
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Ranjana Script Handwritten Character Recognition using CNN

Jen Bati a,*, Pankaj Raj Dawadi a
a Department of Computer Science and Engineering, Kathmandu University, Dhulikhel, Kavre, 45210, Nepal

Corresponding author: *jen.bati16@gmail.com

Abstract— This paper proposes a public image database for Ranjana script Handwritten Character Datasets (RHCD), publicly

available for Ranjana script researchers or anyone interested in the subject. To the best of our knowledge, the Ranjana script

Handwritten Character Dataset (RHCD) is the first publicly available database for Ranjana script researchers. Ranjana script

descended from the Brahmi script, consists of 36 consonant letters, 16 vowel letters, and 10 numerical letters. The focus of this research

is three-fold: the first is to create a new database for Ranjana script Handwritten Character Recognition; the second is to test the

character recognition accuracy of the created RHCD using existing CNN algorithms like LeNET-5, AlexNET, and ZFNET algorithm;

the third is to propose a model by investigating different hyper-tuning parameters to improve the recognition accuracy of the created

RHCD. The research method applied in this study is dataset collection, digitization & cropping, pre-processing, dataset splitting, data

augmentation, and finally, implementing the CNN model (existing and proposed). Performance evaluation is based on the test accuracy,

precision, recall, and F1-score. The experiment result shows that our model ranks first, with a testing accuracy of 99.73% for 64x64

pixels resolution with precision, recall, and F1-score value 1. Creation and recognition of Ranjana script characters, vowel modifiers,

and compound characters can be the next milestone to be achieved. Segmentation of words and sentences into characters and

recognizing each character individually can be the next research domain.

Keywords— Ranjana script; Newari script; RHCD; hyper-parameter; handwritten characters.

Manuscript received 28 Mar. 2023; revised 10 May 2023; accepted 25 Jun. 2023. Date of publication 10 Sep. 2023.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Character recognition and segmentation for Latin, Chinese,

Arabic, and Devanagari scripts have been studied for many

years and advanced to a certain level. However, the same has

not been done in the case of the Ranjana script. Many books

are written in Ranjana script on diverse topics like Science,

Astrology, Medicine, History, Architecture, and Tantrism.

Consider the abundant knowledge we would get if we could

read the material in our preferred languages. The younger
generation is not interested in studying their mother tongue,

language, and script due to the lack of adaptability in the

teaching methodology and resources. So, to close this gap and

create more accessible platforms for the upcoming generation,

digitization of this precious manuscript is in high demand.

Character Recognition tasks require a large set of reliable

datasets to apply recognition algorithms and generate efficient

models. In the case of the Ranjana script, there is no such

character dataset for character recognition, so further research

is required in this area. Therefore, this research proposes an

image database for RHCD. We believe that RHCD is the first

publicly accessible database for anyone working on or
interested in Ranjana scripts.

A script refers to a collection of characters. Languages

worldwide are written using a script, like Latin, Chinese,

Arabic, Devanagari, and Ranjana script. A script is also called

lipi and in the case of Newari lipi, there are 9 variations,

namely Ranjana lipi, Prachalit lipi, Bhujinmol lipi, Golmol

lipi, Kunmol lipi, Kwanmol lipi, Pachumol lipi, Hinmol lipi

and Litumol lipi. Among them, Ranjana lipi is the most

popular one. One of the several alphabets descended from the

Brahmi script is the Ranjana script, also known as Kutila or

Lantsa [1]. Ranjana script was developed during the 11th

century and was used for writing the Newari languages.
However, it is also used in Buddhist temples of Nepal, India,

Tibet, China, Mongolia, and Japan. On many prayer wheels

of different sizes, the well-known mantra "Om mani Padmee

hum" is typically written in the Ranjana script, and in many

Tibetan temples between Ladakh and Mongolia, the vibrant

ceiling beams are embellished with gold-lettered mantras in

the same font [2].

Like the Devanagari script, Ranjana script has 36

consonant letters, 16 vowel letters, and 10 numerals, typically

984

JOIV : Int. J. Inform. Visualization, 7(3) - September 2023 984-990

written in a left-to-right fashion. However, the Kutakshar

form, which is another form of Ranjana script, is written from

top to bottom. The Ranjana script is used to print Newari

newspapers, wedding cards, and certificates. Even the local

municipality of Kathmandu, Lalitpur, and Bhaktapur use the

Ranjana script in signboards and letter pads.

Fig. 1 Ranjana script Consonants

Fig. 2 Ranjana script Vowels

Fig. 3 Ranjana script Numerals

Many OCR technologies belonging to Latin script can

provide close to 100% accuracy in recognizing text.

Devanagari Optical Character Recognition is one such area

that has seen many investigations. There are some publicly

available benchmarks handwritten character databases

available for scripts like Odia [3], Arabic [4] [5], Malayalam

[6] [7], Meitei Mayek [8], Farsi [9], Telugu [10], Urdu [11],

Tifinagh [12], Thai [13] and MNIST [14] datasets. However,

no research has been carried out on character recognition of

the Ranjana script.

Acharya et al. [15] presented DHCD, a massive

handwritten Devanagari character recognition system based

on deep learning. Their research shows that using dropout and

increasing the dataset can prevent overfitting and increase test

accuracy by up to 98.47%. Avadesh and Goyal [16]
demonstrated optical character recognition for Sanskrit that

can digitize dirty and neglected documents using

convolutional neural networks. With an accuracy of 93.32%,

they discovered that CNN is more suited for multiclass

classification problems than SVMs and ANNs.

Deep convolutional neural networks were used to

recognize Hindi handwritten characters [17]. When compared

to LeNET-1, they discovered that LeNET-5 had an improved

accuracy of 95.72%. A deep learning method for optical

character recognition of handwritten Devanagari script was

presented by Dessai and Patil [18]. They achieved 89.34%
accuracy, and when the characters (ga), (ana), and (sa) were

excluded, their accuracy went up to 91.11%.

Aneja and Aneja [19] presented a transfer learning

approach to recognize Devanagari alphabets in which various

pre-trained networks such as VGG 11, VGG 16, VGG 19,

AlexNet, DenseNet 121, DenseNet 201, and Inception V3 are

implemented. The highest accuracy of 99% is achieved using

the Inception V3 model due to different regularization

techniques. Ghimire et al. [20] experimented with analyzing

and recognizing handwritten Nepali characters using CNN

with the help of template matching technique. Their
experiment concluded that the convolution neural network

model has more accuracy than the Feed Forward neural

network in character recognition.

Convolutional neural networks were employed by [21] to

recognize handwritten characters. Utilizing 8 layers of CNN

classification is carried out (4 conv, 2 pooling, 2 fully

connected). 99.23% accuracy was the result. Sachdeva and

Mittal [22] showed machine learning-based handwritten

offline Devanagari compound character recognition.

According to their research, adding more convolution layers

and filters yields a testing accuracy that is 99.88% accurate.

DeepNet Devanagari, a deep learning model for
recognizing ancient Devanagari characters, was introduced by

Kumar et al. [23]. With an accuracy of 93.73%, the CNN

algorithm was discovered to perform better than the results

suggested by employing Naivs Bayes, SVM, and Decision

Tree to recognize old Devanagari manuscripts. The

recognition of handwritten Devanagari characters using a

convolutional neural network was presented by [24]. They

achieved a consonant accuracy of 96.86%, a vowel accuracy

of 99%, and a numeric accuracy of 99.29%.

II. MATERIALS AND METHOD

A. Data collection

To build the Ranjana script handwritten characters'

database, A4-sized empty data sheets were used, in which 66

pre-specified rectangle boxes were created, as shown in

Figure. 4 (a). There are additional boxes for writers to note

985

their names on the form. Figure 4 (b) shows a sample form

with 36 consonants, 16 vowels, and 10 numbers printed as a

reference for the writers. The writers were instructed to write

each letter in empty blocks following the reference sample

form. The writers were given the forms, fountain pen, and

black ink. However, some individuals used ink colors other

than black too.

Fig. 4 A4 size blank and sample datasheet

Because of its curved nature, Ranjana script characters
should be handwritten. Therefore, a special type of pen was

needed, as shown in Figure 5, which was made using the

following steps.

 Figure 5 a. Get an ordinary fountain pen.

 Figure 5 b. Cut the tip of the fountain pen nib with an

RJ-45 clamper at a certain angle (not more than 30

degrees).

 Figure 5 c. Rub the nib on a knife sharpener stone to

flatten the rough edges.

Fig. 5 Cutting Fountain Pen Nib

While writing softly on the paper, what this pen does is as

follows:

 Figure 5 d. It writes with a thick lining if drawn from

top to bottom.

 Figure 5 e. It writes with a thick lining if drawn from

left to right.

 Figure 5 f. It writes with fine lining if drawn from left

to right obliquely.

The datasheet form was distributed among the Ranjana

scriptwriting community, like Nepal Lipi Guthi, Asa Safu

Kuthi, and Callijatra team. The form was also distributed to

the participants of a training program in Ranjana script
conducted by the Rotaract Club of Baneshwor Royal. Besides

these, Khwopa College of Engineering students and staff

familiar with the Ranjana script also contributed to the data

collection process.

Each character (36 consonants, 16 vowels, and 10

numerals) was written 1 to 2 times by each writer. Almost all

the letters were written with the provided calligraphy pen and

black ink, while some were written with a normal pen for

different character variations. About 150 people have

contributed their handwriting to the database's development.

B. Digitization of data

Submitted papers were scanned at 300 dpi resolution with

a Canon MF4320-4350 scanner to digitize the collected data.

The scanner was adjusted to produce PNG format directly.

Before scanning, certain noisy and missing character images
were manually corrected.

C. Cropping

Cropping was applied to each A4 size datasheet to crop the

character blocks. The Microsoft Office Picture Manager and

Adobe Photoshop CS6 were manually used to complete this

operation. All similar letters were grouped in a folder,

resulting in 62 folders. Each folder has 280-character images.

D. Pre-processing

All the cropped letter images were pre-processed to remove

noise, resized, cropped, and edges were also detected. Pre-

processing steps applied to the image are described below: -

1) Step-1 RGB to grayscale conversion: Some datasets

were written in ink that was not black, such as blue and red.

As it is challenging to process color images, the first step is to

convert the image to grayscale. Python OpenCV's

cv2.cvtColor() techniques were used for this. A sample of a

Grayscale image is shown in Figure 6. For the RGB image
f(x,y), the following equation gives the corresponding

grayscale image.

���, �� � 0.2989 ∗ �����, ��� � 0.5870
∗ �����, ��� � 0.1140
∗ �����, ���

(1)

were, R(f(x,y)) is red component of the RGB image f(x,y),

and so on.

Fig. 6 Grayscale image

2) Step-2 Grayscale to binary conversion: Turning a

grayscale image into a black-and-white image is called image

binarization (i.e., 0 and 255 pixels, respectively). The

grayscale image is then transformed into a binary image using
the binary thresholding Python OpenCV procedure, where

Otsu thresholding is used as an additional flag. If the image

intensity is less than a threshold value T, it is made black (0)

or white (255). A sample of a binary image is shown in Figure

7.

 ���� � �0, � � �
1, � � � (2)

where P(x) is the newly updated pixel value, and x is the

original pixel value.

986

Fig. 7 Binary image

3) Noise removal: Pre-processing is mostly used to get

rid of image noise in all its forms and increase character image

correctness. Filtering aids in the removal of any extraneous

pixels. To eliminate background noise, Python OpenCV

Morphological procedures were utilized. In Figure 8, a sample

of the filtered image is displayed.

Fig. 8 Filtered image

4) Universe of Discourse: It is essentially the smallest

rectangle surrounding the character and is the smallest space

in which the character is present. The excess undesirable

pixels around the image are eliminated. As illustrated in
Figure 9, the borders in each image were located using the

Python OpenCV findContours() approach.

Fig. 9 Universe of Discourse

5) Normalization: Normalization reduces a variable-

sized input image to a fixed size that can be processed. For
our work, we kept the original image pattern while scaling the

input images to 64 x 64 pixels (width: 64, height: 64). A

sample of a normalized image is shown in Figure 10.

Fig. 10 Normalized 64x64 pixel

6) Inversion: We used white pixels as the foreground and

black pixels as the background for character identification.

Therefore, it is necessary to invert the images. We used

Inverse-Binary Thresholding, which converts the black and

white pixels into white, respectively. Figure 11 displays an

image that has been reversed.

 ���, �� � 1 ���, �� (3)

Fig. 11 Inverted image

E. Training/Validation/Testing set split

We used a split ratio of 60:20:20 to randomly divide the

dataset into the three subsets known as the Training,

Validation, and Test set. To train the model, a training set is
utilized. A validation set is used to validate the model

performance during training. The test set is used to test the

model after completing the training. The training folder

contains 60% (10,416-character images, i.e., 168-character

images per class), the validation folder contains 20% (3,472-

character images, i.e., 56-character images per class), and the

testing folder also contains 20% (3,472-character images, i.e.,

56-character images per class) of the total character images.

F. Data Augmentation

Techniques like data augmentation can be applied to get

over the issue of a smaller number of datasets and attain high

accuracy[23]. Data augmentation is required because the

dataset used in this study is in few quantities. Each character

image is augmented 10-fold using Keras ImageDataGenerator

subjected to a random amount of rotation_range = +-20°,

zoom_range = 0.20, and shear_range = 0.50. The database can

be downloaded at:

https://kaggle.com/datasets/a1a3bb5d8fc063cbed7fba4d5662

df60b63c501be5766d30ef1dc7a441ef8fdb.

G. Proposed CNN Architecture

The proposed architecture's structure is [CONV-CONV-

POOL - CONV-CONV-POOL - CONV-CONV-POOL - FC-

FC-FC-FC]. The architecture detail is given in Table 1 with

trainable and non-trainable parameters. The proposed model

is used for 64x64 pixels input image. Hyper-parameters

tuning using Keras tuning was done in order to obtain the best

hyper-parameters for the proposed model.

TABLE I

PROPOSED ARCHITECTURE

Input image 64x64 pixels

Layers Param
Conv2D 16 3x3 160
Conv2D-32-5x5 12832

BN, Maxpool (dp 0.45) 128
Conv2D-64-3x3 18496
Conv2D-64-5x5 102464
BN, Maxpool (dp 0.40) 256
Conv2D-128-5x5 204928
Conv2D-64-3x3 73792
BN, Maxpool (dp 0.45) 256
Fc-512 2097664

BN (dp 0.50) 2048
Fc-512 262656
BN (dp 0.45) 2048
Fc-64 32832
BN (dp 0.35) 256
Fc-62 4030

Total params: 2,814,846
Trainable params: 2,812,350

Non-trainable params: 2,496

The relu activation function is found to be the best

activation function by tweaking the activation function. By
tuning the optimizers, adam optimizer is obtained as the best

optimizer. By tuning the learning rate, 0.000775 learning rate

is obtained as the best learning rate. By tuning the batch sizes,

the highest score for the batch size obtained is 32.

987

III. RESULTS AND DISCUSSION

A laptop with an Intel Core i7-10750H 2.60 GHz (CPU),

16GB of RAM, and an NVDIA GeForce GTX 1650 Ti VGA

card was used to conduct our research. We also used Kaggle

Notebook for a session with a maximum of 73.1 GB disk, 13

GB of RAM, and 15.9 GB of GPU memory. Tensorflow and
Keras were used with Python 3.9.12 and Windows 11 to build

the system.

The collected Ranjana script Handwritten Character

Datasets (RHCD) contain a wide range of variations in the

characters, including thickness, color, size, and style of the

characters, this variation will facilitate in increasing the

character recognition accuracy of Ranjana script in natural

images. However, extreme variations or non-standard

character designs can pose challenges and reduce recognition

accuracy. Therefore, to optimize character recognition, we

have recommended following the sample datasheet shown in

Figure 4 (b), containing standard fonts, consistent letter sizes,

and legible styles to maintain data consistency during the

dataset collection process.

We chose three well-known CNN architectures — LeNET-

5 [25], AlexNET [26], and ZFNET [27] — as well as an extra

proposed design to demonstrate the value of our proposed

dataset for research in RHCD. We have looked at several

hyper-tuning parameters when putting the suggested
architecture into practice to get the best performance

outcomes in terms of test accuracy, precision, recall, and f1-

score. The accuracy rate comparison was completed using

current CNN architectures, and a suggested CNN design (see

Fig. 12).

Fig. 12 Proposed CNN architecture

We have avoided using high-performance CNN such as

VGGNET [28], GoogLeNet [29], and Microsoft Resnet [30]

because they require huge computation power, which is not

available in our ordinary computers and laptops. For input

image size 64x64 pixels resolution, an accuracy of 88.06% is

achieved with LeNET5 architecture at 56 epochs. The

experiment was then performed with AlexNET architecture,

and an improvement in accuracy up to 98.90% was observed,

with the number of epochs being 53 epochs. The experiment

was then performed with ZFNET architecture, and 98.35%
accuracy was observed, with the number of epochs being 8

epochs. The experiment was then carried out using the

proposed architecture, which had the maximum accuracy rate

of 99.73%, with precision 1, recall 1, and F1-score 1 which is

obtained at 53 epochs.

TABLE II

ACCURACY RESULT OF VARIOUS ARCHITECTURE

Input image 64x64 pixels

CNN Test

Accuracy Precision Recall
F1-

score
Epoch

LeNET - 5 88.06% 0.97% 0.86% 0.86% 56

AlexNET 98.90% 0.98% 0.98% 0.98% 53

ZFNET 98.35% 0.97% 0.97% 0.97% 8

Proposed
model

99.73% 1 1 1 53

Figure 13 shows Training/Validation accuracy curve for

64x64 pixels resolution for the proposed model at different

epochs. The proposed model shows low bias and low

variance, resulting in the best fit curve.

Fig. 13 Training/Validation accuracy curve for the proposed model

Figure 14 shows the Training/Validation loss curve for
64x64 pixels resolution for the proposed model at different

epochs.

Fig. 14 Training/Validation loss curve for the proposed model

988

Figure 15 represents the confusion matrix generated by the

proposed model for 64x64 pixels input image size with a

maximum test accuracy of 99.73%. The diagonal line

represents the number of characters correctly classified into

their respective classes. Moreover, the values other than the

diagonal line are those misclassified values. The

misclassification is due to the similarity between some

characters like (ba and va), (4 and 5), (2 and 3), (lirr and lir)

(chha and tha).

Fig. 15 Confusion matrix generated by the proposed model

IV. CONCLUSION

Any recognition system must start with a standard image

database. In this research, we propose a new database for the

Ranjana script Handwritten Character Dataset, which will be

open to all researchers. To the best of our knowledge, this
Ranjana script Handwritten Character Dataset (RHCD) is the

first database of its kind that is freely accessible to

researchers. There are 173,600 character images in the

database, divided into training, validation, and testing folders,

which are again subdivided into 62 characters.

We evaluated the created Ranjana script Handwritten

Character Dataset (RHCD) using Le-NET-5, AlexNET,

ZFNET, and a proposed CNN model architecture. The

evaluation was performed for 64x64 image pixels resolution.

Hyper-parameter tuning using the Keras tuner was done for

finding the hyper-parameter values. Hyper-parameter tuning

was done to find the number of filters, filter size, dense layer
unit, dropout values, activation function, optimizers, learning

rate, and batch sizes. The proposed architecture's best

accuracy rate was a test accuracy of 99.73% for 64x64 pixel

resolution.

Hyperparameter tuning may result in identifying optimal

hyperparameters by finding the right balance between the

number of layers, filter sizes, pooling sizes, and batch sizes,

the model can achieve a good accuracy rate even with a less

complex model like ours while being computationally

efficient.

In the future, we would like to increase the size of the

dataset and apply various other models to achieve a higher

accuracy rate. Creating and recognizing Ranjana script

characters with vowel modifiers can be the next milestone.

Again, the creation and recognition of Ranjana script

compound characters can be the next future research work.

Segmentation of words and sentences into characters and

recognizing each character individually can be the next

research domain.

ACKNOWLEDGMENT

We thank Nepal Lipi Guthi, Asa Safu Kuthi, the Callijatra

team, the Rotaract Club of Baneshwor Royal, Khwopa

College of Engineering, as well as every single person who

volunteered readily in contributing handwriting samples for

the preparation of the database.

REFERENCES

[1] E. R. Acharya, "Ranjana Numeral System: A Brief Information,"

Journal of the Institute of Engineering, vol. 13, no. 1, pp. 221–224,

Jun. 2017, doi: 10.3126/JIE.V13I1.20370.

[2] Jens-Uwe and Hartmann, "The Ranjana Script," 1998, Accessed:

May 11, 2023. [Online]. Available: https://epub.ub.uni-

muenchen.de/25506/1/Hartmann_Ranjana_Script.pdf.

[3] R. K. Mohapatra, T. K. Mishra, S. Panda, and B. Majhi, “OHCS: A

database for handwritten atomic Odia Character Recognition,” 2015

Fifth National Conference on Computer Vision, Pattern

Recognition, Image Processing and Graphics (NCVPRIPG), Dec.

2015, doi: 10.1109/ncvpripg.2015.7490020.

[4] M. N. AlJarrah, M. M. Zyout, and R. Duwairi, “Arabic Handwritten

Characters Recognition Using Convolutional Neural Network,”

2021 12th International Conference on Information and

Communication Systems (ICICS), May 2021, doi:

10.1109/icics52457.2021.9464596.

[5] A. A. A. Ali and S. Mallaiah, “Intelligent handwritten recognition

using hybrid CNN architectures based-SVM classifier with dropout,”

Journal of King Saud University - Computer and Information

Sciences, vol. 34, no. 6, pp. 3294–3300, Jun. 2022, doi:

10.1016/j.jksuci.2021.01.012.

[6] Jabir Ali V, Joseph JT. A convolutional neural network based

approach for recognizing malayalam handwritten characters. Int J Sci

Eng Res. 2018.

[7] K. Manjusha, M. A. Kumar, and K. P. Soman, “On developing

handwritten character image database for Malayalam language script,”

Engineering Science and Technology, an International Journal, vol.

22, no. 2, pp. 637–645, Apr. 2019, doi: 10.1016/j.jestch.2018.10.011.

[8] D. Hijam and S. Saharia, "On developing complete character set

Meitei Mayek handwritten character database," Visual Computer,

vol. 38, no. 2, pp. 525–539, Feb. 2022, doi: 10.1007/S00371-020-

02032-Y.

[9] Y. A. Nanehkaran, J. Chen, S. Salimi, and D. Zhang, "A pragmatic

convolutional bagging ensemble learning for recognition of Farsi

handwritten digits," Journal of Supercomputing, vol. 77, no. 11, pp.

13474–13493, Nov. 2021, doi: 10.1007/S11227-021-03822-4.

[10] R. Kummari and C. Bhagvati, "UHTelHwCC: A Dataset for Telugu

Offline Handwritten Character Recognition," Communications in

Computer and Information Science, vol. 1576 CCIS, pp. 249–262,

2022, doi: 10.1007/978-3-031-07005-1_22.

[11] K. O. Mohammed Aarif and P. Sivakumar, “Multi-Domain Deep

Convolutional Neural Network for Ancient Urdu Text Recognition

System,” Intelligent Automation & Soft Computing, vol. 33, no. 1, pp.

275–289, 2022, doi: 10.32604/iasc.2022.022805.

[12] L. Niharmine, B. Outtaj, and A. Azouaoui, “Tifinagh handwritten

character recognition using optimized convolutional neural network,”

International Journal of Electrical and Computer Engineering (IJECE),

vol. 12, no. 4, p. 4164, Aug. 2022, doi: 10.11591/ijece.v12i4.pp4164-

4171.

[13] A. Onuean, U. Buatoom, T. Charoenporn, T. Kim, and H. Jung,

“Burapha-TH: A Multi-Purpose Character, Digit, and Syllable

Handwriting Dataset,” Applied Sciences, vol. 12, no. 8, p. 4083, Apr.

2022, doi: 10.3390/app12084083.

989

[14] A. Sharma, H. Bhardwaj, A. Bhardwaj, A. Sakalle, D. Acharya, and

W. Ibrahim, “A Machine Learning and Deep Learning Approach for

Recognizing Handwritten Digits,” Computational Intelligence and

Neuroscience, vol. 2022, pp. 1–7, Jul. 2022, doi:

10.1155/2022/9869948.

[15] S. Acharya, A. K. Pant, and P. K. Gyawali, “Deep learning based large

scale handwritten Devanagari character recognition,” 2015 9th

International Conference on Software, Knowledge, Information

Management and Applications (SKIMA), Dec. 2015, doi:

10.1109/skima.2015.7400041.

[16] M. Avadesh and N. Goyal, “Optical Character Recognition for

Sanskrit Using Convolution Neural Networks,” 2018 13th IAPR

International Workshop on Document Analysis Systems (DAS), Apr.

2018, doi: 10.1109/das.2018.50.

[17] D. Chaudhary and K. Sharma, "Hindi Handwritten Character

Recognition using Deep Convolution Neural Network," 2019 6th

International Conference on Computing for Sustainable Global

Development (INDIACom), New Delhi, India, 2019, pp. 961-965.

[18] B. Dessai and A. Patil, “A Deep Learning Approach for Optical

Character Recognition of Handwritten Devanagari Script,” 2019 2nd

International Conference on Intelligent Computing, Instrumentation

and Control Technologies (ICICICT), Jul. 2019, doi:

10.1109/icicict46008.2019.8993342.

[19] N. Aneja and S. Aneja, “Transfer Learning using CNN for

Handwritten Devanagari Character Recognition,” 2019 1st

International Conference on Advances in Information Technology

(ICAIT), Jul. 2019, doi: 10.1109/icait47043.2019.8987286.

[20] A. Ghimire, A. Chapagain, U. Bhattarai, and A. Jaiswal, “Nepali

Handwriting Recognition using Convolution Neural Network,”

International Research Journal of Innovations in Engineering and

Technology, vol. 04, no. 05, pp. 05–09, 2020, doi:

10.47001/irjiet/2020.405002.

[21] Y. Gurav, P. Bhagat, R. Jadhav, and S. Sinha, “Devanagari

Handwritten Character Recognition using Convolutional Neural

Networks,” 2020 International Conference on Electrical,

Communication, and Computer Engineering (ICECCE), Jun. 2020,

doi: 10.1109/icecce49384.2020.9179193.

[22] J. Sachdeva and S. Mittal, “Handwritten Offline Devanagari

Compound Character Recognition Using CNN,” Lecture Notes on

Data Engineering and Communications Technologies, pp. 211–220,

2022, doi: 10.1007/978-981-16-6289-8_18.

[23] S. R. Narang, M. Kumar, and M. K. Jindal, “DeepNetDevanagari: a

deep learning model for Devanagari ancient character recognition,”

Multimedia Tools and Applications, vol. 80, no. 13, pp. 20671–20686,

Mar. 2021, doi: 10.1007/s11042-021-10775-6.

[24] I. Dokare, S. Gadge, K. Kharde, S. Bhere, and R. Jadhav, “Recognition

of Handwritten Devanagari Character using Convolutional Neural

Network,” 2021 3rd International Conference on Signal Processing

and Communication (ICPSC), May 2021, doi:

10.1109/icspc51351.2021.9451716.

[25] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based

learning applied to document recognition,” Proceedings of the IEEE,

vol. 86, no. 11, pp. 2278–2324, 1998, doi: 10.1109/5.726791.

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet

classification with deep convolutional neural networks,”

Communications of the ACM, vol. 60, no. 6, pp. 84–90, May 2017,

doi: 10.1145/3065386.

[27] M. D. Zeiler and R. Fergus, “Visualizing and Understanding

Convolutional Networks,” Lecture Notes in Computer Science, pp.

818–833, 2014, doi: 10.1007/978-3-319-10590-1_53.

[28] K. Simonyan, A. Z. preprint arXiv:1409.1556, and undefined 2014,

"Very deep convolutional networks for large-scale image recognition,"

arxiv.org, 2015, Accessed: May 11, 2023. [Online]. Available:

https://arxiv.org/abs/1409.1556.

[29] C. Szegedy et al., "Going deeper with convolutions," cv-

foundation.org, Accessed: May 11, 2023. [Online]. Available:

https://www.cv-

foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Goin

g_Deeper_With_2015_CVPR_paper.html

[30] K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for

Image Recognition." pp. 770–778, 2016. Accessed: May 11, 2023.

[Online]. Available: http://image-net.org/challenges/LSVRC/2015/

990

