
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage :  www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON 

INFORMATICS 
VISUALIZATION

Evaluating Web Scraping Performance Using XPath, CSS Selector, 

Regular Expression, and HTML DOM With Multiprocessing 

Technical Applications 

Irfan Darmawan a, Muhamad Maulana b, Rohmat Gunawan b,*, Nur Widiyasono b 

a Department of Information System, Telkom University, Bandung, Indonesia 

bDepartment of Informatics, Siliwangi University, Tasikmalaya, Indonesia 

Corresponding author: *rohmatgunawan@unsil.ac.id 

 

 
Abstract— Data collection has become a necessity today, especially since many sources of data on the internet can be used for various 

needs. The main activity in data collection is collecting quality information that can be analyzed and used to support decisions or provide 

evidence. The process of retrieving data from the internet is also known as web scraping. There are various methods of web scraping 

that are commonly used. The amount of data scattered on the internet will be quite time-consuming if the web scraping is done on a 

large scale. By applying the parallel concept, the multi-processing approach can help complete a job. This study aimed to determine the 

performance of the web scraping method with the application of multi-processing. Testing is done by doing the process of scraping data 

from a predetermined target web. Four web scraping methods: CSS Selector, HTML DOM, Regex, and XPath, were selected to be used 

in the experiment measured based on the parameters of CPU usage, memory usage, execution time, and bandwidth usage. Based on 

experimental data, the Regex method has the least CPU and memory usage compared to other methods. While XPath requires the least 

time compared to other methods. The CSS Selector method is the smallest in terms of bandwidth usage compared to other methods. 

The application of multi-processing techniques to each web scraping method is proven to save memory usage, reduce execution time 

and reduce bandwidth usage compared to only using single processing. 
 
Keywords— Multiprocessing; scraping; website; HTML DOM.  

  
Manuscript received 10 Jan. 2022; revised 25 Mar. 2022; accepted 18 Apr. 2022. Date of publication 31 Dec. 2022. 

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License. 

 
 

 

I. INTRODUCTION 

Web scraping is a technique for extracting data from a 

website and saving it to a file system or database for some 

purpose. The extracted web data needs to pass through the 

Hypertext Transfer Protocol (HTTP) protocol or a web 

browser [1] [2]. Web scraping is an effective and efficient 

technique for obtaining reliable, fast, and automatic 

information in extracting and storing data from a website [3]–

[5]. The existence of this web scraping technique can be used 

for research purposes, data analysis, and information 

collection from various media on the internet automatically. 
Examples of the use of web scraping include the acquisition 

and categorization of web page information related to 

hydroponics [6], classification of job vacancies based on data 

search results on the internet [7], and analysis of natural 

disaster information [8], Twitter web scraping [9] [10], web 

scraping on GitHub [11]–[14], web scraping data on google 

scholar [15], web scraping on Instagram [16] [17].  

Various web scraping methods have been commonly used, 

including traditional copy and paste, Regular Expression 
(Regex) [16], Hypertext Markup Language Document Object 

Model (HTML DOM), Xpath [18] , and CSS Selector [18]–

[21]. Apart from that, several programming languages have 

also developed various libraries to support the web scraping 

process, including Beautifulsoup, lxml, and scrappy, which 

are commonly used to do web scraping in python 

programming [22]. 

In data-intensive computing applications, the current 

hardware allows for parallel program execution [23]–[25] 

[26]. The application of parallel and multiprocessor 

algorithms can break down significant numerical problems 
into smaller subtasks, reducing the total computation time on 

multiprocessor computers and resulting in better performance 

[23]. In dealing with this parallel computing problem, the 

concept of a processing "pool" is used: "tasks" (data) are 

904

JOIV : Int. J. Inform. Visualization, 6(4) - December 2022 904-910



forwarded in bulk to the pool, and the pool handles the 

distribution of tasks to a number of available worker 

processes  [27]–[29]. 

Optimization of hardware so that it can work in parallel 

during program execution is one of the interesting things to 

research. For programs to be executed in parallel, a special 

configuration is required for better performance. This 

research aims to conduct a comparative study of web scraping 

performance by applying multi-processing techniques. The 

experiment compared web scraping performance by applying 

single-processing and multi-processing techniques. Python 
programming language was chosen to be used in this research 

because it is open source, multiplatform, lightweight, 

compact, and very suitable for rapid prototyping, although it 

is powerful enough to write significant applications [23]. 

II. MATERIAL AND METHOD 

A. XPath 

XPath (XML Path Language) is a query language to select 

parts (nodes) of an XML document [30] In addition to 
selecting, XPath can also be used to calculate values such as 

strings, numbers, and Booleans in an XML and HTML file. 

The World Wide Web Consortium (W3C) has even set 

standards for the use of XPath. 

B. CSS Selector 

CSS Selector is a method for finding HTML elements on 

web pages and extracting data from them [20]. A CSS 

Selector is declared as part of a markup style that applies to 

match the tags and attributes in the markup. 

C. HTML DOM 

HTML DOM is a standard object model for getting, 

changing, adding, or removing HTML elements [31]. The 

DOM works by defining the objects and properties of all 

HTML elements, with methods to access them. A web 

browser does not require the use of the DOM to display 

HTML documents. But with the DOM, Javascript can access 

all the elements in the HTML document. 

D. Regex 

Regular Expression (Regex) is a language construction to 

match text based on certain patterns, especially for complex 

cases. Regex is also used to match certain character patterns 

in a set of strings[32]. Regex has two kinds of characters, 

namely regular characters and meta characters. 

E. Multi-processing 

Multi-processing is the ability of a system to support more 

than one processor at the same time [33]. A program that uses 

multi-processing will be broken down into smaller routines 

that run independently. The operating system will allocate 

these threads to the processor, which increases system 

performance. The use of multi-processing by making the 

processing processes parallel is necessary to achieve the best 

performance. Each multi-processing task will run in its own 

process, and each program running on the computer is 

represented by one or more processes [26], [34]. 
There are six main stages carried out in this study, as shown 

in Fig 1. 

 

Start

Mapping The Target 
Website

1

Creation of 
Source Code

2

Testing Preparation

3

Running apps and 
measurements

4

Compare The 
Measurement Result

5

Finish

Make a Conclusions

6

 
Fig. 1  Research Stages 

F. Mapping The Target Website 

Website mapping is one way to identify meta attributes that 

contain data objects. This activity is carried out to obtain 

information on the data object to be retrieved, as shown in Fig 2. 
 

 
Fig. 2  The target site's web page marked on the id element 

G. Creation of Source Code 

The source code creation of the program is divided into two 

versions. For the first version, the program code is made 

without multi-processing, while the second version uses 

multi-processing. This is done to examine the difference 

between the two from the results of the test parameters 

obtained. Each version of the code consists of four different 

web scraping methods, so a total of eight program code 

sources are created. 
Source code programs created using different libraries are 

adapted for compatibility with each method used. XPath uses 

the lxml library, Regex uses the re library, CSS selector uses 

BeautifullSoup, and Html DOM uses htmldom. The source 

code snippet for each web scraping method used in the 

experiment is shown in Figure 3-6. 

 

905



 
Fig. 3  CSS Selector Code Snippet 

 

 
Fig. 4  Regex Code Snippet 

 

 
Fig. 5  HTML DOM Code Snippet 

 

 
Fig. 6  Xpath Code Snippet 

 

Apart from programming by applying four different 

scraping methods, other program codes were also used in the 

experiment, including program code to calculate processing 

time, program code to calculate memory usage, program code 

to calculate CPU usage, and program code to calculate 
Bandwidth usage. The snippet of the program code to 

calculate the scraping process time using the os library is 

shown in Fig 7. 

 

 
Fig. 7  Code Snippet Time Process Calculate  

 

Fig.7 shows the time.time() function contained in the os 

library, which is used to get time information. The time data 

obtained before the main program is run is stored in the start 

variable, while the time data obtained after the main program 

is stored in the end variable. The time used for the main 

program to run is calculated based on the difference between 

the end and start variable values. In calculating memory usage, 
the psutil library is used. The snippet of the memory usage 

calculation code is shown in Fig 8. 

 

 
Fig. 8  Code Snippet Calculating Memory Usage  

 

906



Fig. 8 shows that the memory_info().rss function is applied 

to the program code to get information about the memory used. 

Memory usage data obtained before the main program is run 

is stored in memory variable1, while memory usage data 

obtained after the main program is run is stored in the 

memory2 variable. Memory usage while the main program is 

running is obtained based on the difference between the 

values of the memory2 and memory1 variables. 

 

 
Fig. 9  Code Snippet Calculating CPU Usage  

 

Fig. 9 shows that the psutil.cpu_percent() function is 

applied to the program code to get information about the CPU 

being used. CPU usage data obtained before the main program 

is run is stored in variable memory0, while CPU usage data 

obtained after the main program is run is stored in variable 

cpu1. CPU usage while the main program is running is 

obtained based on the difference between the values of the 

cpu1 and cpu0 variables. 

 

 
Fig. 10  Code Snippet Calculating Bandwidth Usage  

 

Fig. 10 shows the program code snippet using the psutil 
library with the functions net_io_counter().byte_sent and 

net_io_counter().byte_recv applied to the program code to get 

bandwidth usage information. 

A. Testing Preparation 

The hardware and software used in the experiment were 

prepared at this stage. The hardware and software 

specifications used in the experiment are shown in Table I. 

TABLE I 
HARDWARE AND SOFTWARE SPECIFICATION 

No. Item Specification 

1. CPU Intel(R) Xeon(R) CPU @ 
2.30GHz 

2. Memory 4 GB 
3. Operating System Debian 4.9.228-1 x86_64 

4. Programing 
Language 

Python 3.8.0 

 

B. Running Apps and Measurement  

The web scraping program code by applying four different 

methods is executed at this stage. The data obtained based on 

each parameter of the experiment are recorded in the table. 

The experiment was repeated 20 times. 

C. Compare The Measurement Result 

Measurement data from each experiment were collected, 

and each parameter's average value was taken. Then, the 

experimental data was compared between the four web 

scraping methods used. 

D. Make a Conclusion 

At this stage, conclusions are drawn from the measurement 

data that have been compared between the four methods used 

by applying multi-processing techniques and without 

applying multi-processing techniques.  

III. RESULT AND DISCUSSION 

This section presents the results of the experiments that 

have been carried out. Every web scraping method that has 
been implemented in the program code is executed. 

Experimental data based on each parameter are recorded and 

presented in a table. 

A. The Measurement Result of CPU Usage 

Table II displays CPU usage data at the time of web 

scraping execution for each method. From the experimental 

results, the data obtained are as follows: the CSS Selector 

method uses an average of 25.6% CPU and there is an 

increase to an average of 66.2% when multi-processing 
techniques are applied, HTML DOM uses an average of 41.3% 

CPU and there is an increase an average of 80% when multi-

processing techniques are applied, Regex uses an average of 

1% CPU and an increase to an average of 6% when multi-

processing techniques are applied, while XPath uses an 

average of 9.4% CPU and there is an increase to an average 

of 38% average when multi-processing technique is applied. 

TABLE II 
CPU USAGE MEASUREMENT RESULTS 

No 

CSS SELECTOR HTMLDOM REGEX XPATH 

Single 
proces 

sing 

Multi 
proces 

sing 

Single 
proce 
ssing 

Multi 
proce 
ssing 

Single 
proce 
ssing 

Multi 
proce 
ssing 

Single 
proce 
ssing 

Multi 
proce 
ssing 

1 25,3   67,6    42,0   80,2       0,8     6,3      9,7   36,1  

2    25,9   65,5    42,8   79,9       0,9      6,3     10,0   36,9  

3     25,8   66,5     42,6   79,5       1,2      6,7       9,7    37,3  

4     25,9     64,0     42,9    80,0       0,8   6,4       9,6    38,0  

5     26,0     66,0     41,2   79,7       1,1   2,3       9,6   38,4  

6     26,6   67,2     42,0   79,7       0,9   6,9     10,0   37,4  

7   26,0     67,0   42,9   80,2       1,0   6,2       9,2   37,8  

8    26,2   63,9     42,1   80,1      1,0   5,8       9,3   37,3  

9     25,8   66,2     42,3   79,9       0,9   6,5       9,7   37,7  

10    27,2   66,7     42,2   80,5       1,2   6,4       9,3   37,4  

11    25,8     67,0   42,4    80,0       1,2   6,5       9,7   37,3  

12     25,9   66,1    33,1    80,0       0,9   6,3       9,2   37,7  

13     26,7   66,2     42,4   79,9       1,2   6,8       9,2   38,2  

14     25,9   65,8     41,0   80,1       0,9   6,3       9,6   38,5  

15     25,9     66,0     42,3   79,9       0,9   4,5       9,3   37,3  

16    26,3   65,6     43,1   79,9       1,4   6,2       9,6   37,7  

17     26,0   65,9    41,8   80,1       1,6   6,8      8,9   37,4  

18     17,0   66,8    41,9   80,1       1,0   6,2      9,0   37,3  

19     25,7   66,3    41,8   79,9     0,7   4,4      9,1   38,6  

20    26,7     67,0     42,2   80,1  0,9   6,6      9,1    38,5  

AVG     25,6     66,2     41,8    80,0      1,0      6,4       9,4    38,0  

907



B.  The Measurement Result of Memory Usage 

Data on memory usage during web scraping execution for 

each method is shown in Table III. From the experimental 

results, the data obtained are as follows: the CSS Selector 

method uses an average of 29,070 KB of memory and there is 
an increase to an average of 334 KB when multi-processing 

techniques are applied, HTML DOM uses an average of 158.3 

KB of memory and there is an increase to an average 340 KB 

when the multi-processing technique is applied, Regex uses 

an average of 160.9 KB of memory and there is an increase to 

an average of 359 KB when multi-processing techniques are 

applied, while Xpath uses an average of 114 KB of memory 

and there is an increase to an average of 351 KB when the 

multi-processing technique is applied. multi-processing 

technique applied. 

TABLE III 
MEMORY USAGE MEASUREMENT RESULTS 

No 

CSS SELECTOR HTMLDOM REGEX XPATH 

Single 
proces 

sing 

Multi 
proces 

sing 

Single 
proce 
ssing 

Multi 
proce 
ssing 

Single 
proce 
ssing 

Multi 
proce 
ssing 

Single 
proce 
ssing 

Multi 
proce 
ssing 

1 28155  360  158707   380   1564   307  114606   319  

2 29442  299  157741   368   1556   430  118128   385  

3 29282  352  158699   303   1630   323  115261   372  

4 29212  303  158429   307   1634   364  113295   327  

5 28954  307  158617   327   1503   327  112230   360  

6 29175  364  157708   372   1626   311  111616   327  

7 28954  372  158760   307   1695   307  115220   339  

8 29081  299  157790   368   1622   327  115015   380  

9 29204  319  158638   311   1568   331  111493   372  

10 29188  360  157741   385   1691   446  118087   393  

11 29392  364  158605   368   1548   307  115056   303  

12 28368  299  158617   303   1695   442  114524   323  

13 29327  356  158703   372   1626   425  115261   380  

14 29310  364  158650   311   1560   331  109199   335  

15 28770  368  158638   323   1695   331  114606   385  

16 29196  307  157528   368   1626   446  115589   376  

17 29237  307  158646   319   1560   303  111534   323  

18 29085  311  158580   385   1630   372  117432   376  

19 28573  368  156971   319   1576   450  112230   335  

20 29503  303  158638   311   1572   307  110182   311  

AVG 29070  334  158300   340   1609   359  114028   351  

C. The Measurement Result of Execution Time  

Table IV displays execution time usage data at the time of 

web scraping execution for each method. From the 

experimental results, the data obtained are as follows: the CSS 

Selector method requires an average execution time of 10.87 

seconds and the execution time becomes smaller on average 

4.43 seconds when multi-processing techniques are applied, 

HTML DOM requires an average execution time of 22.65 

seconds and the execution time becomes smaller on average 

12.68 seconds when the multi-processing technique is applied, 

Regex requires an average execution time of 12.89 seconds 
and the execution time becomes smaller on average 3.1 

seconds when the multi-processing technique is applied, 

while Xpath the average execution time is 8.33 seconds and 

the execution time becomes smaller on average 2.32 seconds 

when multi-processing techniques are applied. 

TABLE IV 
EXECUTION TIME MEASUREMENT RESULT 

No 

CSS SELECTOR HTMLDOM REGEX XPATH 

Single 
proces 

sing 

Multi 
proces 

sing 

Single 
proce 
ssing 

Multi 
proce 
ssing 

Single 
proce 
ssing 

Multi 
proce 
ssing 

Single 
proce 
ssing 

Multi 
proce 
ssing 

1 10.58  5.02   21.84  14.45  13.03   2.81   8.56   2.51  

2 10.58  4.52   22.01  12.54  12.87   2.81   8.25   2.31  

3 10.71  4.52   22.06  12.64  12.89   2.91   8.46   2.31  

4 10.68  4.52   22.06  12.74  13.31   2.61   8.33   2.31  

5 10.54  4.42   22.08  12.64  12.82   7.92   8.32   2.31  

6 10.62  4.32   22.11  12.64  12.71   2.71   8.32   2.31  

7 10.64  4.32   22.14  12.54  12.79   2.71   8.27   2.31  

8 10.49  4.52   22.17  12.65  12.83   2.71   8.30   2.31  

9 10.64  4.42   22.18  12.64  12.98   2.71   8.23   2.31  

10 10.50  4.32   22.19  12.74  13.10   2.61   8.24   2.31  

11 10.57  4.32   22.26  12.44  12.74   2.71   8.27   2.31  

12 10.69  4.42   22.37  12.54  12.82   2.81   8.33   2.31  

13 10.42  4.32   22.37  12.44  12.83   2.71   8.32   2.31  

14 10.56  4.42   22.58  12.64  13.15   2.81   8.25   2.31  

15 10.64  4.32   22.60  12.54  12.72   3.31   8.33   2.31  

16 10.44  4.42   22.74  12.64  13.03   2.71   8.36   2.31  

17 10.54  4.42   22.74  12.55  12.77   2.71   8.43   2.31  

18 16.26  4.32   22.81  12.44  12.76   2.71   8.33   2.31  

19 10.67  4.42   22.89  12.65  12.65   4.21   8.34   2.31  

20 10.71  4.42   28.74  12.44  12.96   2.81   8.31   2.31  

AVG 10.87  4.43   22.65  12.68  12.89   3.10   8.33   2.32  

D. The Measurement Result of Bandwidth Usage 

Bandwidth usage involves uploading and downloading 

data. Bandwidth usage is calculated based on the difference 

between these activities. Data on bandwidth usage results 

when conducting web scraping experiments without applying 

multi-processing techniques are shown in Table V. While data 

on bandwidth usage results when conducting web scraping 

experiments using multi-processing techniques are shown in 

Table VI. From the experimental results before applying the 
multi-processing technique, the following data are obtained: 

the CSS Selector method uses an average bandwidth of 

39,944 Kbps upstream and 325,416 Kbps downstream, the 

average HTML DOM uses a bandwidth of 126,948 Kbps 

upstream and 1,780,577 Kbps downstream, Regex averages 

using a bandwidth of 82,669 Kbps upstream and 1,756,610 

Kbps downstream, while the average Xpath uses a bandwidth 

of 159,780 Kbps upstream and 386,299 Kbps downstream. 

TABLE V 
BANDWIDTH USAGE MEASUREMENT RESULT (WITHOUT MULTIPROCESSING) 

NO 
CSS SELECTOR HTMLDOM REGEX XPATH 

UP DOWN UP DOWN UP DOWN UP DOWN 

1 39528 324975 70859 1750847 57767 1729035 1600025 1136765 

2 39884 324466 1180752 2478296 58208 1729299 1057087 890044 

3 39181 324148 84111 1757479 83567 1755653 64366 357740 

4 41397 323549 80008 1753818 86273 1757579 38273 319972 

5 42861 327356 62145 1741082 84922 1754761 50799 340526 

6 43087 327738 72628 1742739 83930 1752537 91349 387684 

7 43501 327526 61205 1731294 87480 1758816 18750 302349 

8 24257 311653 67099 1743519 94012 1767327 20352 309390 

9 40363 324978 67865 1739940 87574 1766236 32373 323477 

10 39729 329412 65176 1738541 83538 1754655 17782 302570 

11 39181 323321 66897 1737130 83750 1755638 18413 301744 

12 41620 325883 67487 1741891 81159 1755332 23522 309481 

13 40450 326134 66118 1745114 80510 1749175 18913 302326 

14 41158 324212 83648 1763233 86645 1762348 20251 306447 

15 37909 321797 58463 1729829 79775 1751486 23208 314142 

16 40670 328083 76376 1754378 88643 1763215 20175 305940 

17 39913 329382 64179 1734396 147157 1851636 18421 301624 

18 42150 325986 65869 1734825 71332 1747634 22019 307113 

19 41606 331942 63149 1735524 56808 1726009 20376 304244 

20 40442 325775 58838 1727932 70326 1743824 19141 302392 

AVG 39944 325416 126948 1780577 82669 1756610 159780 386299 

 

Data were obtained when multi-processing techniques 

were applied and experiments were carried out, as shown in 

Table VI. 

 

 

908



TABLE VI 

BANDWIDTH USAGE MEASUREMENT RESULT (MULTI-PROCESSING) 

NO 
CSS SELECTOR HTMLDOM REGEX XPATH 

UP DOWN UP DOWN UP DOWN UP DOWN 

1 26598 308506 61210 1732078 60407 1726977 29081 311957 

2 22598 310498 68739 1738624 59377 1732961 24876 309800 

3 21515 303362 1047223 2249842 61684 1736757 24283 308663 

4 22830 308630 1042069 2244203 66164 1734415 23907 304975 

5 22518 305981 68569 1742571 62109 1735275 26413 308459 

6 23418 306521 69395 1745932 67076 1736083 23948 305448 

7 23150 307607 62205 1729499 59738 1729392 22095 302522 

8 24179 309527 70961 1744613 60548 1730105 22205 306759 

9 23195 309171 72074 1746492 62816 1737185 23552 307838 

10 23472 306564 206117 1986352 60464 1727275 25553 309231 

11 21642 303506 65112 1734439 68833 1741652 25196 310629 

12 21922 301861 65267 1735010 64604 1737768 23352 310549 

13 23997 315248 62521 1732808 60552 1729934 22564 304269 

14 26790 309801 63427 1730984 68618 1742880 23074 303341 

15 24987 305983 64420 1732829 66382 1735971 24196 306202 

16 22648 309160 64366 1731636 69331 1739131 21008 301381 

17 24893 309963 61508 1734375 62638 1734983 24042 310877 

18 25446 308896 65959 1740999 68993 1741047 22048 304948 

19 26278 312826 65528 1738273 67373 1740444 23618 307820 

20 22944 307501 67946 1739206 72835 1751675 21910 304136 

AVG 23751 308056 170731 1800538 64527 1736096 23846 306990 

 

The CSS Selector method uses an average bandwidth of 

23,751 Kbps upstream and 308.056 Kbps downstream, 

HTML DOM uses an average bandwidth of 170,731Kbps 

upstream and 1,800,538 Kbps downstream, Regex uses an 

average bandwidth of 64,527 Kbps upstream and 1,736,096 

Kbps downstream. Xpath uses an average bandwidth of 2,384 

Kbps upstream and 306,990 Kbps downstream. 

After conducting experiments for each selected method 

and calculating the average value for each parameter, then it 
is compared to determine the performance based on the four 

selected parameters, as shown in Table VII and Table VIII. 

TABLE VII 

COMPARISON OF THE AVERAGE VALUE OF CPU USAGE, MEMORY USAGE AND 

EXECUTION TIME 

No Method CPU 
Usage 

Memory 
Usage 

Execution 
Time 

1 CSS  

Selector 

Without 

Multiprocessing  25,60 %   29.070 KB  10.87 s 

With Multi-
processing 

 
66,20 % 

 
334 KB 

 
4.43 s 

2 HTML 
DOM 

Without 
Multiprocessing 

 
41,80 % 158.300 KB 22.65 s 

With Multi-
processing 

 
80,00 % 340 KB 12.68 s 

3 REGEX Without 
Multiprocessing 

 
1,00 % 

 
1.609 KB 

 
11.402 KB 

With Multi-

processing 

 

6,40 % 

 

359 KB 

 

351 KB 

4 XPATH Without 
Multiprocessing 

 
9,40 % 

 
11.402 KB 

 
8.33 s 

With Multi-

processing 

 

38,00 % 

 

351 KB 

 

2.32 s 

 

From the data in Table VII, it can be seen that the Regex 

method has the least CPU and memory usage compared to the 

CSS Selector, HTML DOM, and XPath methods. Whereas 

XPath takes the least amount of time to run web scraping 

compared to other methods. 

TABLE VIII 
COMPARISON OF THE AVERAGE VALUE OF BANDWIDTH USAGE 

No Method Bandwidth Usage (Kbps) 

1 CSS  

Selector 

Without 

Multiprocessing 

Upstream 39.944 

Downstream 325.416 

Upstream 23.751 

With Multi-

processing Downstream 

308.056 

2 HTML 
DOM 

Without 
Multiprocessing 

Upstream 126.948 

Downstream 1.780.577 

With Multi-
processing 

Upstream 170.731 

Downstream 1.800.538 

3 REGEX Without 
Multiprocessing 

Upstream 82.669 

Downstream 1.756.610 

With Multi-
processing 

Upstream 64.527 

Downstream 1.736.096 

4 XPATH Without 
Multiprocessing 

Upstream 159.780 

Downstream 386.299 

With Multi-
processing 

Upstream 23.846 

Downstream 306.990 

 

The data in Table VIII shows that the CSS Selector method 

uses the smallest bandwidth compared to the HTML DOM, 

Regex, and XPath methods. 

IV. CONCLUSION 

Based on experimental data, the Regex method has the 

least CPU and memory usage compared to the CSS Selector, 

HTML DOM, and XPath methods. Whereas XPath takes the 

least amount of time compared to other methods. The CSS 

Selector method is the smallest in terms of bandwidth usage 

compared to other methods. The application of multi-

processing techniques can save memory usage, reduce 
execution time and reduce bandwidth usage. However, this 

will increase the CPU workload due to the optimization of the 

cores contained in it. 

REFERENCES 

[1] B. Zhao, “Encyclopedia of Big Data,” Encycl. Big Data, pp. 3–5, 2019, 

doi: 10.1007/978-3-319-32001-4. 

[2] M. El Asikri1, S. Krit, and H. Chaib, “Using Web Scraping In A 

Knowledge Environment To Build Ontologies Using Python And 

Scrapy Article in,” Eur. J. Transl. Clin. Med., vol. 07, no. 03, pp. 433–

442, 2020. 

[3] S. E. Chasins, M. Mueller, and R. Bodik, “Rousillon: Scraping 

distributed hierarchical web data,” UIST 2018 - Proc. 31st Annu. ACM 

Symp. User Interface Softw. Technol., pp. 963–975, 2018, doi: 

10.1145/3242587.3242661. 

[4] O. ten Bosch, D. Windmeijer, A. Van Delden, and G. Van den Heuvel, 

“Web scraping meets survey design: Combining forces,” Bigsurv18 

Conf., pp. 1–13, 2018. 

[5] A. V Saurkar and S. A. Gode, “An Overview On Web Scraping 

Techniques And Tools,” Int. J. Futur. Revolut. Comput. Sci. Commun. 

Eng., pp. 363–367, 2018. 

[6] A. Priyanto and M. R. Ma’arif, “Implementasi Web Scrapping dan 

Text Mining untuk Akuisisi dan Kategorisasi Informasi dari Internet 

(Studi Kasus: Tutorial Hidroponik),” Indones. J. Inf. Syst., vol. 1, no. 

1, pp. 25–33, 2018, doi: 10.24002/ijis.v1i1.1664. 

[7] C. Slamet, R. Andrian, D. S. Maylawati, Suhendar, W. Darmalaksana, 

and M. A. Ramdhani, “Web Scraping and Naïve Bayes Classification 

for Job Search Engine,” IOP Conf. Ser. Mater. Sci. Eng., vol. 288, no. 

1, pp. 0–7, 2018, doi: 10.1088/1757-899X/288/1/012038. 

[8] I. P. Sonya, “Analisis Web Scraping untuk Data Bencana Alam dengan 

Menggunakan Teknik Breadth-First Search Terhadap 3 Media Online,” 

J. Ilm. Inform. Komput. Univ. Gunadarma, vol. 21, no. 3, pp. 69–77, 

2016. 

[9] I. Dongo, Y. Cadinale, A. Aguilera, F. Martínez, Y. Quintero, and S. 

Barrios, “Web Scraping versus Twitter API,” pp. 263–273, 2020, doi: 

10.1145/3428757.3429104. 

[10] J. You, J. Lee, and H. Y. Kwon, “A complete and fast scraping method 

for collecting tweets,” Proc. - 2021 IEEE Int. Conf. Big Data Smart 

Comput. BigComp 2021, pp. 24–27, 2021, doi: 

10.1109/BigComp51126.2021.00014. 

[11] R. M. Awangga, S. F. Pane, and R. D. Astuti, “Implementation of web 

scraping on GitHub task monitoring system,” Telkomnika 

909



(Telecommunication Comput. Electron. Control., vol. 17, no. 1, pp. 

275–281, 2019, doi: 10.12928/TELKOMNIKA.v17i1.11613. 

[12] D. Maldeniya, C. Budak, L. P. Robert, and D. M. Romero, “Herding a 

Deluge of Good Samaritans: How GitHub Projects Respond to 

Increased Attention,” Web Conf. 2020 - Proc. World Wide Web Conf. 

WWW 2020, pp. 2055–2065, 2020, doi: 10.1145/3366423.3380272. 

[13] H. Hata, N. Novielli, S. Baltes, R. G. Kula, and C. Treude, “GitHub 

Discussions: An exploratory study of early adoption,” Empir. Softw. 

Eng., vol. 27, no. 1, pp. 1–32, 2022, doi: 10.1007/s10664-021-10058-6. 

[14] M. AlMarzouq, A. AlZaidan, and J. AlDallal, “Mining GitHub for 

research and education: challenges and opportunities,” Int. J. Web Inf. 

Syst., vol. 16, no. 4, pp. 451–473, 2020, doi: 10.1108/IJWIS-03-2020-

0016. 

[15] A. Rahmatulloh and R. Gunawan, “Web Scraping with HTML DOM 

Method for Data Collection of Scientific Articles from Google 

Scholar,” Indones. J. Inf. Syst., vol. 2, no. 2, pp. 95–104, 2020, doi: 

10.24002/ijis.v2i2.3029. 

[16] L. C. Dewi, Meiliana, and A. Chandra, “Social media web scraping 

using social media developers API and regex,” Procedia Comput. Sci., 

vol. 157, pp. 444–449, 2019, doi: 10.1016/j.procs.2019.08.237. 

[17] A. Himawan, A. Priadana, and A. Murdiyanto, “Implementation of 

Web Scraping to Build a Web-Based Instagram Account Data 

Downloader Application,” IJID (International J. Informatics Dev., vol. 

9, no. 2, pp. 59–65, 2020, doi: 10.14421/ijid.2020.09201. 

[18] T. Rizaldi and H. A. Putranto, “Perbandingan Metode Web Scraping 

Menggunakan CSS Selector dan Xpath Selector,” Teknika, vol. 6, no. 

1, pp. 43–46, 2017, doi: 10.34148/teknika.v6i1.56. 

[19] R. Gunawan, A. Rahmatulloh, I. Darmawan, and F. Firdaus, 

“Comparison of Web Scraping Techniques : Regular Expression, 

HTML DOM and Xpath,” pp. 1–8, 2019, doi: 10.2991/icoiese-

18.2019.50. 

[20] T. H. E. World, S. L. Web, and D. Site, “CSS Selector Reference,” 

w3schools.com, 2018.  

[21] M. Ahmed and I. Diab, “Prevent XPath and CSS Based Scrapers by 

Using Markup Randomizer,” Int. Arab J. e-Technology, vol. 5, no. 2, 

pp. 78–87, 2018. 

[22] O. Uzun, Erdinc; Yerlikaya, Tarik; Kirat, “Comparison of Python 

Libraries Used for Web Data Extraction,” Tech. Univ. - Sofia, Plovdiv 

branch, Bulg., vol. 24, 2018. 

[23] Z. A. Aziz, D. Naseradeen Abdulqader, A. B. Sallow, and H. Khalid 

Omer, “Python Parallel Processing and Multiprocessing: A Rivew,” 

Acad. J. Nawroz Univ., vol. 10, no. 3, pp. 345–354, 2021, doi: 

10.25007/ajnu.v10n3a1145. 

[24] J. Kready, S. A. Shimray, M. N. Hussain, and N. Agarwal, “YouTube 

data collection using parallel processing,” Proc. - 2020 IEEE 34th Int. 

Parallel Distrib. Process. Symp. Work. IPDPSW 2020, pp. 1119–1122, 

2020, doi: 10.1109/IPDPSW50202.2020.00185. 

[25] E. Tejedor, Y. Becerra, G. Alomar, and A. Queralt, “PyCOMPSs : 

Parallel computational workflows in Python,” 2016, doi: 

10.1177/1094342015594678. 

[26] A. Sherman and P. Den Hartog, “DECO : Polishing Python Parallel 

Programming,” no. May, 2016. 

[27] A. M. Price-Whelan and D. Foreman-Mackey, “schwimmbad: A 

uniform interface to parallel processing pools in Python,” J. Open 

Source Softw., vol. 2, no. 17, pp. 10–11, Sep. 2017, doi: 

10.21105/joss.00357. 

[28] A. Malakhov, “Composable Multi-Threading for Python Libraries,” 

Proc. 15th Python Sci. Conf., no. Scipy, pp. 15–19, 2016, doi: 

10.25080/majora-629e541a-002. 

[29] A. Malakhov, D. Liu, A. Gorshkov, and T. Wilmarth, “Composable 

Multi-Threading and Multi-Processing for Numeric Libraries,” Proc. 

17th Python Sci. Conf., no. Scipy, pp. 18–24, 2018, doi: 

10.25080/majora-4af1f417-003. 

[30] T. Schlitt, “XML and XPath with PHP,” w3schools.com, 2018.  

[31] W3C, “What is the Document Object Model?,” w3.org, 2016.  

[32] A. Backurs and P. Indyk, “Which Regular Expression Patterns Are 

Hard to Match?,” Proc. - Annu. IEEE Symp. Found. Comput. Sci. 

FOCS, vol. 2016-Decem, pp. 457–466, 2016, doi: 

10.1109/FOCS.2016.56. 

[33] M. Arif Sazali, M. Syahir Sarkawi, and N. Syazwani Mohd Ali, 

“Multi-processing implementation for MCNP using Python,” IOP 

Conf. Ser. Mater. Sci. Eng., vol. 1231, no. 1, p. 012003, 2022, doi: 

10.1088/1757-899x/1231/1/012003. 

[34] S. K. Abeykoon, M. Lin, and K. K. Van Dam, “Parallelizing X-ray 

Photon Correlation Spectroscopy Software Tools using Python 

Multiprocessing,” 2017. 

 

910




