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Abstract— Many applications use symmetric or asymmetric airfoils, such as aircraft design, wind turbines, and heat transfer. Each 

airfoil has different aerodynamic coefficients. Obtaining the aerodynamic coefficients is a must to optimize the airfoil design. Engineers 

use various methods to get the airfoil aerodynamic coefficients. A prediction method is an approximation approach that effectively 

reduces time and cost. This article uses convolutional neural networks (CNN) to get approximation values of those coefficients. In CNN, 

we collect 8920 aerodynamic coefficients for 223 NACA 4 as labels in datasets by using XFOIL at �� � � and �� � ������ with

varying angles of attacks starting �	�
 to 	�
 with increment of �
. The simulation results are compared to the experiment using E387

airfoil for validation. Then, airfoil geometries as part of input datasets were transformed into Grayscale and RGB images using the 

signed distance function (SDF) and mesh algorithm. Each airfoil representation was trained using an 80% dataset and tested using a 

20% dataset with Adam as an optimizer to generate each prediction model using modified LeNet-5. We use three different layer depths 

in modified LeNet-5 to obtain the optimal layer number. There is no remarkable improvement when varying the depth layers, so four 

layers are used instead. Simulation results show that using an SDF with Fast Marching Method on CNN predicts the most effective for 

the airfoil’s lift, drag, and pitch moment coefficient with varying angles of attack simultaneously. One can extend the method by using 

SDF to recognize different flow conditions. 
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I. INTRODUCTION

The airfoil design continues to be an exciting and practical 

design problem for engineering. Many difficulties in airfoil 

design involve the generation of lift, drag, and moment by 
airfoil sections [1]. Many airfoils have interesting 

aerodynamic behaviors that could impact flight safety and 

performance. Therefore, Obtaining the aerodynamic 

coefficients is a must [2]. These aerodynamic coefficients 

have received much attention in experiments through wind 

tunnel tests and numerical studies. 

Wind tunnel testing can deliver aerodynamic coefficient 

results. However, it could take a long time and is more 

expensive to study airfoil aerodynamics only [3]. Due to 

recent technology in numerical computation, engineers use 

various methods to compute aerodynamic coefficients as the 

first step in airfoil design [4]; then, wind tunnel testing can 

validate the result of the aerodynamic coefficient. 

He et al. [4] use a numerical approach for airfoil design. 

Another strategy is using Particle Swarm Optimization (PSO) 

to produce an optimal airfoil design [5]. A spotted hyena 

optimizer, a metaheuristic approach, is used to optimize 
airfoil design by minimizing the drag force [6]. The 

metaheuristic approach belongs to the approximation method, 

so obtaining an optimal global solution is not guaranteed. 

Besides that, the metaheuristic has a dilemma in balancing 

exploration and exploitation. Using data-driven can improve 

the metaheuristic approach for optimization to solve that 

situation [7]. 

Nowadays, data size is growing unprecedentedly [8]–[10], 

so airfoil design and analysis based on data-driven is 
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preferable [11]–[14]; moreover, the rise of computer 

technology and Artificial Intelligence (AI) has guided the 

reliable evolution of the data-driven model. Yonekura et al. 

[15] dan Thuerey et al. [16] utilize the Autoencoder method 

to explore airfoil design. Sekar et al. [17] use the inverse 

technique to generate airfoil geometry data based on pressure 

distribution around the airfoil surface using a Convolutional 

Neural Network (CNN). 

Multiple studies have been applied to predict the 

aerodynamic coefficient of the airfoil using CNN. This 
method is realized as deep learning and utilizes convolution 

segments to gather specific patterns from pictures and use 

them for training and validation. Zhang et al. [18] 

approximate the lift force coefficient with CNN using an 

airfoil geometry-image as input to the trained model. 

Conversely, Chen et al. [19] use CNN to get the lift, drag, and 

moment predictions. Hui et al. [20] utilize CNN to predict the 

pressure distribution around the airfoil surface. All previous 

studies need airfoil geometry representations as input in CNN. 

There are several methods to generate airfoil geometry 

representations. Many airfoil geometry representation 
methods use various types of aspects. The grayscale image’s 

outline and solid color represent the airfoil geometry [18], 

[19]. The grayscale image only has one channel, which has 

less pixel information and affects image recognition. 

We also use Unstructured Mesh (UM) as an airfoil 

geometry representation based on a meshing algorithm [21] 

to enrich the pixel information on the grayscale image. 

However, UM image algorithm randomly creates patterns, as 

shown in Fig. 2b, making it challenging to recognize image 

features. To overcome the shortcomings of Grayscale and UM 

image, we propose the enhanced Signed Distance Function 
(SDF) method [20], [22] through the Fast Marching Method 

(FMM). SDF+FMM uses three channels to enrich the pixel 

information. In addition, SDF+FMM produces more 

consistent patterns than UM with faster performance and 

improves aerodynamic coefficient prediction. 

II. MATERIAL AND METHOD 

In general, the steps taken in building a predictive model 

of the aerodynamic coefficient of the airfoil, as illustrated in 
Fig. 1, include airfoil data processing, data selection, and 

making the trained model. 

 

 
Fig. 1  Predictive model development flowchart 

A. Airfoil Data Processing 

The first step in processing airfoil data in building a 
predictive model is obtaining the airfoil’s shape or geometry. 

The airfoil shape consists of coordinates along the top and 

bottom surfaces. The coordinates are acquired from UIUC 

Airfoil Data Site and converted into a digital image, so it is 

easy to implement the architecture with CNN [23]. Airfoil 

images can be created in the form of a single channel [18], 

[19], [24] [20], [25] using a Signed Distance Field [26]. 

 

 
(a) Grayscale image 

 
(b) MU image 

  

 
(c) SDF image 

Fig. 2  Various airfoil geometry representations 

Airfoil geometry representation with Grayscale (Fig. 2a) is 

our base representation and is easy to generate. It contains 

only black and white pixels. We also use UM (Fig. 2b) to 

enrich the pixel information from the Grayscale. Then for 

comparison, we propose SDF+FMM (Fig. 2c) for airfoil 

geometry representation based on Algorithm 1. The 

SDF+FMM can give more complex features than Grayscale 
but has a more precise pattern than UM. The images and the 

airfoil aerodynamic coefficients are stored in the database. 

We use XFOIL [27] to obtain the airfoil aerodynamic 

coefficients. XFOIL can predict airfoil aerodynamics fastly 

for a low Reynold number [28]–[30] using the potential flow 

and integral boundary layer method. For flow conditions, we 

keep � � 0  and �� � 500000   to get aerodynamic 

coefficients ��� , �� , ������ with varying angles of attack, 

starting �20� until 20�. Finally, we keep the airfoil surface 

roughness configuration �� !" � 5. 

 

 
 

To validate the computation results using XFOIL, we 

compare XFOIL and the experiment [31] using the same E387 
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airfoil. It turns out that the results between them are 

acceptable based on Fig. 3. 

 

 
Fig. 3  XFOIL and experiment results 

B. CNN Architecture 

CNN has been widely used in image recognition and was 

first proposed for gradient-based learning in document 

recognition [32]. CNN is an ideal architecture for image data 
implementation [33]. CNN uses images with either one 

channel or three channels as input data. Then the data is 

transferred to the convolution, pooling, and fully connected 

layers. 

As illustrated in Fig. 4, we use LeNet-5 [34] as CNN 

architecture with some adjustments. The airfoil image has a 

size of 128 & 128  as the initial input data. The two-

dimensional convolutional (Conv) layer is the main 

component of CNN. The Conv layer 1 has a kernel size of 

15 & 15 as in Fig. 4b or Fig. 4c, with three channels as input 
and 1 step size in each direction. We use a batch norm [35], 

[36] to make it faster and more stable during training. The 

activation function is a rectified linear unit (ReLU) because it 

gives better results [37]–[39]. 

 

 
(a) Aerofoil2BN2FC architecture 

 

 
(b)  Aerofoil3BN2FC architecture 

 

 
(c) Aerofoil4BN2FC architecture 

Fig. 4  LeNet-5 architecture with modification 

 

After the ReLU operation in Fig. 4c, we set 20 channels 

with a resolution of 58 & 58  after the MaxPool procedure 

based on Eq. (1 in the article [40] for the Conv layer 2. We 

can get output resolution �'�  with (�  N as input, )*  as 

padding, +� as kernel, and ,- as stride (step) size 

 o  �   0(�  1  2)*  �  +�
,- 2   1  1 (1) 

We apply the same procedure for the other Conv layers. 

The last Conv layer will have 60 & 4 & 4 for the first fully 

connected (FC) layer. The rest of the output resolutions are 

shown in Tabel. The output layer of this architecture is linear 

regression. It uses MSE (Mean Square Error) as a loss 

function to measure the performance of the trained model to 

know how good it is at predicting the coefficients. 

TABLE I 

 THE OUTPUT RESOLUTIONS FROM THE LAST CONV LAYER INTO A FULLY 

CONNECTED LAYER 

Layer Aerofoil2BN2FC Aerofoil3BN2FC Aerofoil4BN2FC 

CONV1 32 & 28 & 28 16 & 57 & 57 10 & 58 & 58 

CONV2 64 & 6 & 6 32 & 24 & 24 20 & 24 & 24 

CONV3 - 64 & 6 & 6 40 & 10 & 10 

CONV4 - - 60 & 4 & 4 

C. Model Training 

The model training includes two steps: forward and 

backward calculation. The first step is to extract the airfoil 

image patterns using the convolution and pooling procedures, 
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feed the components into the fully connected segment, and 

gets aerodynamic coefficient prediction results through the 

output layer. Prediction errors are the differences between 

approximation and actual values. In the last step, the 

algorithms return these errors and update the network 

parameters. The numbers of convolutional, pooling, and fully 

connected layers are flexible depending on the input images. 

The forward and backward calculation steps are repeated if 

the stop condition is unmet. The maximum number of epochs 

determines the end condition of CNN training. The training 

procedure of the CNN architecture is shown in Fig. 5.  
 

 

Fig. 5  The proposed procedure for model training 

 

In this paper, the training algorithm uses adaptive moment 

estimation (Adam) [41], [42]. It minimizes the loss criterion 

using the minibatch. An epoch is the complete progress of the 
instruction rules over the whole training set. 

III. RESULTS AND DISCUSSION 

We collect 223 NACA 4 airfoils and have 8920 in total 

datasets. The datasets include airfoil images as input and 

aerodynamic coefficients as labels and are split into 80% for 

training and 20% for validation. Both of these are applied for 

data transformation. All airfoil images are resized into 

128 & 128, and then the pictures and airfoil coefficients are 

standardized using a mean �μ� of 0.5 and a standard deviation 
�σ� of 0.5. 

Fig. 6 shows the training history for various airfoil 

geometry representations using the same Aerofoil4BN2FC 

architecture as shown in Fig. 4c. The MSE curves for the 

training datasets drop faster. On the other hand, the MSE 

curves for validation vary. The validation loss for 

unstructured mesh does not fall very well and continues flat 

with the highest MSE loss than others. The grayscale images 
have lower MSE for validation loss than the unstructured 

mesh and continue flat for the rest of the epochs. In this 

training, airfoil images using SDF have the lowest MSE and 

keep minimizing the error. 

 

 
Fig. 6  Training history for various airfoil geometry representations 

Because the SDF+FMM can perform very well during 

training, we combine it with multiple architectures, as shown 

in Fig. 4. There is no significant improvement when varying 
the convolution layers while validating the datasets. However, 

all architectures show decreasing MSE during training, as 

shown in Fig. 7, so we choose the four layers instead 

(Aerofoil4BN2FC). 

 

 
Fig. 7  Training history for layer depth variation on SDF datasets 

 

Then, the trained model predicts the aerodynamic 

coefficients for the unseen airfoil during training. For this 

purpose, the NACA 2024 has the actual coefficient of lift, 

drag, and moment from CFD and then compares them to the 

prediction results. From Fig. 8a, the image with SDF+FMM 

has the best prediction result. The grayscale image has a better 

prediction result than the unstructured mesh. The unstructured 
mesh cannot perform well at less than zero angles of attack. 

For the drag coefficient case in Fig. 8b, the unstructured mesh 

performs worst for all conditions. The grayscale image 

performs well, but the SDF+FMM image still has the best 

prediction results. It also happens on the moment coefficient, 

as shown in Fig. 8c, and the SDF+FMM image can follow the 

actual data very well. On the other hand, the grayscale image 
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performs slightly well, and the unstructured mesh still cannot 

obtain good prediction results. 

The SDF+FMM image can perform very well for 

aerodynamic coefficient. This performance can happen 

because the trained model using SDF+FMM as airfoil 

geometry representation has the smallest MSE during 

validation. In this article, Root Mean Squared Error (RMSE) 

and R-squared (9: ) are metrics to measure the network’s 

performance. Based on Table II, it looks evident that airfoil 

geometry representation using our proposed SDF+FMM has 

the best metric results compared to the original SDF. 

 

 
(a) Lift coefficient 

 
(b) Drag coefficient 

  

 
(c) Moment coefficient 

Fig. 8  Aerodynamic coefficient prediction from various geometry 

TABLE II 

THE METRIC RESULTS FROM VARIOUS GEOMETRY REPRESENTATIONS 

Geometry 
RMSE 9: 

�� �� �� �� �� �� 

Grayscale 0.0336 0.0067 0.0126 0.9994 0.9822 0.9629 
UM 0.2337 0.0214 0.0192 0.9848 0.8828 0.8227 

SDF+FMM 0.0245 0.0036 0.0032 0.9994 0.9952 0.9946 

Composite [19] 0.0273 0.0035 0.0027 - - - 
SDF [25] 0.0296 0.0042 0.0042 - - - 

 

In terms of the 9:  metric, as illustrated in Fig. 9, the 

grayscale image and SDF+FMM have a high score in 

predicting ��, but the UM has slightly below that. The UM is 

still good for predicting ��, because it can follow the curve 

pattern in Fig. 8a, but it has a high value of RMSE, and it 

cannot perform very well for angles less than zero. Although 

all geometry representations can follow the curve pattern for 

predicting �� , they have good 9:  globally, but only 

SDF+FMM can fit close enough to actual �� as shown Fig. 

8b. The Grayscale has a lower RMSE than the UM. The 

Grayscale and UM have higher RMSE than the SDF+FMM 

for predicting ��. 
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(a) Grayscale �� 

 
(b) Grayscale �� 

 
(c) Grayscale �� 

   

 
(d) UM �� 

 
(e) UM �� 

 
(f) UM �� 

   

 
(g) SDF ��  

(h) SDF �� 
 

(i) SDF �� 

Fig. 9  The 9: metric for various prediction result 

 

IV. CONCLUSIONS 

Many options, including Grayscale, UM, and SDF, can be 

used as airfoil geometry representations. This choice 

determines the level of effectiveness of the CNN model 

during training. In the training process, the CNN model uses 

a modified LeNet-5 architecture. This architecture has three 

depth layers, Aerofoil2BN2FC, Aerofoil3BN2FC, and 

Aerofoil4BN2FC. Based on this study, we use 8K datasets, 

and the Aerofoil4BN2FC architecture type was chosen to 

determine which image type is better Grayscale, UM, or 

SDF+FMM. Fig. 6 shows that SDF+FMM images give the 
best results during the training process at 1000 epochs 

because it produces more consistent patterns and more 

complex pixel information. We use Batch Normalization to 

speed up the training process. The training process and the 

metric results also show that the image we propose in 

SDF+FMM has the smallest RMSE value of 0.0245 for ��, 
0.0036 for ��, and 0.0032 for ��, than the original SDF. The 

same applies to the 9: value of 99.9% for ��, 99.5% for ��, 

and 99.46% for �� , in predicting the airfoil aerodynamic 

coefficient according to Table II. This study also found 

variations in the depth of the CNN layer on SDF+FMM 

images have a similar performance during training, so the 

architecture chosen is Aerofoil4BN2FC. 

The SDF+FMM image effectively improves training 

performance and predicts aerodynamic coefficients very well. 

SDF+FMM images can be applied to airfoils (2D wings) on 

different flow conditions for further research. But still, this 

image needs improvement for predictions of the aerodynamic 

coefficient on 3D wings. However, this limitation opens the 
opportunity for further research on predicting aerodynamic 

coefficients using CNN for airfoils and 3D wings with 

different flow conditions. 
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