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Abstract—The power quality is identified and monitored to prevent the worst effects arise on the electrical devices. These effects can be 

device failure, performance degradation, and replacement of some device parts. The deep convolutional neural networks (DCNNs) 

method can extract the complexity of image features. This method is adopted for the power quality disruption identification of the 

model. However, the power quality signal data is a time series. Therefore, this paper proposes an approach for the conversion of a 

power quality disturbance signal to an image. This research is conducted in several stages for constructing the approach proposed. 

Firstly, the size of a matrix is determined based on the sampling frequency values and cycle number of the signal. Secondly, a zero-

cross algorithm is adopted to specify the number of signal sample points inserted into rows of the matrix. The matrix is then converted 

into a grayscale image. Furthermore, the resulting images are fed to the two-dimension (2D) CNNs model for the PQDs feature learning 

process. When the classification model is fit, then the model is tested for power quality data prediction. Finally, the model performance 

is evaluated by employing the confusion matrix method. The model testing result exhibits that the parameter values such as accuracy, 

recall, precision, and f1-score achieve at 99.81%, 98.95%, 98.84, and 98.87 %, respectively. In addition, the proposed method's 

performance is superior to the previous methods.  
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I. INTRODUCTION 
Power quality is an important factor in the utilization of 

electrical devices. Power quality disturbances (PQDs) occur 
and cause negative effects such as failure, performance 
reduction, and maintenance costs for electrical equipment[1]. 
The PQDs categories are harmonic, sag, interruption, swell, 
notch, flicker, and transient[2]. The PQDs are caused by 
various loads [3], [4] such as arc generators, the converters of 
power, etc. Therefore, it is crucial to identify these disruptions 
as preventive steps and to minimize the worst effects. 

Several researchers have adopted the deep learning method 
to identify the PQDs. Convolutional neural networks (CNNs) 
are mostly utilized methods for PQDs identification [1] and 
have received much attention due to their capability to learn 
the complexities of the image features [5]. In addition, this 
method also has low-cost computation at the model training 

phase [6]. The one-dimension(1D) [7]–[12] and 2D CNNs 
types [13]–[16] have been implemented for the detection and 
classification of the PQDs where the 1D CNNs learn time-
series data while the 2D CNNs are image data. The image is 
obtained from the conversion of time-series signal data.  

Several authors have introduced conversion methods in this 
field. In these methods, the concept of trajectory matrix was 
utilized in the conversion process [5]. The quadratic mean was 
adopted to capture the signal event as the image [17]. The 
spectrogram and scalogram approaches have been also applied 
[18], [19]. Furthermore, some previous studies [20]–[22] 
employed the space phasor diagram. However, these 
conversion methods entirely changed the authentic data value, 
so the image is unrepresented in the whole signal. The other 
methods created the rectangular matrix from the sample values 
of the signal [23]–[25]. The matrix was then converted to a 
grayscale image. However, these methods only transfer 80 to 
90 percent of the number of samplings into the matrix. In 
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addition, the matrix size determination is also unexplained 
detailly in their papers. Therefore, we proposed a conversion 
method where the matrix size determination refers to the 
number of cycles. This approach also adopts the zero-cross 
algorithm to specify the position of the signal samplings in the 
matrix. 

II. MATERIALS AND METHODS 
This section presents the disturbances data source, the 

proposed conversion method, the design of model architecture, 
and the model evaluation.  

A. Power Signal Disturbance Data  
The disturbance signal dataset is synthetic [17], [18], [20]–

[26] [10-18] generated by applying the formula[27] in Table 1. 
The parameters in this equation are referred to the IEEE 
standard [28]. In this study, there are 12 disturbances 
categories such as flicker, swell, sag, harmonic, flicker 
harmonic, sag harmonic, swell harmonic, flicker sag, flicker 
swell, interruption, interruption harmonic, and normal. The 
parameters of the values of fundamental (f) and sampling 
frequencies (fs) are 60 Hz and 3200 Hz, respectively[8].  

 
TABLE I 

THE FORMULA OF SYNTHETIC DATA  

Disruption Category Formula Parameter 

C1-Normal ���� = ��1 ± 
���� − ��� − ��� − ������������ 
 ≤ 0.1 , � ≤ �� − �� ≤ 9� , α= 2�� 

C2-Flicker ���� = ��1 +  �����!���������� 8 ≤ �! ≤ 25 %& , �! = 2��!    0.05 ≤  ≤ 0.1 

C3-Flickerharmonic ���� = ��1 +  �����!���'
(������� + 
)����3���  + 
+����5��� ,  0.05 ≤  ≤ 0.1 , 8 ≤ �! ≤ 25 %&, 

0.05 ≤ 
) , 
+, 
. ≤ 0.15 , ∑ 
0
1 = 1 

C4-Flickersag ���� = ��1 +  �����!���1 − 
���� − ��� − ��� − ������������ 0.1 ≤ 
 ≤ 0.9 , � ≤ �� − �� ≤ 9� , 

0.05 ≤  ≤ 0.1 , 8 ≤ �! ≤ 25 %&  

C5-Flickerswell ���� = ��1 +  �����!���1 + 
���� − ��� − ��� − ������������ 0.1 ≤ 
 ≤ 0.8 , � ≤ �� − �� ≤ 9� , 

0.05 ≤  ≤ 0.1 , 8 ≤ �! ≤ 25 %&  

C6-Harmonic ���� = �'
(������� + 
)����3��� + 
+����5��� + 
.����7���, 0.05 ≤ 
) , 
+, 
. ≤ 0.15, ∑ 
0
1 = 1  

C7-Interruption ���� = ��1 − 
���� − ��� − ��� − ������������ 0.9 ≤ 
 ≤ 1 , � ≤ �� − �� ≤ 9� 

C8-
Interruptionharmonic 

���� = ��1 − 
���� − ��� − ��� − �����'
(������� + 
)����3���
+ 
+����5���, 

0.9 ≤ 
 ≤ 1 , � ≤ �� − �� ≤ 9� 

0.05 ≤ 
) , 
+, 
. ≤ 0.15  , ∑ 
0
1 = 1 

C9-Sag ���� = ��1 − 
���� − ��� − ��� − ������������ 0.1 ≤ 
 ≤ 0.9 , � ≤ �� − �� ≤ 9� 

C10-Sagharmonic ���� = ��1 − 
���� − ��� − ��� − �����'
(������� + 
)����3���
+ 
+����5���, 

0.1 ≤ 
 ≤ 0.9 , � ≤ �� − �� ≤ 9� , 0.05 ≤ 
), 
+, 
. ≤ 0.15 , 

∑ 
0
1 = 1 

C11-Swell ���� = ��1 + 
���� − ��� − ��� − ������������ 0.1 ≤ 
 ≤ 0.8 , � ≤ �� − �� ≤ 9� 

C12-Swellharmonic ���� = ��1 + 
���� − ��� − ��� − �����'
(������� + 
)����3���
+ 
+����5���, 

0.1 ≤ 
 ≤ 0.8 , � ≤ �� − �� ≤ 9� 

0.05 ≤ 
) , 
+, 
. ≤ 0.15 , ∑ 
0
1 = 1 

 
In addition, the other parameters value, such as the flicker 

distortion (γ), the intensity (β), the time start(ta), and the end 
of disturbance (tb) are randomly produced. We generated the 
disturbance signals in the simulation with 11,000 samples in 
each category, and the data is 132,000 signals. 

B. The Signal to Image Conversion Method 
The proposed method in this study refers to the approaches 

presented in Refs [24], [25]. These methods utilized the matrix 
for the conversion process. As shown in Fig 1, we proposed 
this method's first and second steps. The matrix dimension was 
specified according to the signal's number of cycles and 
sample points.  

 

 
Fig. 1  A flowchart of the proposed conversion method 

 

The details of the conversion method stages are explained 
as follows: 

 Determining the dimension of matrix. The number of 
columns (ncol) and rows (nr) are obtained from the 
equation (1) and (2). 

�3 = �4 ∗ 2 (1) 

�467 =
��
�3

 
(2) 

In this case, the number of cycles (nc) is at 11 with 586 
sampling points (ns). 

 Specifying the start and end points of a half cycle. The 
zero-cross algorithm [29] was adopted to determine the 
start and endpoints of a half-cycle of the signal 
illustrated in Fig 2.  
 

 
Fig. 2  Specifying a half-cycle the signal with the zero-cross algorithm 

 
When the number of points in the half-cycle is less than the 

number of columns (ncol) value, the rest column will be filled 
with 0 value. 
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 Transfer the sampling values into the matrix. From step 
2, we obtain each sampling point's row and column 
number, then the sampling point values are filled into 
the matrix. As a result, the positive sampling values 
appear in the odd rows in the matrix. The negative 
sampling values are in the even rows.  

 Converting the matrix to image. The elements values of 
the matrix are converted into the grayscale color. The 
width and height of the image are obtained in the 
number of columns and rows of the matrix. 

C. Deep CNN Architecture 
The model architecture shown in Fig 3 contains four 

convolution layers with rectified linear unit (ReLU) 
activation, two max-pooling layers, and one dropout layer. 
Meanwhile, there are two dense layers for the classification, 
each utilizing the ReLU and the softmax activation functions. 

 

 
Fig. 3  The architecture of model deep CNN 

D. Model Performance Evaluation 
The confusion matrix is adopted to evaluate the 

performance of the model. From this matrix, the parameters 
of performance evaluation such as accuracy (A), precision 
(P), recall (R), and f1-score (f1) are obtained [30].  

 

� =
�8 + �9

�8 + �9 + :8 + :9
 

(1) 

; =
�8

�8 + :9
 

(2) 

8 =
�8

�8 + :8
 

(3) 

�1 =
�2 ∗ 8 ∗ ;�

�8 + ;�
 

(4) 

Where TP is true positive, TN is true negative, FP is false 
negative, and FN is false negative[31]. 

III. RESULTS AND DISCUSSION 
This section presents the result of the proposed conversion 

method. The images resulting then are collected as a dataset. 
This dataset is fed to the 2D deep CNN model for features 
learning. Furthermore, the confusion matrix evaluates and 
analyses the model performance. 

A. Conversion Result 
The proposed method converted the disturbance signals 

produced from the formula in the Table 1 to the images. The 
image size resulting is 27 x 22 pixels with grayscale color. 
The images of each category are presented in Table 2. As 
mentioned in section two, the matrix contains the positive 
values in the odd rows. Meanwhile, the negative values are in 

the even rows. From the image, there are 22 grayscale shades 
where the odd lines are lighter than the even lines.  

TABLE II 
THE RESULT OF THE CONVERSION METHOD PROPOSED  

Disturbance 

type 

Grayscal

e Image 

Disturbance type Grayscal

e Image 

C1-Normal 
 

C7-Interruption 
 

C2-Flicker 
 

C8-
Interruptionharmon
ic  

C3-
Flickerharmoni
c  

C9-Sag 
 

C4-Flickersag 
 

C10-Sagharmonic 
 

C5-
Flickerswell 

 

C11-Swell 
 

C6-Harmonic 
 

C12-Swellharmonic 
 

B. Dataset Splitting 
The images number of each disturbance category is 11,000. 

In this case, the total images obtained are 132,000 from the 
whole disturbance category. The model utilizes 120,000 
images (80 % for the training and 20% for the validation) in 
the learning stage. Meanwhile, the rest is applied in the testing 
section. For the simulation, this study utilized three datasets 
presented in Table 3. The first dataset was obtained from the 
proposed conversion method. The second and third datasets 
have resulted from the conversion methods by authors in Refs 
[24], [25].  

TABLE III 
THE SIMULATION DATASETS 

Conversion Method  Image Size (pixels) Dataset Name 

The proposed approach 27 x 22 D1 
Author’s approach in 
Ref[24]  

24 x 24 D2 

Author’s approach in 
Ref[25] 

30 x 20 D3 

C. Model Learning 
In this study, we employed three models with similar 

architecture as depicted in the Fig 3. The models are fed with 
three different datasets as described in the Table 3. The model 
names for the learning stage are presented in Table 4.  

TABLE IV 
THE MODEL NAMES  

Model  Dataset  

Model-D1 D1 
Model-D2 D2 
Model-D3 D3 

TABLE V 
THE MODEL LEARNING RESULT  

Model 
Accuracy (%) Time Learning 

per epoch (s) Training Validation 

Model-D1 98.80 99.31 26 
Model-D2 98.61 98.82 23 
Model-D3 98.00 98.11 26 
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For compile setting, the optimization algorithm utilized 
Adam with the learning rate at 0.001, whereas the categorical-
cross-entropy was adopted for the loss function. In addition, 
the batch shape was set at 32. Meanwhile, we adjusted the 
epoch number to 100 for model fitting.  

D. Model Testing 
The model was evaluated to measure the PQDs 

classification performance. In the simulation, the models were 
tested with 12,000 images. The prediction results are 
presented in the confusion matrixes shown in Fig 4, 5, and 6. 

 

 
Fig. 4  The matrix confusion resulting from the Model-D1 learning 

 

As displayed in Fig 4, the prediction result of the Model-
D1 shows as five of the disturbance categories, such as C1-
flicker, C2-flicker harmonic, C3-harmonic, C11-swell, and 
C12-swell harmonic, achieve the TP value at 1,000 images. 
On the other hand, the lowest TP value is the C9-sag type, 
with the FN value being 63 images. This type is detected in 
56 images as the C7-interruption and in seven images as C1-
normal. 

Fig 5 shows the confusion matrix produced by the Model-
D2 shows that five disturbance categories are C2-flicker, C6-
harmonic, C1-normal, C11-swell, and C12-swellharmonic 

reach the TP value at 1,000 images. In contrast, the C5-
flickerswell type obtains the lowest TP value with the FN 
value at 46 images. This type is recognized as the interruption 
at 41 images, two images as C2-flicker, and three as C4-
flickersag. 

The Fig 6 demonstrates the disturbance categories such as 
C3-flickerharmonic, C6-harmonic, and C12-swellharmonic 
with a TP value 1,000. Meanwhile, the C9-sag type obtains 
the lowest TP value, with the FN value at 56. This category is 
identified as C7-interruption with 43 images and 13 images as 
C1-normal. 
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Fig. 5  The matrix confusion resulting from the Model-D2 learning 

 

 
Fig. 6  The matrix confusion resulting from the Model-D3 learning 
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In general, these models result in the same TP for the 
category of C3-flickerharmonic, C6-harmonic, and C11-swell 
with value at 1,000. On the contrary, the C9-sag category 
obtains the lowest TP value with the highest FN values as the 
C7-interruption category. As shown in Table 1, the equation 
of the C9-sag and C7-interruption are similar, but the value of 
the intensity(β) variable is different. Therefore, when the 
intensity values of the C9-sag and C7-interruption are similar 
or closer, the features of C9-sag can be learned as the C7-
interruption or vice versa.  

The measuring accuracy, recall, precision, and the f1-score 
refer to the confusion matrixes in Fig 4, 5, and 6. The 
parameters measurement resulting from the model-D1, 
model-D2, and model-D3 are displayed in the bar graphs as 
shown in Figures 7,8, 9, and 10. In these graphs, the parameter 
values of each disturbance category are presented.  

Fig. 7  The bar graph of the accuracy parameter of prediction in the model-
D1, the model-D2, and the model-D3.  
 

The Fig 7 demonstrates that the prediction accuracy of the 
model-D1 results in the highest value than the model-D2 and 
the model-D3 for the disturbance categories such as the C3-
flickerharmonic, C4-flickersag, C5-flickerswell, C7-
interruption, and C8-interruption harmonic. In addition, all 
models reach one hundred percent prediction value at the 
C11-swell and C6-harmonic categories. 

 

Fig. 8  The bar graph of the recall parameter of prediction in the model-D1, 
the model-D2, and the model-D3. 

 
The bar graph in Fig 8 shows that the model-D1 has the 

highest value of the recall parameter in the disturbances type 
such as C2-flicker, C3-flickerharmonic, C5-flickerswell, C7-
interruption, C8-interruptionharmonic, and C11-swell 
compared with the model-D2 and model-D3. In addition, the 
C6-harmonic and C12-swell harmonic disturbance types 
obtain a recall value of one hundred percent for all models.  

Fig. 9  The bar graph of the precision parameter of prediction in the model-
D1, the model-D2, and the model-D3. 
 

The bar graph Fig 9 illustrates that the parameter precision 
of model-D1 outperforms model-D2 and model-D3 for the 
disturbance categories such as the C4-flickersag and C8-
interruption harmonic. In addition, model-D1 and model-D2 
obtain a similar percentage in the C2-flicker, the C3-flicker 
harmonic, the C7-interruption, the C1-normal, the C9-sag, 
and the C11-swell. Furthermore, these models also achieve 
the precision value of one hundred percent at the C6-harmonic 
and the C12-swell harmonic categories. 

 

Fig. 10  The bar graph of the f1-score parameter of prediction in the model-
D1, the model-D2, and the model-D3. 

The bar graph of the f1-score in Fig 10 displays that model-
D1 demonstrates superiority in the C4-flickersag, C5-
flickerswell, C7-interruption, and C8-interruption harmonic 
over model-D2 and model-D3. In addition, the C6-harmonic 
and the C12-swell harmonic of all models obtain the f1-score 
one hundred percent. In general, the evaluation parameters of 
all models reach one hundred percent for the C6-harmonic 
and the C12-swell harmonic categories. The performance 
summary of the model-D1, the model-D2, and the model-D3 
are presented in Table 6 and Fig 11. 

TABLE VI 
THE MODEL TESTING RESULT  

Model 
Accuracy 

(%) 

Recall 

(%) 

Precision 

(%) 

F1-score 

(%) 

Model-D1 99.81 98.95 98.84 98.87 
Model-D2 99.79 98.71 98.83 98.76 
Model-D3 99.78 98.72 98.74 98.72 

99,10%

99,20%

99,30%

99,40%

99,50%

99,60%

99,70%

99,80%

99,90%

100,00%

Model-D1 Model-D2 Model-D3

90,00%
91,00%

92,00%

93,00%

94,00%

95,00%
96,00%

97,00%

98,00%

99,00%

100,00%

Model-D1 Model-D2 Model-D3

93,00%

94,00%

95,00%

96,00%

97,00%

98,00%

99,00%

100,00%

Model-D1 Model-D2 Model-D3

94,00%

95,00%

96,00%

97,00%

98,00%

99,00%

100,00%

Model-D1 Model-D2 Model-D3
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Fig. 11  The bar graph of the summary evaluation parameters of prediction in 
the model-D1, the model-D2, and the model-D3. 

 
From Table 6, the performance of the proposed conversion 

approach (the model-D1) outperforms previous methods [17-
18], where the evaluation parameters such as accuracy, recall, 
precision, and f1-score reach percentage values at 99.81, 
98.95, 98.48, and 98.87, respectively. The parameters of the 
evaluation result are high (almost one hundred percent) 
because the data is synthetic and without noise in the signal. 
In addition, the categories of transient and notch disturbances 
are not included because the resulting image size is not similar 
to the others. 

IV. CONCLUSION 
The pre-processing data method for the conversion of the 

signal to the image is introduced in this study. In this proposed 
approach, the zero-cross algorithm is adopted for the sample 
points position determination of signal in the matrix. The 
conversion resulting is utilized as a dataset in the PQDs 
identification using the 2D CNNs algorithm. In the 
simulation, the evaluation showed that the percentage of the 
parameters such as accuracy, recall, precision, and f1-score 
reached 99.81, 98. 95, 98.84, and 98.87, respectively. In 
addition, the proposed conversion performance exceeds the 
existing approaches[24], [25]. For further research, this 
method will utilize the synthetic signal with noise. In addition, 
the ability of this approach can be evaluated using the actual 
signal data.  
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