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Abstract— This paper proposes a public image database for Ranjana script Handwritten Character Datasets (RHCD), publicly 

available for Ranjana script researchers or anyone interested in the subject. To the best of our knowledge, the Ranjana script 

Handwritten Character Dataset (RHCD) is the first publicly available database for Ranjana script researchers. Ranjana script 

descended from the Brahmi script, consists of 36 consonant letters, 16 vowel letters, and 10 numerical letters. The focus of this research 

is three-fold: the first is to create a new database for Ranjana script Handwritten Character Recognition; the second is to test the 

character recognition accuracy of the created RHCD using existing CNN algorithms like LeNET-5, AlexNET, and ZFNET algorithm; 

the third is to propose a model by investigating different hyper-tuning parameters to improve the recognition accuracy of the created 

RHCD. The research method applied in this study is dataset collection, digitization & cropping, pre-processing, dataset splitting, data 

augmentation, and finally, implementing the CNN model (existing and proposed). Performance evaluation is based on the test accuracy, 

precision, recall, and F1-score. The experiment result shows that our model ranks first, with a testing accuracy of 99.73% for 64x64 

pixels resolution with precision, recall, and F1-score value 1. Creation and recognition of Ranjana script characters, vowel modifiers, 

and compound characters can be the next milestone to be achieved. Segmentation of words and sentences into characters and 

recognizing each character individually can be the next research domain. 
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I. INTRODUCTION

Character recognition and segmentation for Latin, Chinese, 

Arabic, and Devanagari scripts have been studied for many 

years and advanced to a certain level. However, the same has 

not been done in the case of the Ranjana script. Many books 

are written in Ranjana script on diverse topics like Science, 

Astrology, Medicine, History, Architecture, and Tantrism. 

Consider the abundant knowledge we would get if we could 

read the material in our preferred languages. The younger 
generation is not interested in studying their mother tongue, 

language, and script due to the lack of adaptability in the 

teaching methodology and resources. So, to close this gap and 

create more accessible platforms for the upcoming generation, 

digitization of this precious manuscript is in high demand. 

Character Recognition tasks require a large set of reliable 

datasets to apply recognition algorithms and generate efficient 

models. In the case of the Ranjana script, there is no such 

character dataset for character recognition, so further research 

is required in this area. Therefore, this research proposes an 

image database for RHCD. We believe that RHCD is the first 

publicly accessible database for anyone working on or 
interested in Ranjana scripts. 

A script refers to a collection of characters. Languages 

worldwide are written using a script, like Latin, Chinese, 

Arabic, Devanagari, and Ranjana script. A script is also called 

lipi and in the case of Newari lipi, there are 9 variations, 

namely Ranjana lipi, Prachalit lipi, Bhujinmol lipi, Golmol 

lipi, Kunmol lipi, Kwanmol lipi, Pachumol lipi, Hinmol lipi 

and Litumol lipi. Among them, Ranjana lipi is the most 

popular one. One of the several alphabets descended from the 

Brahmi script is the Ranjana script, also known as Kutila or 

Lantsa [1]. Ranjana script was developed during the 11th 

century and was used for writing the Newari languages. 
However, it is also used in Buddhist temples of Nepal, India, 

Tibet, China, Mongolia, and Japan. On many prayer wheels 

of different sizes, the well-known mantra "Om mani Padmee 

hum" is typically written in the Ranjana script, and in many 

Tibetan temples between Ladakh and Mongolia, the vibrant 

ceiling beams are embellished with gold-lettered mantras in 

the same font [2]. 

Like the Devanagari script, Ranjana script has 36 

consonant letters, 16 vowel letters, and 10 numerals, typically 
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written in a left-to-right fashion. However, the Kutakshar 

form, which is another form of Ranjana script, is written from 

top to bottom. The Ranjana script is used to print Newari 

newspapers, wedding cards, and certificates. Even the local 

municipality of Kathmandu, Lalitpur, and Bhaktapur use the 

Ranjana script in signboards and letter pads. 

 

 
Fig. 1  Ranjana script Consonants 

 
Fig. 2  Ranjana script Vowels 

 

Fig. 3  Ranjana script Numerals 

 

Many OCR technologies belonging to Latin script can 

provide close to 100% accuracy in recognizing text. 

Devanagari Optical Character Recognition is one such area 

that has seen many investigations. There are some publicly 

available benchmarks handwritten character databases 

available for scripts like Odia [3], Arabic [4] [5], Malayalam 

[6] [7], Meitei Mayek [8], Farsi [9], Telugu [10], Urdu [11], 

Tifinagh [12], Thai [13] and MNIST [14] datasets. However, 

no research has been carried out on character recognition of 

the Ranjana script.  

Acharya et al. [15] presented DHCD, a massive 

handwritten Devanagari character recognition system based 

on deep learning. Their research shows that using dropout and 

increasing the dataset can prevent overfitting and increase test 

accuracy by up to 98.47%. Avadesh and Goyal [16] 
demonstrated optical character recognition for Sanskrit that 

can digitize dirty and neglected documents using 

convolutional neural networks. With an accuracy of 93.32%, 

they discovered that CNN is more suited for multiclass 

classification problems than SVMs and ANNs.  

Deep convolutional neural networks were used to 

recognize Hindi handwritten characters [17]. When compared 

to LeNET-1, they discovered that LeNET-5 had an improved 

accuracy of 95.72%. A deep learning method for optical 

character recognition of handwritten Devanagari script was 

presented by Dessai and Patil [18]. They achieved 89.34% 
accuracy, and when the characters (ga), (ana), and (sa) were 

excluded, their accuracy went up to 91.11%. 

Aneja and Aneja [19] presented a transfer learning 

approach to recognize Devanagari alphabets in which various 

pre-trained networks such as VGG 11, VGG 16, VGG 19, 

AlexNet, DenseNet 121, DenseNet 201, and Inception V3 are 

implemented. The highest accuracy of 99% is achieved using 

the Inception V3 model due to different regularization 

techniques. Ghimire et al. [20] experimented with analyzing 

and recognizing handwritten Nepali characters using CNN 

with the help of template matching technique. Their 
experiment concluded that the convolution neural network 

model has more accuracy than the Feed Forward neural 

network in character recognition.  

Convolutional neural networks were employed by [21] to 

recognize handwritten characters. Utilizing 8 layers of CNN 

classification is carried out (4 conv, 2 pooling, 2 fully 

connected). 99.23% accuracy was the result. Sachdeva and 

Mittal [22] showed machine learning-based handwritten 

offline Devanagari compound character recognition. 

According to their research, adding more convolution layers 

and filters yields a testing accuracy that is 99.88% accurate.  

DeepNet Devanagari, a deep learning model for 
recognizing ancient Devanagari characters, was introduced by 

Kumar et al. [23]. With an accuracy of 93.73%, the CNN 

algorithm was discovered to perform better than the results 

suggested by employing Naivs Bayes, SVM, and Decision 

Tree to recognize old Devanagari manuscripts. The 

recognition of handwritten Devanagari characters using a 

convolutional neural network was presented by [24]. They 

achieved a consonant accuracy of 96.86%, a vowel accuracy 

of 99%, and a numeric accuracy of 99.29%.  

II. MATERIALS AND METHOD 

A. Data collection 

To build the Ranjana script handwritten characters' 

database, A4-sized empty data sheets were used, in which 66 

pre-specified rectangle boxes were created, as shown in 

Figure. 4 (a). There are additional boxes for writers to note 
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their names on the form. Figure 4 (b) shows a sample form 

with 36 consonants, 16 vowels, and 10 numbers printed as a 

reference for the writers. The writers were instructed to write 

each letter in empty blocks following the reference sample 

form. The writers were given the forms, fountain pen, and 

black ink. However, some individuals used ink colors other 

than black too. 

 
Fig. 4  A4 size blank and sample datasheet 

 

Because of its curved nature, Ranjana script characters 
should be handwritten. Therefore, a special type of pen was 

needed, as shown in Figure 5, which was made using the 

following steps.  

 Figure 5 a. Get an ordinary fountain pen.  

 Figure 5 b. Cut the tip of the fountain pen nib with an 

RJ-45 clamper at a certain angle (not more than 30 

degrees).  

 Figure 5 c. Rub the nib on a knife sharpener stone to 

flatten the rough edges.  

 
Fig. 5  Cutting Fountain Pen Nib 

While writing softly on the paper, what this pen does is as 

follows:  

 Figure 5 d. It writes with a thick lining if drawn from 

top to bottom.  

 Figure 5 e. It writes with a thick lining if drawn from 

left to right.  

 Figure 5 f. It writes with fine lining if drawn from left 

to right obliquely.  

The datasheet form was distributed among the Ranjana 

scriptwriting community, like Nepal Lipi Guthi, Asa Safu 

Kuthi, and Callijatra team. The form was also distributed to 

the participants of a training program in Ranjana script 
conducted by the Rotaract Club of Baneshwor Royal. Besides 

these, Khwopa College of Engineering students and staff 

familiar with the Ranjana script also contributed to the data 

collection process.    

Each character (36 consonants, 16 vowels, and 10 

numerals) was written 1 to 2 times by each writer. Almost all 

the letters were written with the provided calligraphy pen and 

black ink, while some were written with a normal pen for 

different character variations. About 150 people have 

contributed their handwriting to the database's development. 

B. Digitization of data 

Submitted papers were scanned at 300 dpi resolution with 

a Canon MF4320-4350 scanner to digitize the collected data. 

The scanner was adjusted to produce PNG format directly. 

Before scanning, certain noisy and missing character images 
were manually corrected. 

C. Cropping 

Cropping was applied to each A4 size datasheet to crop the 

character blocks. The Microsoft Office Picture Manager and 

Adobe Photoshop CS6 were manually used to complete this 

operation. All similar letters were grouped in a folder, 

resulting in 62 folders. Each folder has 280-character images. 

D. Pre-processing 

All the cropped letter images were pre-processed to remove 

noise, resized, cropped, and edges were also detected. Pre-

processing steps applied to the image are described below: - 

1) Step-1 RGB to grayscale conversion:  Some datasets 

were written in ink that was not black, such as blue and red. 

As it is challenging to process color images, the first step is to 

convert the image to grayscale. Python OpenCV's 

cv2.cvtColor() techniques were used for this. A sample of a 

Grayscale image is shown in Figure 6. For the RGB image 
f(x,y), the following equation gives the corresponding 

grayscale image. 

���, �� � 0.2989 ∗ �����, ��� � 0.5870
∗ �����, ��� � 0.1140
∗ �����, ��� 

(1) 

were, R(f(x,y)) is red component of the RGB image f(x,y), 

and so on.  

 
Fig. 6  Grayscale image 

2) Step-2 Grayscale to binary conversion: Turning a 

grayscale image into a black-and-white image is called image 

binarization (i.e., 0 and 255 pixels, respectively). The 

grayscale image is then transformed into a binary image using 
the binary thresholding Python OpenCV procedure, where 

Otsu thresholding is used as an additional flag. If the image 

intensity is less than a threshold value T, it is made black (0) 

or white (255). A sample of a binary image is shown in Figure 

7. 

 ���� �  �0, � � �
1, � � � (2) 

where P(x) is the newly updated pixel value, and x is the 

original pixel value.  
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Fig. 7  Binary image 

3) Noise removal:  Pre-processing is mostly used to get 

rid of image noise in all its forms and increase character image 

correctness. Filtering aids in the removal of any extraneous 

pixels. To eliminate background noise, Python OpenCV 

Morphological procedures were utilized. In Figure 8, a sample 

of the filtered image is displayed. 

 
Fig. 8  Filtered image 

4) Universe of Discourse: It is essentially the smallest 

rectangle surrounding the character and is the smallest space 

in which the character is present. The excess undesirable 

pixels around the image are eliminated. As illustrated in 
Figure 9, the borders in each image were located using the 

Python OpenCV findContours() approach. 

 
Fig. 9  Universe of Discourse 

5) Normalization: Normalization reduces a variable-

sized input image to a fixed size that can be processed. For 
our work, we kept the original image pattern while scaling the 

input images to 64 x 64 pixels (width: 64, height: 64). A 

sample of a normalized image is shown in Figure 10. 

 
Fig. 10  Normalized 64x64 pixel 

6) Inversion: We used white pixels as the foreground and 

black pixels as the background for character identification. 

Therefore, it is necessary to invert the images. We used 

Inverse-Binary Thresholding, which converts the black and 

white pixels into white, respectively. Figure 11 displays an 

image that has been reversed. 

 ���, �� � 1  ���, �� (3) 

 
Fig. 11  Inverted image 

E. Training/Validation/Testing set split 

We used a split ratio of 60:20:20 to randomly divide the 

dataset into the three subsets known as the Training, 

Validation, and Test set. To train the model, a training set is 
utilized. A validation set is used to validate the model 

performance during training. The test set is used to test the 

model after completing the training. The training folder 

contains 60% (10,416-character images, i.e., 168-character 

images per class), the validation folder contains 20% (3,472-

character images, i.e., 56-character images per class), and the 

testing folder also contains 20% (3,472-character images, i.e., 

56-character images per class) of the total character images. 

F. Data Augmentation 

Techniques like data augmentation can be applied to get 

over the issue of a smaller number of datasets and attain high 

accuracy[23]. Data augmentation is required because the 

dataset used in this study is in few quantities. Each character 

image is augmented 10-fold using Keras ImageDataGenerator 

subjected to a random amount of rotation_range = +-20°, 

zoom_range = 0.20, and shear_range = 0.50. The database can 

be downloaded at: 

https://kaggle.com/datasets/a1a3bb5d8fc063cbed7fba4d5662

df60b63c501be5766d30ef1dc7a441ef8fdb. 

G. Proposed CNN Architecture 

The proposed architecture's structure is [CONV-CONV-

POOL - CONV-CONV-POOL - CONV-CONV-POOL - FC-

FC-FC-FC]. The architecture detail is given in Table 1 with 

trainable and non-trainable parameters. The proposed model 

is used for 64x64 pixels input image. Hyper-parameters 

tuning using Keras tuning was done in order to obtain the best 

hyper-parameters for the proposed model. 

TABLE I 

PROPOSED ARCHITECTURE 

Input image 64x64 pixels 

Layers Param 
Conv2D 16 3x3 160 
Conv2D-32-5x5 12832 

BN, Maxpool (dp 0.45) 128 
Conv2D-64-3x3 18496 
Conv2D-64-5x5 102464 
BN, Maxpool (dp 0.40) 256 
Conv2D-128-5x5 204928 
Conv2D-64-3x3 73792 
BN, Maxpool (dp 0.45) 256 
Fc-512 2097664 

BN (dp 0.50) 2048 
Fc-512 262656 
BN (dp 0.45) 2048 
Fc-64 32832 
BN (dp 0.35) 256 
Fc-62 4030 

Total params: 2,814,846 
Trainable params: 2,812,350 

Non-trainable params: 2,496 

 

The relu activation function is found to be the best 

activation function by tweaking the activation function. By 
tuning the optimizers, adam optimizer is obtained as the best 

optimizer. By tuning the learning rate, 0.000775 learning rate 

is obtained as the best learning rate. By tuning the batch sizes, 

the highest score for the batch size obtained is 32. 
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III. RESULTS AND DISCUSSION 

A laptop with an Intel Core i7-10750H 2.60 GHz (CPU), 

16GB of RAM, and an NVDIA GeForce GTX 1650 Ti VGA 

card was used to conduct our research. We also used Kaggle 

Notebook for a session with a maximum of 73.1 GB disk, 13 

GB of RAM, and 15.9 GB of GPU memory. Tensorflow and 
Keras were used with Python 3.9.12 and Windows 11 to build 

the system. 

The collected Ranjana script Handwritten Character 

Datasets (RHCD) contain a wide range of variations in the 

characters, including thickness, color, size, and style of the 

characters, this variation will facilitate in increasing the 

character recognition accuracy of Ranjana script in natural 

images. However, extreme variations or non-standard 

character designs can pose challenges and reduce recognition 

accuracy. Therefore, to optimize character recognition, we 

have recommended following the sample datasheet shown in 

Figure 4 (b), containing standard fonts, consistent letter sizes, 

and legible styles to maintain data consistency during the 

dataset collection process. 

We chose three well-known CNN architectures — LeNET-

5 [25], AlexNET [26], and ZFNET [27] — as well as an extra 

proposed design to demonstrate the value of our proposed 

dataset for research in RHCD. We have looked at several 

hyper-tuning parameters when putting the suggested 
architecture into practice to get the best performance 

outcomes in terms of test accuracy, precision, recall, and f1-

score. The accuracy rate comparison was completed using 

current CNN architectures, and a suggested CNN design (see 

Fig. 12). 

 

 
Fig. 12  Proposed CNN architecture 

 

We have avoided using high-performance CNN such as 

VGGNET [28], GoogLeNet [29], and Microsoft Resnet [30] 

because they require huge computation power, which is not 

available in our ordinary computers and laptops. For input 

image size 64x64 pixels resolution, an accuracy of 88.06% is 

achieved with LeNET5 architecture at 56 epochs. The 

experiment was then performed with AlexNET architecture, 

and an improvement in accuracy up to 98.90% was observed, 

with the number of epochs being 53 epochs. The experiment 

was then performed with ZFNET architecture, and 98.35% 
accuracy was observed, with the number of epochs being 8 

epochs. The experiment was then carried out using the 

proposed architecture, which had the maximum accuracy rate 

of 99.73%, with precision 1, recall 1, and F1-score 1 which is 

obtained at 53 epochs. 

TABLE II 

ACCURACY RESULT OF VARIOUS ARCHITECTURE 

Input image 64x64 pixels  

CNN Test 

Accuracy Precision Recall 
F1-

score 
Epoch 

LeNET - 5 88.06% 0.97% 0.86% 0.86% 56 

AlexNET 98.90% 0.98% 0.98% 0.98% 53 

ZFNET 98.35% 0.97% 0.97% 0.97% 8 

Proposed 
model 

99.73% 1 1 1 53 

 

Figure 13 shows Training/Validation accuracy curve for 

64x64 pixels resolution for the proposed model at different 

epochs. The proposed model shows low bias and low 

variance, resulting in the best fit curve. 
 

 
Fig. 13  Training/Validation accuracy curve for the proposed model 

 

Figure 14 shows the Training/Validation loss curve for 
64x64 pixels resolution for the proposed model at different 

epochs. 

 
Fig. 14  Training/Validation loss curve for the proposed model 
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Figure 15 represents the confusion matrix generated by the 

proposed model for 64x64 pixels input image size with a 

maximum test accuracy of 99.73%. The diagonal line 

represents the number of characters correctly classified into 

their respective classes. Moreover, the values other than the 

diagonal line are those misclassified values. The 

misclassification is due to the similarity between some 

characters like (ba and va), (4 and 5), (2 and 3), (lirr and lir) 

(chha and tha). 

 

 
Fig. 15  Confusion matrix generated by the proposed model 

IV. CONCLUSION 

Any recognition system must start with a standard image 

database. In this research, we propose a new database for the 

Ranjana script Handwritten Character Dataset, which will be 

open to all researchers. To the best of our knowledge, this 
Ranjana script Handwritten Character Dataset (RHCD) is the 

first database of its kind that is freely accessible to 

researchers. There are 173,600 character images in the 

database, divided into training, validation, and testing folders, 

which are again subdivided into 62 characters.  

We evaluated the created Ranjana script Handwritten 

Character Dataset (RHCD) using Le-NET-5, AlexNET, 

ZFNET, and a proposed CNN model architecture. The 

evaluation was performed for 64x64 image pixels resolution. 

Hyper-parameter tuning using the Keras tuner was done for 

finding the hyper-parameter values. Hyper-parameter tuning 

was done to find the number of filters, filter size, dense layer 
unit, dropout values, activation function, optimizers, learning 

rate, and batch sizes. The proposed architecture's best 

accuracy rate was a test accuracy of 99.73% for 64x64 pixel 

resolution.  

Hyperparameter tuning may result in identifying optimal 

hyperparameters by finding the right balance between the 

number of layers, filter sizes, pooling sizes, and batch sizes, 

the model can achieve a good accuracy rate even with a less 

complex model like ours while being computationally 

efficient.  

In the future, we would like to increase the size of the 

dataset and apply various other models to achieve a higher 

accuracy rate. Creating and recognizing Ranjana script 

characters with vowel modifiers can be the next milestone. 

Again, the creation and recognition of Ranjana script 

compound characters can be the next future research work. 

Segmentation of words and sentences into characters and 

recognizing each character individually can be the next 

research domain. 
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