
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Deep Convolutional Neural Networks Transfer Learning Comparison
on Arabic Handwriting Recognition System

Siti Ummi Masruroh a,*, Muhammad Fikri Syahid a, Firman Munthaha a, Asep Taufik Muharram b,
Rizka Amalia Putri a

a Faculty of Science and Technology, Syarif Hidayatullah State Islamic University Jakarta, Tangerang, 15412, Indonesia
b Department of Information Technology, Jakarta State Polytechnic, West Java, 16425, Indonesia

Corresponding author: *ummi.masruroh@uinjkt.ac.id

Abstract—Around 27 languages and more than 420 million people worldwide use Arabic letters. That makes the Arabic language one

of the most used languages. However, the Arabic language has a challenge, namely the difference in letters based on their position.

Arabic handwriting recognition is important for various applications, such as education and communication. One example is during a

pandemic when most education has turned digital, making recognizing students' Arabic handwriting difficult. This paper aims to create

a model that can recognize Arabic handwriting by comparing several CNN architectures using transfer learning to classify Arabic,

Hijja, and AHCD handwriting datasets. Transfer learning is a model that has been trained by previous datasets to other datasets and

is suitable for use in models with small datasets because it can improve model accuracy even with small datasets. The datasets were

split into 60%, 20%, and 20% for training, validation, and testing. Each model uses data augmentation and 50% dropout on a fully

connected layer to reduce overfitting. Some of the CNN architectures used in this study to create Arabic writing recognition models are

ResNet, DenseNet, VGG16, VGG19, InceptionV3, and MobileNet. The models were compiled and trained with various parameters. The

best model achieved to classify AHCD and Hijja dataset is VGG16 with Adam optimizer and 0.0001 learning rate. Based on this

research, it is expected to know the performance of the best model for classifying Arabic handwriting.

Keywords— Arabic; recognition; CNN; transfer learning; optimizer; learning rate.

Manuscript received 25 Jan. 2023; revised 5 Mar. 2023; accepted 27 Apr. 2023. Date of publication 30 Jun. 2023.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Arabic is one of the most used languages in the world as a
source of documentation. The Arabic language is challenged
because of the different letters based on their position. Around
27 languages use Arabic letters; Arabic is used by more than
420 million people worldwide, making it 6th on the most-used
language [1]. Arabic handwriting recognition is needed on
various applications, especially in this pandemic where most
education is moving to digital, making it hard to recognize
Arabic handwriting from the student [2]. Therefore, this paper
aims to make a model recognizing Arabic handwriting.
Hopefully, this model can be meaningful to learning or
teaching Arabic during this pandemic.

If it is necessary to classify the target text in some text
mining methods, text in images can be processed using deep
learning [3]. Based on previous papers, several methods were
used to recognize Arabic handwriting, such as Convolutional
Neural Network (CNN) [4], Recurrent Neural Network (RNN)

[5], Long Short Term Memory (LSTM), Bidirectional Long
Short Term Memory (BLSTM) [6], K-Nearest Neighbor
(KNN) [7], Support Vector Machine (SVM) [2], and CNN
architectures such as AlexNet, VGG-16, GoogleNet, Res50
Net, ResNexT Net, and DenseNet [1].

Several CNN architectures have been used to develop
models to recognize Arabic handwriting on IFN/ENIT Arabic
database [1]. The method begins by using the Hierarchical
Agglomerative Clustering (HAC) algorithm to divide the
database into clusters that are only loosely related to one
another. Then, cluster members are ordered using the newly
suggested ranking method. The ranking technique begins by
computing the Pyramid Histogram of Oriented Gradients
(PHoG), which is followed by the Kullback-Leibler method
for determining divergence. Only the matching classes with
the highest rankings are subject to the classification process.
Only 11% of the entire database is used in the suggested
clustering and ranking stages, which minimizes computation
complexity and improves classification results. The AlexNet

330

JOIV : Int. J. Inform. Visualization, 7(2) - June 2023 330-337

architecture produced the best model in this study, which had
99% accuracy and a 0.01 learning rate. Modeling took 18.15
minutes.

Another proposed CNN-based model has also been used to
develop a model to recognize Arabic handwriting on AHCD
and HIJJA datasets [7]. The proposed model uses an 80%
dropout and 0.001 learning rate, as well as Adam for the
optimizer. The proposed model achieved 97% and 88% on the
AHCD and Hijja datasets. Arabic letters and characters are
recognized using Deep Convolutional Neural Network
(DCNN) and SVM by comparing the input templates to the
pre-stored templates using fully connected DCNN and
dropout SVM.

This work also considers the correctness of the corrected
categorized templates and the recognized handwritten Arabic
characters while calculating the corrected classification rate
(CRR). The error classification rate (ECR) is also calculated.
The experimental findings of this work show that the
suggested algorithm can recognize, identify, and verify the
Arabic characters typed in manually. The suggested system
uses a clustering method based on the K-means clustering
approach to address the issue of multi-stroke in Arabic
characters to identify comparable Arabic letters. Compared to
the state-of-the-art, the comparative evaluation shows that the
system accuracy was 95.07% CRR and 4.93% ECR. [2].

Another approach to recognizing Arabic characters is to
use DCNN based on Beta-elliptic parameters and Fuzzy
Elementary Perceptual Codes. This paper uses two databases,
LMCA and MAYASTROUN. The proposed approach
achieved 98.90% accuracy [4]. Arabic writing may now be
recognized from photos of natural scenes thanks to the CNN-
RNN model. This study presents a CNN-RNN model for
Arabic picture text recognition with an attention mechanism.
Using CNN, the model creates feature sequences from an
input image. To create feature sequences in the correct order,
these sequences are fed through a bidirectional RNN. The
bidirectional RNN may overlook certain text segmentation
preparation. Therefore, the model can choose pertinent data
from the feature sequences using a bidirectional RNN with an
attention mechanism to generate output. End-to-end training
is carried out by an attention mechanism using a common
backpropagation method. The proposed method obtains 87%
accuracy on Alif and Activ databases. [5].

A cursive handwritten Arabic text recognition system has
been developed using different deep-learning architectures
and modeling choices. The approach starts with implementing
adaptive data augmentation to promote class diversity, to
prevent imbalanced data sets. This algorithm assigns a weight
to each word in the database lexicon, which is calculated
based on the average probability of each class in a word. The
models proposed are implemented in two databases,
IFN/ENIT and AHDB. The highest performance was
achieved by the BLSTM model with accuracies of 98.99%
and 98.10% on IFN/ENIT and AHDB databases, respectively
[6].

The CNN-trained model has been used to classify the
AHCD dataset, which consists of 16,800 handwritten Arabic
characters that are split into 13,440 training images and 3,360
testing images. This paper uses a combination of feature
extractors and a trainable classifier. The proposed model

achieved a 94.9% classification accuracy rate on testing
images [8].

Based on several papers that have been studied previously
with various methods used. This research will create an
Arabic handwriting recognition model to help recognize
students' handwriting so that learning Arabic during a
pandemic becomes easier. In conducting this research, the
model will be created using a CNN-based architecture.

A comparison of the architectural performance of CNN in
recognizing Arabic handwriting will be carried out in this
study, namely VGG16, VGG19, InceptionV3, MobileNet,
ResNet, and DenseNet because the method used is deep
learning which will produce better performance if the dataset
tends to be larger [9]. So, this study will apply the data
augmentation method to increase the sample variance from
the dataset. Not only that but the use of transfer learning was
also applied in this study to increase the model's accuracy [10]
[11]. The last method that will be used to increase the model's
performance is fine-tuning. Fine-tuning is a concept of
transfer learning and performs better than a manually created
model [12].

So, this research does not only compare CNN architectures
but also improves the performance of models created using
three methods, namely data augmentation, transfer learning,
and fine-tuning. The model will recognize Arabic writing
with input in images of hijaiyah letters with public Hijja and
AHCD datasets. It is hoped that in this study, we can find out
the performance of the CNN architecture in classifying Arabic
handwriting and the level of performance comparison of each
CNN architecture.

This study consists of 4 sections. Section 1 contains an
introduction regarding the background and research
conducted. Section 2 contains the materials and methods used
in the research. Section 3 contains the results and discussions.
Furthermore, section 4 contains conclusions about this
research.

II. MATERIAL AND METHOD

A. CNN Architectures

CNN was first introduced by LeCun around 1980. It is one
of the most used deep learning methods to process visual data
[13]. The primary uses of CNN are in data analytics, natural
language processing, and image and signal processing [14].
CNN had an important role in deep learning history, an
example of the successful implementation of how the brain
works into machine learning. CNN is also one of the models
that has a good performance in commercial usage [15].

CNN is a type of feedforward neural network that can use
convolutional architecture to extract features from data [16].
CNNs are based on neurons layered in the organization,
making them capable of learning hierarchical representations
like any other neural network model. Using weights and
biases, the neurons in the layers are connected [17]. Recently,
it was stated that many contributions to the CNN structure
went into creating deep-learned DCNNs. By deepening the
network, deep CNNs can learn additional features. However,
as the network depth increases, degradation and vanishing
gradient issues arise [18]. Deep learning may result in the
exclusion of many crucial pieces of information when
information or the gradient of input images is propagated

331

across numerous layers. Due to this, numerous recent
publications have suggested various designs to implement the
deep learning notion while attaining a short path of layers. [1].
The most popular CNN architectures are Residual Networks
(ResNets), DenseNet, VGG16 architecture [1], VGG19
architecture, InceptionV3 [19], and MobileNet [20].

The number and kind of layers used in these various CNN
architectures vary. These changes depend on the type of
application, the volume of data, and the complexity. The input,
convolution, batch normalization, pooling, dropout, and
output layers are among the several types of layers. [1]. As
explained in the following subsections, these architectures
have been used for various purposes, notably text recognition.

1) ResNet: An architecture called ResNet has thousands
of levels. Building so many layers is done to learn more
complex facts accurately. The ResNets model has an
advantage over other architectural models in that performance
does not suffer as the design becomes more complex [21].
Degradation and other harmful effects of layering will also
occur. One method for preventing degradation is ResNet.
There are leftover blocks in this architecture. With ResNet,
the layer will also receive input from the residual units and
the direct prior layer [22]. To prevent the calculation from
stacking layers without adding parameters or complexity, the
identity of x is appended to the residual block's output. [1].

2) DenseNet: By substituting the dense block for the
main unit in the ResNet model architecture, DenseNet
architecture is created. The output of one layer in the
DenseNet is broadcast to all the layers in front of it. [23].
DenseNet builds feature learning models using dense blocks
as the primary building component. [24]. DenseNet connects
all network levels in Dense Block to provide maximum
information flow between layers [25]. L layers and L
connections make up conventional CNNs. Direct connections
make up L(L+1)/2 of dense CNNs. Every feature map is
computed in every layer before it is used in that layer. It is
regarded as a very effective remedy for the vanishing-gradient
issue. Final feature maps are created by concatenating all
referenced feature maps from earlier sequential layers. [1].

3) VGG16: VGG16 is one of the VGGnet models using
16 layers as its architecture. Normally VGG16 uses five
convolutional blocks connected to 3 MLP classifiers. The
output layer uses a sigmoid activation function when are two
or fewer categories and a SoftMax activation function when
there are three or more categories from the dataset [26]. On
the ImageNet database, the VGG-16 network was trained.
The VGG-16 network has undergone considerable training,
which results in outstanding accuracy even with small image
data sets [27].

4) VGG19: VGG19 is similar to VGG16 and other
VGGNet variants. The difference is in 3 additional
convolutional layers that help identify patterns on images [19].

5) InceptionV3: InceptionV3 architecture consists of 48
layers and the development of GoogleNet or InceptionV1.
The Inception-V3 model is a deep CNN that was trained on a
computer with a basic configuration [28]. This architecture
comprises convolutional and fully connected (FC) layers with

1 Hijja dataset is available at https://github.com/israksu/Hijja2

pooling average and max and drop out after the pooling layer.
The activation function used in this architecture is batch
normalization, and the loss function used is softmax [19].

6) MobileNet: MobileNet is a CNN architecture for
mobile devices [29]. This architecture comprises two
convolutional layers: a 3x3 depthwise convolution layer and
a 1x1 pointwise convolution [30]. Counting depthwise and
pointwise convolutions as separate layers, MobileNet has 28
layers [20].

B. Dataset

In this section, we will describe the datasets that are used
in this paper. There are two datasets, Hijja1 and AHCD2. Hijja
is a free, publicly available dataset of single Arabic letters
collected from Arabic-speaking school children between the
ages of 7 and 12. It represents 47,434 characters written by
591 participants in different forms. Data were collected in
Riyadh, Saudi Arabia, from January 2019 to April 2019 [7].
AHCD is a collection of free, public Arabic letter data. Sixty
individuals wrote 16,800 characters in the dataset; their ages
ranged from 19 to 40, and 90% used their right hand. [8].

C. Proposed Method

Our first step is to compare each of CNN architecture's
performances with transfer learning by preparing the dataset.
This paper will use the same dataset as the previous paper,
those are AHCD and Hijja. This paper will also follow the
same dataset split configuration which is 60% for training, 20%
for validation, and 20% for testing [7].

Fig. 1 Dataset Split Configuration

Each selected CNN architecture will be trained using

transfer learning with pre-trained weights from ImageNet.
Data augmentation will also be implemented on all models
with the following parameters.

TABLE I
DATA AUGMENTATION CONFIGURATION FOR ALL MODELS

No Parameter Value

1 width_shift_range 0.2
2 height_shift_range 0.2
3 shear_range 0.2
4 zoom_range 0.2

After the dataset has been split and augmented, we will

make the model from each architecture without the FC layer,
in addition to our own FC layer, to classify Hijja and AHCD
datasets. The FC layers are going to use 50% dropout as an
attempt to reduce over-fitting. Once the model has been made,
the models are going to be trained. There are two steps in
training the models: training the FC layers only and for the
whole layers.

2 AHCD dataset is available at
https://www.kaggle.com/datasets/mloey1/ahcd1

332

The FC layers will be trained with the convolution layer
frozen, meaning its weight will not be updated on training.
Once the FC layers are trained, the whole layers will be
trained with a small learning rate. The FC layers will be
trained with 20 epochs for feature extraction, and the whole
layers will be trained with 80 epochs for fine-tuning, which
makes 100 epochs in total to train the whole model. There are
two different parameters according to the dataset to train the
model, and this whole process is transferring learning with
fine-tuning.

����� ��� ���	ℎ� �
����� �� �������

����� ����
 (1)

TABLE II
MODELING PARAMETER

Parameter
HIJJA AHCD

Training Validation Training Validation

Amount of
dataset

28,460 9488 10,080 3360

Batch Size 20 16 32 32
Step per
epochs

1423 593 315 105

Each model will be trained with parameters in Table 3

according to the model's dataset, and after the model has been
trained, it will be re-compiled for fine-tuning with two
optimizers, Adam and Stochastic Gradient Descend (SGD).
Each optimizer will have three learning rates, which are 0.001,
0.0001, and 0.00001. In summary, each architecture will be
re-compiled for fine-tuning with the following optimizers and
learning rate configuration.

TABLE III
FINE-TUNING PARAMETERS ON EACH ARCHITECTURE

No Optimizers Learning Rate

1 Adam 0.001
2 Adam 0.0001
3 Adam 0.00001
4 SGD 0.001
5 SGD 0.0001
6 SGD 0.00001

Once all the models with various architectures and

parameters are trained, they are going to be compared and
sorted based on their validation and testing accuracy.

III. RESULT AND DISCUSSION

This paper uses two datasets Hijja, and AHCD. These
datasets are divided into training, validation, and testing for
60%, 20%, and 20%, respectively. After that, the datasets will
be augmented with the configuration in the previous chapter.
After the dataset had been augmented, the dataset was used as
an input for the model. Each model will use different selected
CNN architectures, and the FC layer from each model will be
trained for 20 epochs for feature extraction and 80 epochs for
fine-tuning. Each model will use layer configuration in Figure
3, with 50% dropout on the FC layer and different neurons for
different selected CNN architectures, see Table 5.

Fig. 2 Augmented Dataset Visualization

Fig. 3 Model Layer Configuration

TABLE IV
FULLY CONNECTED LAYER CONFIGURATION

Architecture X Y
Z

AHCD Hijja

DenseNet 1024 512 28 29
InceptionV3 1024 512 28 29
MobileNet 1024 512 28 29
ResNet50 1024 512 28 29
VGG16 512 256 28 29
VGG19 512 256 28 29

After the model has been made, we train the model in 2

steps. First, we train the FC layer with the convolution layer
frozen to keep the weight on the convolution layer while
training the newly created FC layer. The FC layer will be
trained with epochs and step per epochs from the
configuration in Table 2. Once the FC layer has been trained,
we re-compile the model with the parameters from Table 3
and continue the model training using the new parameter.
After the training process has been done, we can compare
each model's performance. The training process result with
various selected CNN architectures can be seen in Table 5,
Table 6, and Table 7.

333

Fig. 4 Model's Accuracy on AHCD Dataset

In the AHCD dataset, VGG16 has the performance with the
highest validation accuracy and testing accuracy, and VGG19
is the model with the highest training accuracy. While the
model with the lowest training accuracy is MobileNet, and the
model with the lowest validation accuracy and testing
accuracy is DenseNet.

Fig. 5 Model's Accuracy on Hijja Dataset

In the Hijja dataset, VGG16 has the highest performance
with training, validation, and testing accuracy. Meanwhile,
MobileNet has the lowest training, validation, and testing
accuracy.

TABLE V
AHCD DATASET MODEL PERFORMANCES

AHCD

No Architecture Optimizer Learning rate
Accuracy

Training Validation Testing

1 InceptionV3 ADAM 0.0001 97.02% 95.21% 96%
2 VGG16 ADAM 0.0001 97.64% 95.77% 96%
3 VGG19 ADAM 0.0001 97.73% 95.06% 95%
4 InceptionV3 ADAM 0.00001 90.97% 93.96% 94%
5 MobileNet ADAM 0.0001 90.15% 94.05% 94%
6 ResNet50 ADAM 0.0001 93.52% 93.04% 94%
7 VGG16 ADAM 0.00001 97.13% 94.58% 94%
8 VGG19 ADAM 0.00001 97.14% 95.36% 94%
9 VGG19 SGD 0.001 96.35% 95.12% 94%
10 InceptionV3 SGD 0.001 91.35% 91.52% 92%
11 VGG16 SGD 0.0001 89.86% 91.16% 91%
12 DenseNet ADAM 0.0001 94.26% 90.68% 90%
13 DenseNet ADAM 0.00001 85.39% 89.13% 90%
14 VGG19 SGD 0.0001 89.08% 90.68% 90%
15 ResNet50 ADAM 0.00001 81.99% 88.51% 88%
16 DenseNet ADAM 0.001 81.08% 87.41% 87%
17 MobileNet ADAM 0.001 82.21% 87.65% 87%
18 MobileNet SGD 0.001 77.63% 87.65% 87%
19 DenseNet SGD 0.001 74.73% 85.15% 85%
20 ResNet50 SGD 0.001 70.85% 84.32% 83%
21 InceptionV3 SGD 0.0001 60.24% 82.53% 82%
22 VGG16 SGD 0.00001 78.79% 82.92% 82%
23 InceptionV3 ADAM 0.001 68.88% 79.02% 80%
24 DenseNet SGD 0.0001 70.49% 81.01% 80%
25 ResNet50 ADAM 0.001 56.55% 73.15% 72%
26 MobileNet ADAM 0.00001 54.70% 67.80% 67%
27 VGG16 ADAM 0.001 62.14% 66.40% 67%
28 ResNet50 SGD 0.0001 43.56% 62.26% 61%
29 DenseNet SGD 0.00001 40.10% 53.51% 53%
30 MobileNet SGD 0.0001 35.19% 50.36% 48%
31 InceptionV3 SGD 0.00001 19.37% 24.02% 23%
32 ResNet50 SGD 0.00001 13.88% 17.98% 17%
33 MobileNet SGD 0.00001 11.86% 14.29% 15%
34 VGG19 ADAM 0.001 3.24% 3.57% 4%
35 VGG16 SGD 0.001 0% 0% 0%
36 VGG19 SGD 0.00001 0% 0% 0%

334

TABLE VI
HIJJA DATASET MODEL PERFORMANCES

HIJJA

No Architecture Optimizer Learning rate
Accuracy

Training Validation Testing

1 VGG16 ADAM 0.0001 93.59% 87.33% 87%
2 VGG19 ADAM 0.0001 93.08% 86.92% 87%
3 VGG19 ADAM 0.00001 90.05% 85.11% 85%
4 VGG19 SGD 0.001 86.75% 86.02% 85%
5 VGG16 SGD 0.001 87.60% 85.38% 85%
6 VGG16 ADAM 0.00001 90.81% 84.83% 84%
7 InceptionV3 ADAM 0.0001 75.34% 83.59% 83%
8 InceptionV3 ADAM 0.00001 78.28% 82.84% 83%
9 ResNet50 ADAM 0.0001 85.35% 83.33% 83%
10 InceptionV3 SGD 0.001 75.09% 82.06% 82%
11 ResNet50 ADAM 0.00001 77.02% 81.39% 81%
12 VGG16 SGD 0.0001 74.06% 80.99% 81%
13 VGG19 SGD 0.0001 72.60% 80.41% 80%
14 DenseNet ADAM 0.0001 74.05% 76.77% 77%
15 DenseNet ADAM 0.00001 67.60% 76.44% 77%
16 ResNet50 SGD 0.001 67.19% 75.41% 76%
17 MobileNet ADAM 0.0001 70.39% 75.43% 75%
18 DenseNet SGD 0.001 63.26% 74.28% 75%
19 InceptionV3 SGD 0.0001 59.02% 69.45% 69%
20 MobileNet SGD 0.001 53.37% 66.91% 67%
21 VGG16 SGD 0.00001 53.71% 65.96% 66%
22 VGG19 SGD 0.00001 49.22% 62.52% 63%
23 DenseNet SGD 0.0001 47.79% 61.42% 61%
24 MobileNet ADAM 0.00001 44.69% 57.80% 58%
25 DenseNet ADAM 0.001 42.83% 54.05% 54%
26 InceptionV3 ADAM 0.001 37.73% 51.62% 52%
27 DenseNet SGD 0.00001 27.06% 40.43% 41%
28 ResNet50 SGD 0.0001 26.76% 34.49% 35%
29 InceptionV3 SGD 0.00001 24.03% 27.84% 29%
30 ResNet50 ADAM 0.001 22.93% 25.46% 27%
31 MobileNet SGD 0.0001 11.47% 14.24% 14%
32 MobileNet ADAM 0.001 0% 0% 0%
33 VGG16 ADAM 0.001 0% 0% 0%
34 VGG19 ADAM 0.001 0% 0% 0%
35 MobileNet SGD 0.00001 0% 0% 0%
36 ResNet50 SGD 0.00001 0% 0% 0%

Table 5 and Table 6 show the results of the validation
accuracy and testing accuracy of each model that has been
trained. Based on Table 5 and Table 6, it can be seen that

VGG16 with Adam optimizer and a total learning rate of
0.0001 with fine-tuning is the best architecture in classifying
AHCD and hijja datasets.

TABLE VII
TOP PERFORMANCES FROM EACH CNN ARCHITECTURE

AHCD

No Architecture Optimizer Learning rate
Accuracy

Training Validation Testing

1 VGG16 ADAM 0.0001 97.64% 95.77% 96%
2 InceptionV3 ADAM 0.0001 97.02% 95.21% 96%
3 VGG19 ADAM 0.0001 97.73% 95.06% 95%
4 MobileNet ADAM 0.0001 90.15% 94.05% 94%
5 ResNet50 ADAM 0.0001 93.52% 93.04% 94%
6 DenseNet ADAM 0.0001 94.26% 90.68% 90%

Hijja

No Architecture Optimizer Learning rate
Accuracy

Training Validation Testing

1 VGG16 ADAM 0.0001 93.59% 87.33% 87%
2 VGG19 ADAM 0.0001 93.08% 86.92% 87%
3 InceptionV3 ADAM 0.0001 75.34% 83.59% 83%
4 ResNet50 ADAM 0.0001 85.35% 83.33% 83%
5 DenseNet ADAM 0.0001 74.05% 76.77% 77%
6 MobileNet ADAM 0.0001 70.39% 75.43% 75%

335

Table 7 shows the top models of each architecture. Based
on the results, it can be seen that the model has a better overall
performance on the AHCD dataset. This could be because
Hijja or Arabic script made by children is more difficult to
classify. This study obtained the same results as those in
previous research [6], where the Adam optimizer worked

better than SGD and can be seen from Table 7, where the top
model for each architecture uses the Adam optimizer on fine-
tuning is 0.0001. Based on the results that have been
presented, the following are the differences obtained from
previous relevant studies.

TABLE VIII
RESULT COMPARISON

No Paper Datasets Methodology Accuracy

1 [1] IFN/ENIT CNN 99%

2 [4]
LMCA,
MAYASTROUN

DCNN + Beta-elliptic Parameters and Fuzzy Elementary
Perceptual Codes

98.90%

3 [5] Alif, Activ CNN-RNN + Attention Mechanism 87%

4 [6] IFN/ENIT, AHDB BLSTM + Adaptive Data Augmentation
98.99% IFN/ENIT, 98.10%
AHDB

5 [7] AHCD, Hijja CNN + Dropout + Adam Optimizer 97% AHCD, 88% Hijja

6 [8] AHCD CNN + Feature Extractors + Trainable Classifier 94.90%

7
This

Study
Hijja, AHCD

Various CNN Algorithm + Data Augmentation + Transfer
Learning + Fine-tuning

96% AHCD, 87% Hijja

IV. CONCLUSIONS

Based on the results, we can see each model's training,
validation, and testing accuracy. Table 5 and 6 show the
sorted model with the highest validation and testing accuracy,
and Table 7 shows the top models from each architecture.
Based on the results, we can see that the models have a better
overall performance on the AHCD dataset. This can happen
because Hijja or Arabic writing made by children is harder to
classify. This paper has the same conclusion as the previous
paper, which says that Adam was found to work better than
SGD [7]. Table 7 shows that all the top models from each
architecture use Adam optimizer instead of SGD. Another
conclusion that we can conclude from observing Table 7 is
that the best learning rate for CNN transfer learning
architectures using Adam optimizer on fine-tuning is 0.0001.
The best CNN architecture may be biased because of the same
parameters for all models that might benefit only certain
architecture, but with parameters from Table 3 and Table 4,
we can conclude that VGG16 with Adam optimizer and
0.0001 learning rate on fine-tuning is the best architecture to
classify Hijja and AHCD dataset.

REFERENCES
[1] T. M. Ghanim, M. I. Khalil, and H. M. Abbas, "Comparative Study on

Deep Convolution Neural Networks DCNN-Based Offline Arabic
Handwriting Recognition," IEEE Access, vol. 8, pp. 95465–95482,
2020, doi: 10.1109/ACCESS.2020.2994290.

[2] M. Shams, A. A. Elsonbaty, and W. Z. El Sawy, "Arabic handwritten
character recognition based on convolution neural networks and
support vector machine," Int. J. Adv. Comput. Sci. Appl., vol. 11, no.
8, pp. 144–149, 2020, doi: 10.14569/IJACSA.2020.0110819.

[3] D. K. Muhsen, S. M. Ali, R. M. Zaki, and A. A. Ahmed, "Arguments
extraction for e-health services based on text mining tools," Period.

Eng. Nat. Sci., vol. 9, no. 3, pp. 309–316, 2021, doi:
10.21533/pen.v9i3.2149.

[4] H. Akouaydi, S. Njah, W. Ouarda, A. Samet, M. Zaied, and A. M.
Alimi, "Convolutional neural networks for online Arabic characters
recognition with beta-elliptic knowledge domain," 2019 Int. Conf. Doc.

Anal. Recognit. Work. ICDARW 2019, vol. 6, pp. 41–46, 2019, doi:
10.1109/ICDARW.2019.50114.

[5] H. Butt, M. R. Raza, M. J. Ramzan, M. J. Ali, and M. Haris,
"Attention-Based CNN-RNN Arabic Text Recognition from Natural

Scene Images," Forecasting, vol. 3, no. 3, pp. 520–540, 2021, doi:
10.3390/forecast3030033.

[6] M. Eltay, A. Zidouri, and I. Ahmad, "Exploring Deep Learning
Approaches to Recognize Handwritten Arabic Texts," IEEE Access,
vol. 8, pp. 89882–89898, 2020, doi: 10.1109/ACCESS.2020.2994248.

[7] N. Altwaijry and I. Al-Turaiki, "Arabic handwriting recognition system
using convolutional neural network," Neural Comput. Appl., vol. 33, no.
7, pp. 2249–2261, 2021, doi: 10.1007/s00521-020-05070-8.

[8] M. N. Aljarrah, M. M. Zyout, and R. Duwairi, "Arabic Handwritten
Characters Recognition Using Convolutional Neural Network," 2021

12th Int. Conf. Inf. Commun. Syst. ICICS 2021, no. February, pp. 182–
188, 2021, doi: 10.1109/ICICS52457.2021.9464596.

[9] D. Radovanovic and S. Dukanovic, "Image-Based Plant Disease
Detection: A Comparison of Deep Learning and Classical Machine
Learning Algorithms," 2020 24th Int. Conf. Inf. Technol. IT 2020, no.
February, pp. 1–4, 2020, doi: 10.1109/IT48810.2020.9070664.

[10] J. Rozaqi, A. Sunyoto, and R. Arief, "Implementasi Transfer Learning
pada Algoritma Convolutional Neural Network Untuk Identifikasi
Penyakit Daun Kentang Implementation of Transfer Learning in the
Convolutional Neural Network Algorithm for Identification of Potato
Leaf Disease," vol. 1, no. 1, 2021.

[11] R. Rismiyati and A. Luthfiarta, “VGG16 Transfer Learning
Architecture for Salak Fruit Quality Classification,” Telematika, vol.
18, no. 1, p. 37, 2021, doi: 10.31315/telematika.v18i1.4025.

[12] E. C. Too, L. Yujian, S. Njuki, and L. Yingchun, "A comparative study
of fine-tuning deep learning models for plant disease identification,"
Comput. Electron. Agric., vol. 161, no. February, pp. 272–279, 2019,
doi: 10.1016/j.compag.2018.03.032.

[13] S. K. Roy, G. Krishna, S. R. Dubey, and B. B. Chaudhuri, "HybridSN:
Exploring 3-D-2-D CNN Feature Hierarchy for Hyperspectral Image
Classification," IEEE Geosci. Remote Sens. Lett., vol. 17, no. 2, pp.
277–281, 2020, doi: 10.1109/LGRS.2019.2918719.

[14] D. R. Sarvamangala and R. V. Kulkarni, "Convolutional neural
networks in medical image understanding: a survey," Evol. Intell., vol.
15, no. 1, 2022, doi: 10.1007/s12065-020-00540-3.

[15] I. Goodfellow, Y. Bengio, and C. Aaron, Deep Learning. MIT Press,
2016.

[16] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, "A Survey of
Convolutional Neural Networks: Analysis, Applications, and
Prospects," IEEE Trans. Neural Networks Learn. Syst., vol. 33, no. 12,
pp. 6999–7019, 2022, doi: 10.1109/TNNLS.2021.3084827.

[17] T. Kattenborn, J. Leitloff, F. Schiefer, and S. Hinz, "Review on
Convolutional Neural Networks (CNN) in vegetation remote sensing,"
ISPRS J. Photogramm. Remote Sens., vol. 173, no. November 2020,
pp. 24–49, 2021, doi: 10.1016/j.isprsjprs.2020.12.010.

[18] Q. A. Al-Haija and A. Adebanjo, "Breast cancer diagnosis in
histopathological images using ResNet-50 convolutional neural
network," IEMTRONICS 2020 - Int. IOT, Electron. Mechatronics

Conf. Proc., vol. 50, 2020, doi:
10.1109/IEMTRONICS51293.2020.9216455.

336

[19] R. Sujatha, J. M. Chatterjee, N. Z. Jhanjhi, and S. N. Brohi,
"Performance of deep learning vs machine learning in plant leaf
disease detection," Microprocess. Microsyst., vol. 80, no. November
2020, p. 103615, 2021, doi: 10.1016/j.micpro.2020.103615.

[20] A. G. Howard et al., "MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications," 2017.

[21] D. Sarwinda, R. H. Paradisa, A. Bustamam, and P. Anggia, "Deep
Learning in Image Classification using Residual Network (ResNet)
Variants for Detection of Colorectal Cancer," Procedia Comput. Sci.,
vol. 179, no. 2019, pp. 423–431, 2021, doi:
10.1016/j.procs.2021.01.025.

[22] K. Deeba and B. Amutha, "ResNet - deep neural network architecture
for leaf disease classification," Microprocess. Microsyst., p. 103364,
2020, doi: 10.1016/j.micpro.2020.103364.

[23] A. M. Rafi et al., "Application of DenseNet in Camera Model
Identification and Post-processing Detection," pp. 19–28, 2018.

[24] Z. Zhang, Z. Tang, Y. Wang, H. Zhang, S. Yan, and M. Wang,
"Compressed DenseNet for Lightweight Character Recognition,"
arXiv Prepr. arXiv1912.07016, pp. 1–11, 2019.

[25] K. Zhang, Y. Guo, X. Wang, J. Yuan, and Q. Ding, "Multiple feature
reweight DenseNet for image classification," IEEE Access, vol. 7, pp.
9872–9880, 2019, doi: 10.1109/ACCESS.2018.2890127.

[26] P. Hridayami, I. K. G. D. Putra, and K. S. Wibawa, "Fish species
recognition using VGG16 deep convolutional neural network," J.

Comput. Sci. Eng., vol. 13, no. 3, pp. 124–130, 2019, doi:
10.5626/JCSE.2019.13.3.124.

[27] D. Theckedath and R. R. Sedamkar, "Detecting Affect States Using
VGG16, ResNet50 and SE-ResNet50 Networks," SN Comput. Sci., vol.
1, no. 2, pp. 1–7, 2020, doi: 10.1007/s42979-020-0114-9.

[28] M. Mujahid, F. Rustam, R. Álvarez, J. Luis Vidal Mazón, I. de la T.
Díez, and I. Ashraf, "Pneumonia Classification from X-ray Images
with Inception-V3 and Convolutional Neural Network," Diagnostics,
vol. 12, no. 5, pp. 1–16, 2022, doi: 10.3390/diagnostics12051280.

[29] A. Michele, V. Colin, and D. D. Santika, "Mobilenet convolutional
neural networks and support vector machines for palmprint
recognition," Procedia Comput. Sci., vol. 157, pp. 110–117, 2019, doi:
10.1016/j.procs.2019.08.147.

[30] C. Bi, J. Wang, Y. Duan, B. Fu, J. R. Kang, and Y. Shi, "MobileNet
Based Apple Leaf Diseases Identification," Mob. Networks Appl.,
2020, doi: 10.1007/s11036-020-01640-1.

337

