
FC - 1568 803K 
MFM - - - 

FC - 256 131K 
TOTAL - - 986K 

 

Note that the 9-CNN layers architecture we designed is 

similar to Wu et al. [4] except for the model parameters. The 

model we designed consists of more parameters because here, 
we are using 225x225 pixels images throughout our own 

collected dataset, thus resulting in more pixels processed in 

the feature extractor. Images consist of 3 color channels and 

are normalized in the data batch tensor pipeline with real-time 

data augmentation. Since neural network works best with 

normalized features, more detail will be provided.  

The last number in each output shape is the filter generated 

by convolutional layers. Intuitively, the architecture could 

easily pass one observation or batches of images from the 

dataset to be trained through the network simultaneously. 

Recall that batches of images determine how many images are 

in each training step batch, which is then used to update the 
neural network weights, and the errors are backpropagated. 

This will result in a performance increase on GPUs, which is 

also one of the reasons why it is important to constrain the 

number of parameters in every layer. 

C. Support Vector Guided SoftMax 

SoftMax loss is the pipeline combination of the last fully 

connected layer, SoftMax function, and cross-entropy loss. In 

a neural network, the input vector from the image features is 
fitted into the hidden layer, resulting in their corresponding y 

label. The weights are randomly stated in the hidden layer, 

resulting in x feature that gets scaled for the last fully 

connected layer [7]. Therefore, given the input feature vector 

x with its corresponding ground truth label y, the final 

interpretation is fitted to the last activation. The final 

activation, such as SoftMax, makes it easy to interpret the 

final prediction against the final raw output. 

 
Fig. 3  SV-SoftMax geometrical interpretation with feature perspective. A 

misclassified label (red circle point) is the support vector that will be 

optimized [3].  

Given that the learning problem is not greatly affected by 

well-separated feature vectors, it is necessary to increase the 

feature discriminability by using feature vectors that have 
been incorrectly classified to increase inter-class separability 

and intra-class compactness. SV-SoftMax focuses training on 

useful features by adaptively defining masks that indicate 

whether samples are selected as support vectors by a 

particular classifier at the current step [3]. By definition, 

misclassified samples will be emphasized temporarily using a 

binary mask defined below: 

 ���� � �0, cos �
�� , �� � cos �
�� , ��  � 0
1, cos �
�� , �� � cos �
�� , �� � 0  (1) 

The sample will be emphasized temporarily if it is 

misclassified, i.e., cos �
�� , �� � cos �
�� , �� � 0 . 

Intuitively, Wang et al. [3] define SV-SoftMax by focusing 

on the challenging situations from the probability aspect 

compared to mining-based loss functions, such as Focal loss., 

by reducing the probability according to the decision 

boundary (support vectors). They often introduce a margin 

function from the standpoint of the ground truth class in 

margin-based loss functions, such as angular, additive, and 

additive angular margins. Meanwhile, as defined in SV-

SoftMax [3], from the viewpoint of other non-ground truth 
classes, it widens the feature margin and utilizes its 

customized margin function for the misclassified features. 

The SV-SoftMax will be class-specific ground truth margins 

in multi-class classification for face recognition cases. Recent 

studies also utilize Support Vector Margin (SV-X-SoftMax) 

using various perspectives and a particular technique, such as 

expanding the mining range by using margin-based decision 

boundaries to create the support vectors. Combining the 

mining-based and margin-based losses into a single 

framework is possible. In our scenario, SV-SoftMax is 

utilized since the proposed loss function is trainable and easily 
optimized. 

 
Fig. 4  Model Structure. The network consists of a tensor batch input layer 

and deep CNN with MFM followed by Dropout regularization, then a fully 

connected dense layer. The SV-SoftMax loss during training follows this. 

This section covers the model architecture created using a 

9-layer CNN and MFM with SV-SoftMax: 

962



 We utilized tensor image data batch with real-time data 

augmentation. 32-batch size is used as a standard rule 

of thumb. The quantity of images needed to train a 

single forward and backward pass in a neural network 

is called the batch size. Studies suggested that choosing 

the higher batch size would not result in higher 

accuracy [32], 

 Similar to VGG, the number of parameters can be 

reduced by using a small convolution kernel size in the 

network with MFM. A dropout layer is placed after the 
final convolution layer to prevent overfitting. Dropout 

layer values are set to 0.7, 

 Similar to the architecture used in Wang et al. [3], a 

Fully connected layer with 512 filters and 256 filters 

with facial representations can be used for face 

verification. 

The SV-SoftMax loss is formulated by Wang et al.[3] as: 

 ℒ � �log �� ��� ����,    � 
�� ��� ����,    � ! ∑ #�$,%&',(,)'��� ��� ��'�,    � *'+�  (2) 

SV-SoftMax is employed as a loss function. cos �
&�,(� is 

cosine similarly. ,- are weights, K is the number of classes 

(where . ∈ {1,2, … K}. 
&',( is the angel of ,- and x [3]. t is a 

preset hyperparameter from  ℎ�6, 
,- , �, 7-� as defined: 

 ℎ�6, 
,-, �, 7-� � 89�$:;��<=>�%�', �!;�)' (3) 

t will be set to 1.05. Furthermore, different values set to t 

were analyzed. 

III. RESULTS AND DISCUSSION 

In this section, we present an in-depth analysis of the 

results obtained from our 9-Layer MFM CNN models, 

comparing their performance to other state-of-the-art models 

such as VGG-19 and FaceNet as well as 9-Layer MFM CNN 

without modified SoftMax. We highlight the key findings and 
insights derived from our experimental evaluation, providing 

a comprehensive understanding of the capabilities and the 

comparative analysis.  

A. Training 

The batch size for training all of the CNN models is 32. To 

build the model from scratch, TensorFlow is employed. As 

Pang et al. [33] pointed out, TensorFlow is one of the most 

widely used libraries for deep learning applications. To this 
stage, entire models are trained using the same random seed 

for weights and biases. Moreover, the Adaptive Moment 

Estimation (Adam) optimizer has a learning rate of 0.00001. 

B. Testing 

In the validation step, a single model is used to analyze 

each of the provided outcomes thus, there are no ensemble 

models. The Receiver Operating Characteristics (ROC) 

curves will be utilized. Moreover, classification metrics such 

as f1-score, precision, and recall from each class are adopted 
due to the imbalanced data in the dataset. The method is 

contrasted with the baseline methods using Categorical Cross-

entropy loss. Next, the 9-layers CNN with MFM compared 

against the original 9-layers CNN with MFM without 

modifying the loss functions. Furthermore, 9-layers CNN 

with MFM using SV-SoftMax with preset t is set to 1.05 will 

be tested. More details about the effect of the parameter t will 

also be tested. Finally, we test our constructed model against 

recent state-of-the-art face recognition models such as VGG, 

and FaceNet. These models will not be fine-tuned. However, 

based on the dataset used, we will modify their final output 

layer to fit the number of classes. Since FaceNet holds the 

models, we implemented the architecture by referring to 

Inception ResNet V2 models in their work. 

C. Method Comparison and Analysis 

In the validation step, a single model evaluates all the 

reported results; thus, there are no ensemble models. The 

Receiver Operating Characteristics (ROC) curves will be 

utilized. Moreover, classification metrics such as f1-score, 

precision, and recall from each class are adopted due to the 

imbalanced data in a dataset. We contrast the method with the 

standard Categorical Cross Entropy loss in comparison to the 

other baseline methods. 

Next, we will compare the 9-layers CNN with MFM 
against original 9-layers CNN without changing the loss 

functions. Furthermore, 9-layers CNN with MFM using SV-

SoftMax with preset t is set to 1.05 will be tested. More details 

about the effect of the parameter t will also be analyzed. 

Finally, we test our constructed model against recent state-of-

the-art face recognition models such as VGG and FaceNet. 

These models will not be fine-tuned. However, based on the 

dataset used, we will modify their final output layer to fit the 

number of classes. 

TABLE II 

COMPARISON WITH OTHER STATE-OF-THE-ART METHODS IN ACCURACY 

METRICS 

Models 
Speed 

(ms/step) 

Number of 

Params 
Accuracy 

VGG-19 [22] 152 ms/step 20M 87.39 

FaceNet [21] 142 ms/step 54M 98.44 

9-Layers MFM + 

SV Softmax 
142 ms/step 986K 96.22 

9-Layers MFM 143 ms/step 986K 95.38 

 

In the above results, VGG-19 is trained without fine-tuning, 

but the pre-trained weights are loaded to the model, similar to 
FaceNet. The final layer, which determines how many classes 

need to be classified, is changed to 23. All the models are 

trained in 100 iterations with 199 steps. FaceNet achieved 

better results. However, the number of parameters is two 

times bigger than VGG, making the model size bigger. 

Moreover, CNN-9 Layers MFM with SV-SoftMax is 0,008% 

better than CNN-9 Layers MFM with the same speed 

performance per step. Regarding memory requirements, it is 

obvious that CNN-9 Layers benefit the most since the average 

filter use is 3x3 filters with stride 1 and the same padding, 

resulting in much faster calculations. 

TABLE III 

COMPARISON WITH OTHER STATE-OF-THE-ART METHODS IN MACRO 

AVERAGE METRICS 

Models 
Precision 

(%) 
Recall (%) 

F1-Score 

(%) 

VGG-19 [22] 86.90 91.03 88.03 
FaceNet [21] 98.53 98.54 98.52 
9-Layers MFM 
+ SV Softmax 

95.12 96.12 95.37 

9-Layers MFM 94.47 95.79 95.02 
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When dealing with the imbalanced dataset, we choose 

metrics other than accuracy to trust the performance of all 

models. Therefore, f1-score is adopted. F1-score, particularly 

called harmonic mean of precision and recall, gives much 

more weight to low values of classes. Hence, we get high F1-

score if both recall and precision are high. Here, we utilized 

the macro average metrics type of f1-score. This is mainly 

because the macro average is computed using the arithmetic 

mean, thus treating all classes equally important. The 

precision and recall trade-off for 9-Layers CNN MFM + 
SoftMax is only 0,01%. 

 
Fig. 5  Models Accuracy. State-of-the art methods performance in accuracy 

compared with 9-Layers CNN with SV-SoftMax. 

The above results show that 9-CNN Layers MFM with SV-

SoftMax is slightly better than original MFM layers and 

VGG-19, and there is only 0,02% below FaceNet accuracy 

compared to our model. Interestingly, at epochs 60-62 

FaceNet performance drastically reduced, whereas 9-Layers 

CNN MFM with SV-SoftMax and 9-Layers CNN is 

consistently improved its performance. Although VGG-19 
was underperformed compared to 9-Layers MFM, it 

outperformed the 9-Layers MFM on the first 20 epochs. 

Similarly, 9-Layers MFM with SV-SoftMax outperforms the 

9-Layers MFM without modified SV-SoftMax.  

While all of the architectures employed in this scenario are 

well-suited for the face recognition task, the parameters 

required to develop effective representations, the choice of 

activation functions, and the initial weights contribute to this. 

In this experiment, the initial weights are randomly initialized 

before training begins, thereby impairing the capacity of the 

model to acquire meaningful representations during the early 
phases of training. The model will outperform others during 

the first few epochs when it starts with a better initial weight.  

As shown in Fig. 6, the confusion matrix below proved the 

precision score we showed earlier in Table 3. Note that each 

class is labeled based on the person's identity number instead 

of name. On average, the wrongly predicted maximum is 8 to 

9 false positive, and the minimum is 0. Some classes with less 

than 10 image samples can even classified correctly. Recall 

that t is the preset parameter for SV-SoftMax. As shown in 

Fig. 7, we trained 9-Layers CNN MFM with SV-SoftMax for 

50 iterations for different t values. First, we trained the model 
with the previously configured t set to 1.05. 

 
Fig. 6  Confusion Matrix. 9-Layers CNN with MFM + SV-SoftMax from all 

classes. 

 
Fig. 7  Hyperparameter. Preset modified parameter t of SV-SoftMax loss. 

 

Then, we slightly increase the parameter to 1.08, 1.15, and 
1.2, respectively. This increment is motivated by the 

performance of these parameters implemented by the original 

work in [3]. Here, we found that t=1.15 and t=1.05 have the 

best performance. However, the model still overfits the 

training data. This can be fixed by increasing the number of 

iterations so that the model will learn more, as previously 

done in experiments in Table 2. SV-SoftMax does not 

contribute to additional parameters in our architecture. 

IV. CONCLUSIONS 

In this study, the CNN-9 Layers MFM architecture was 

carefully designed to address the challenges of achieving a 

low-dimensional yet reliable face representation. The use of 

small convolutional layer kernel sizes proved effective in 

capturing essential facial features while minimizing the risk 

of overfitting. The model's performance was also significantly 

enhanced by reducing its size, making it more efficient and 

suitable for real-world industry applications. The 

experimental results showcased the potential of the 9-Layers 

CNN with MFM and SV-SoftMax over several well-
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established CNN methods. Its ability to outperform other 

models' accuracy and efficiency demonstrates its potential as 

a practical solution for various facial recognition tasks. With 

only 986K parameters, it accelerates the training and 

inference processes and reduces memory requirements, 

making it feasible for deployment on resource-constrained 

devices, such as mobile phones or embedded systems.  

A significant contribution of this research lies in 

introducing a customized SoftMax loss function. This loss 

function effectively targets and improves the classification of 
misclassified points, allowing the model to focus on crucial 

areas where it may initially struggle. The findings indicate 

that the proposed CNN-9 Layers MFM architecture, 

combined with the SV-SoftMax loss, holds immense potential 

for real-time facial recognition applications. The ability to 

balance model complexity and accuracy makes it a favorable 

choice for practical implementations in security systems, 

access control, and surveillance applications. In conclusion, 

this paper presents a compelling approach to address the 

challenges in facial recognition using the CNN-9 Layers 

MFM architecture. The results demonstrate the model's 
efficacy in delivering accuracy and efficiency, making it a 

promising candidate for widespread adoption across 

industries in diverse facial recognition systems.  
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