
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Inversed Control Parameter in Whale Optimization Algorithm and

Grey Wolf Optimizer for Wrapper-Based Feature Selection:

A Comparative Study

Li Yu Yab a, Noorhaniza Wahid a,*, Rahayu A Hamid a
a Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, Parit Raja 86400, Johor, Malaysia

Corresponding author: *nhaniza@uthm.edu.my

Abstract—Whale Optimization Algorithm (WOA) and Grey Wolf Optimizer (GWO) are well-perform metaheuristic algorithms used

by various researchers in solving feature selection problems. Yet, the slow convergence speed issue in the Whale Optimization Algorithm

and Grey Wolf Optimizer could demote the performance of feature selection and classification accuracy. Therefore, to overcome this

issue, a modified WOA (mWOA) and modified GWO (mGWO) for wrapper-based feature selection were proposed in this study. The

proposed mWOA and mGWO were given a new inversed control parameter expected to enable more search areas for the search agents

in the early phase of the algorithms, resulting in a faster convergence speed. This comparative study aims to investigate and compare

the effectiveness of the inversed control parameter in the proposed methods against the original algorithms in terms of the number of

selected features and the classification accuracy. The proposed methods were implemented in MATLAB where 12 datasets with

different dimensionality from the UCI repository were used. kNN was chosen as the classifier to evaluate the classification accuracy of

the selected features. Based on the experimental results, mGWO did not show significant improvements in feature reduction and

maintained similar accuracy as the original GWO. On the contrary, mWOA outperformed the original WOA regarding the two criteria

mentioned, even on high-dimensional datasets. Evaluating the execution time of the proposed methods, utilizing different classifiers,

and hybridizing proposed methods with other metaheuristic algorithms to solve feature selection problems would be future works worth

exploring.

Keywords— Feature selection; metaheuristics; whale optimization algorithm; grey wolf optimizer; control parameter; high-dimensional

dataset.

Manuscript received 26 Dec. 2022; revised 14 Jan. 2023; accepted 8 Feb. 2023. Date of publication 30 Jun. 2023.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Feature selection has been a popular topic for researchers

over the past decades. It is known as the process of reducing

dimensionality by selecting the most relevant features and

discarding less relevant features in a dataset [1]. The objective

of such dimensionality reduction is due to the ever-growing

dataset dimensionality rate throughout technological

advancement. A high-dimensional dataset (HDD) is a matrix

consisting of many columns or rows representing a huge size

of features or instances [2]. Generally, not every feature could

provide significant information for classification, and the less

relevant features in a dataset could demote classification

accuracy. Especially for HDDs, irrelevant features cause
memory constraints and result in the expensive cost of

training and computing, which is also known as the “curse of

dimensionality” [2], [3]. Therefore, feature selection is often

related to two main tasks, that is, to promote maximum

classification accuracy and to select a minimum number of

selected features to avoid the “curse of dimensionality” [4]–

[7]. Besides, feature selection can be interpreted as the pre-

processing process for data classification, where the class
label of an instance is assigned based on the learning model

trained [8]. Since the training data is contributed from the

features selected, the ability to select fewer features without

lowering the classification accuracy is the criteria to evaluate

the effectiveness of a feature selection method.

There are three feature selection methods: filter-based,

embedded-based, and wrapper-based [9]. The filter-based

method carries out feature selection without using any

learning algorithms, and it solely depends on the mutual

information provided by the features and their relationship

with the class label [10]. After the filter-based feature

selection process takes place, any classifiers can be utilized to

477

JOIV : Int. J. Inform. Visualization, 7(2) - June 2023 477-486

evaluate the quality of selected features in a dataset. Therefore,

the filter-based method is flexible to implement and fast to

execute. Besides, the embedded-based method performs

feature selection during the classification process; hence, it

can produce high classification accuracy [9]. Unlike filter-

based and embedded-based methods, the wrapper-based

method uses a certain classifier to obtain the quality of each

feature subset. Thus, it has higher time complexity and higher

classification accuracy [9]. Therefore, the wrapper-based

method feature selection is the focus of this study.
Over the years, metaheuristic optimization algorithms have

been utilized with feature selection. In metaheuristic

algorithms, exploration and exploitation phases determine the

search mechanism to obtain the optimal solution [11]. The

exploration phase is where the algorithm randomly looks for

potential areas in the search space, whereas the exploitation

phase is where the algorithm further scrutinizes a certain

search space area found during exploration. These two phases

are further discussed in Section 2. Some of the recent

metaheuristic optimization algorithms are Manta Ray

Foraging Optimization [12], Harris Hawks Optimization [13],
Grey Wolf Optimizer (GWO) [14], and Whale Optimization

Algorithm (WOA) [15]. Many researchers have employed

these metaheuristic algorithms in various domains, such as

solving medical problems [16], electromagnetic problems

[17], predicting the rate of traffic congestion [18], and

handling feature selection problems [10], [19]–[21].

Notably, WOA and GWO have shown similarities in terms

of the parameters and characteristics in their algorithm

designs, which will be explained in Section 2. These two

algorithms are excellent optimizers and have yielded great

performance in both filter-based and wrapper-based feature
selection methods due to their strengths in exploration and

exploitation [10], [19], [20], [22]–[24]. Al-Tashi et al.

implemented a wrapper-based feature selection with GWO to

select the most relevant features to be used in diagnosing

coronary artery disease with a two-stage approach [22]. The

most relevant features in the Cleveland Heart disease dataset

were identified in the first stage, while the fitness function

was evaluated by the Support Vector Machine (SVM)

classifier in the second stage. Based on the experimental

results, the proposed GWO method obtained 89.83%, 93%,

and 91% for classification accuracy, sensitivity, and

specificity, respectively.
Another research by Hu, Pan, and Chu. [23] implemented

a wrapper-based feature selection using a binary variant of

GWO (BGWO) and another improved BGWO variant

(ABGWO). The binary conversion was achieved by using

four V-shaped transfer functions so that the continuous values

were mapped to binary values, whereas a new control

parameter in ABGWO was utilized to improve the

convergence speed of BGWO. The classifier used to obtain

classification accuracy in the study is the K-nearest neighbor

(kNN). Based on the experimental results, with improved

convergence speed, the proposed ABGWO outperformed
BGWO in both classification accuracy and execution time for

most cases.

Mafarja and Mirjalili [19], [20] introduced two wrapper-

based feature selection studies with WOA. Both studies have

produced outstanding classification accuracy using the kNN

classifier. In the first study, WOA was improved by

Tournament selection (WOA-T), roulette wheel selection

(WOA-R), as well as the crossover and mutation operators

(WOA-CM) [19]. The execution time of WOA-CM was the

least as compared to other methods. The average feature

selection ratio of WOA-CM was smaller than WOA, and the

average classification accuracy of WOA-CM was higher than

WOA in most datasets [19]. In the second study, WOA was

hybridized with Simulated Annealing (WOA-SA), where

WOA handled the global search, whereas SA handled the

local search [20]. In addition, WOA-SA with the Tournament
selection mechanism (WOA-SAT) was also introduced in the

same study. The average feature selection ratio of WOA-SAT

was lower than WOA, while the average classification

accuracy of WOA-SAT was greater than WOA in most

datasets [20].

Nematzadeh et al. [10] implemented a filter-based feature

selection method with WOA and Mutual Congestion that

applied different rates for discarding the feature size starting

from 20% to 80% on four medical HDDs. Using the SVM,

Naïve Bayes, and Decision Tree classifiers to evaluate the

quality of the selected features, the proposed method yielded
the highest average classification accuracy when 50% of

features from the original HDDs were discarded. The

promising results from Nematzadeh et al. [10] have inspired

the work of another filter-based feature selection method by

Yab, Wahid, and Hamid [24] with modified WOA (mWOA).

The study adopted a similar approach of using a 50% feature

selection size for dimensionality reduction and introduced a

new control parameter formula in mWOA to improve the

convergence speed of WOA.

According to the literature, the slow convergence speed in

WOA is a known issue, as the problem is also found in GWO
[25]. GWO is compared to WOA as they have similar

characteristics and parameters [23], [26]. In both WOA and

GWO, the control parameter, �, determines the trade-off for

the exploration and exploitation phases [11], [25], [27]. Since

the value of � affects the coefficient vector, �⃗, it contributes

to the distance between the search agents and the prey over

iterations. As a result, the global and local search mechanisms

that decide when to converge to the optimal solution, are

affected by � . Therefore, to reduce the impact of slow

convergence speed, the modification of the control

parameter’s formula is required [11], [28]. Previous studies

reported that ABGWO for wrapper-based feature selection

[23] and mWOA for filter-based feature selection [24] have

both improved the convergence speed. However, the

performance of filter-based mWOA has only been tested

against filter-based WOA and without feature selection (NO
FS).

Therefore, this study presents a comparative study of (i) a

proposed mWOA as a wrapper-based feature selection and (ii)

a modified GWO (mGWO) by inversing its control parameter

formula as in mWOA. This comparative study aims to

evaluate the effectiveness of the modified control parameter’s

formula for both mWOA and mGWO against the original

GWO and WOA. The proposed wrapper-based mWOA and

mGWO were implemented in MATLAB, and the kNN

classifier was used to evaluate the significance of the selected

features toward the classification accuracy.
The rest of the paper is organized as follows. Section 2

presents the materials and methods used in this work, which

478

covers the inspiration and mathematical equations for original

WOA and GWO, and introduces the proposed method

involving the inversed control parameter for mWOA and

mGWO. The experimental results are tabulated and

thoroughly discussed in Section 3. Lastly, Section 4 concludes

the findings of this comparative study and provides insights

into the potential future work.

II. MATERIALS AND METHOD

This section presents the materials used in this study:

Whale Optimization Algorithm and Grey Wolf Optimizer.

The proposed method and experimental setups used in

realizing the comparative study are also included in this

section.

A. Whale Optimization Algorithm

Whale Optimization Algorithm (WOA) is a nature-inspired

metaheuristic algorithm introduced by Mirjalili and Lewis [15]

in 2016 for solving optimization problems. WOA has shown

its spectacular performance in various research areas such as

engineering, transportation, and medical diagnosis [16], [18],

[19], [29]. The reason behind WOA’s excellent performance

is because of its searching mechanism, where it imitates the

bubble-net feeding method of humpback whales, as shown in

Fig. 1.

Fig. 1 The bubble-net feeding method of humpback whales [15]

1) Encircling prey: In this phase, the whales encircle the

prey. Since the optimal solution of the prey is not yet

identified, the current best position is assumed to be the prey.

Once the best position is known, the whales update their

positions toward the current best position over iterations. The

scenario is represented by Eq. (1) and Eq. (2), where � denotes

the current iteration, �⃗ is the position vector, � ∗������⃗ represents

the position vector of the best position obtained at the moment,

while | | and ∙ indicate the absolute value and dot product

operator, respectively. The value of � ∗������⃗ would be updated if

a better position is found at each iteration. The distance

between the current whale and the best position is denoted by

���⃗ . The coefficient vectors �⃗ and �⃗ are shown in Eq. (3) and

Eq. (4) where
⃗ is a random vector between 0 and 1, while �⃗

is a control parameter that decreases linearly from 2 to 0 using

Eq. (5), where ������
 indicates the maximum iteration.

���⃗ � |�⃗ ∙ � ∗������⃗ ��� � �⃗���| (1)

�⃗�� � 1� � � ∗������⃗ ��� � �⃗ ∙ ���⃗ (2)

�⃗ � 2�⃗ ∙
⃗ � �⃗ (3)

�⃗ � 2 ∙
⃗ (4)

� � 2 � � 2
������
 (5)

2) Bubble-net attacking (exploitation): In this phase, the

whales perform bubble-net attacking by two maneuvers:
shrinking the circle and moving along the spiral-shaped route.

The first maneuver is achieved by Eq. (2) while the second

maneuver is achieved by Eq. (6) where � indicates a constant

to create the shape of the logarithmic spiral, � denotes a

random number between –1 and 1, and ������⃗ is computed from

������⃗ � |� ∗������⃗ ��� � �⃗���|, which means the distance between

the ith whale to the prey. Since the whales need to carry out

these two maneuvers at the same time, hence, � is used as a

probability to decide which maneuver to perform. This

scenario is presented in Eq. (7). If � � 0.5, the whales shrink

the circle, otherwise they move along the spiral-shaped route.

�⃗�� � 1� � ������⃗ ∙ �!" ∙ #$%�2&�� � � ∗������⃗ ��� (6)

�⃗�� � 1�
� ' � ∗������⃗ ��� � �⃗ ∙ ���⃗ () � � 0.5

������⃗ ∙ �!" ∙ #$%�2&�� � � ∗������⃗ ��� () � * 0.5
(7)

3) Searching for prey (exploration): In this phase, whales
look for the potential position randomly based on their

positions among one another. It is unlike the exploitation

phase because the position of a whale is updated using a

randomly selected whale, instead of using the best position

discovered. This scenario is represented in Eq. (8) and Eq. (9),

where �+,-.�����������⃗ indicates a random whale’s position selected

from the population.

���⃗ � |�⃗ ∙ �+,-.�����������⃗ � �⃗| (8)

�⃗�� � 1� � �+,-.�����������⃗ � �⃗ ∙ ���⃗ (9)

The pseudocode of WOA is shown in Fig. 2.

1 Initialize whales’ population Xi (i = 1, 2, ..., n)

2 Compute each search agent’s fitness

3 X*=the best search agent

4 While t smaller than MaxIter

5 for each search agent

6 Update a, A, C, l, and p with Eq. (5), (3), (4), [-1,1], [0,1]

7 if p smaller than 0.5

8 if |A| smaller than 1

9 Update the current search agent’s position by Eq. (2)

10 else

11 Choose a search agent by random (Xrand)

12 Update the current search agent’s position by Eq. (9)

13 end if

14 else

15 Update the current search agent’s position by Eq. (6)

16 end if

17 end for

18 Fix the search agent’s position if it outstrips the search space

19 Compute each search agent’s fitness

20 Update X* if a fitter solution is found

21 t=t+1

22 end while

23 return X*

Fig. 2 Pseudocode of WOA

479

B. Grey Wolf Optimizer

Grey Wolf Optimizer (GWO) is a nature-inspired

metaheuristic algorithm introduced by Mirjalili et al. in 2014

for solving optimization issues [14]. It has shown great
performance in electromagnetics [17] and feature selection

[22], [23]. GWO is well-perform due to the grey wolves’

hunting mechanism that involves a special social hierarchy.

1) Social hierarchy: The algorithm of GWO is inspired by

the grey wolves’ social hierarchy in group hunting. The

hierarchy consists of four levels which are alpha (α), beta (β),

delta (δ), and omega (ω) from top to bottom as illustrated in

Fig. 3.

Fig. 3 Grey wolves’ social hierarchy [14]

The alpha wolves are the highest in the social hierarchy,

and they lead the other three levels below them. Being the

second highest in the hierarchy, beta wolves obey alpha

wolves and dominate delta and omega wolves. Similarly,

delta wolves are dominated by the first two levels of wolves

and dominate the bottom level of wolves. The last in the

hierarchy is called the omega wolves, and the top three levels

of wolves dominate them. The social hierarchy concept is

transformed into the algorithm of GWO where alpha, beta,
and delta are categorized as the fittest, second fittest, and third

fittest solutions, respectively. The solutions other than the top

three fittest ones are called omega.

2) Encircling prey: In this phase, the wolves encircle the

prey (best position). The scenario is represented by Eq. (10)

and Eq. (11) where � represents current iteration, �⃗ denotes

the position vector of a grey wolf, �⃗/ represents the position

vector of the fittest solution obtained so far, and ∙ is the dot

product operator. �⃗/ will be updated in each iteration once

better position is found. Parameter ���⃗ denotes the distance

between the current wolf and the as-is best position. The

coefficient vectors �⃗ and �⃗ are presented in Eq. (12) and Eq.

(13), respectively, where
⃗0 and
⃗1 are random numbers

between 0 and 1, whereas �⃗ is a control parameter that

decreases linearly from 2 to 0. The decrease in �⃗ is done using

Eq. (14), where ������
 indicates the maximum iteration,

similar to WOA.

���⃗ � |�⃗ ∙ �⃗/��� � �⃗���| (10)

�⃗�� � 1� � �⃗/��� � �⃗ ∙ ���⃗ (11)

�⃗ � 2�⃗ ∙
⃗0 � �⃗ (12)

�⃗ � 2 ∙
⃗1 (13)

� � 2 � � 2
������
 (14)

3) Hunting: The hunting mechanism of GWO depends on

alpha, beta, and delta wolves, as shown in Eq. (15) and Eq.

(16). It is worth mentioning that the top three fittest solutions

are assumed to be the best position since the optimal solution

is unknown. Hence, GWO uses the mean position from alpha,

beta, and delta wolves to update each wolf’s position based

on Eq. (17).

�∝�����⃗ � 3�0����⃗ ∙ �∝����⃗ � �⃗3, �5����⃗ � 3�1����⃗ ∙ �5����⃗ � �⃗3, �6����⃗
� |�7����⃗ ∙ �6����⃗ � �⃗| (15)

�0����⃗ � �∝����⃗ � �0����⃗ ∙ �∝�����⃗ , �1����⃗ � �5����⃗ � �1����⃗ ∙ �5����⃗ , �7����⃗
� �6����⃗ � �7����⃗ ∙ �6����⃗

(16)

�⃗�� � 1� � �0����⃗ � �1����⃗ � �7����⃗
3 (17)

4) Attacking prey (exploitation): The process of attacking

prey is also known as the local search, where grey wolves hunt

the prey as it stops moving. The value of �⃗ is affected by �⃗

whereby �⃗ falls randomly between the range of �2� to 2�

based on Eq. (12). If 3�⃗ 3 � 1, the value of �⃗ is between –1 to

1, thus, the wolf attacks the prey because the wolf’s next

position would be between its current position and the prey’s

position.

5) Searching for prey (exploration): The search process is

also known as the global search, where all the top three levels

of wolves’ position are used to look for the best solution. The
global search is the opposite of the local search. Each wolf

looks for prey separately and then converges toward the best

solution found. If 3�⃗ 3 9 1, the value of �⃗ is smaller than –1

or larger than 1, thus, the wolf stays away from the current

prey position to find a better solution. Therefore, this vector
manages the balance of exploration and exploitation. Besides

�⃗, the �⃗ vector also determines the exploration. The value of

�⃗ is a random number between 0 to 2, and it randomly weights

(� 9 1) and unweights (� � 1) the effect of prey by the

distance. This concept allows the algorithm to exhibit random

behavior during optimization, encouraging exploration and

eradicating local optima.

The pseudocode of GWO is shown in Fig. 4.

1 Initialize wolves’ population Xi (i = 1, 2, ..., n)
2 Initialize a, A, and C with Eq. (14), (12), (13), respectively

3 Compute each search agent’s fitness
4 Xα=the best search agent
5 Xβ =the second-best search agent
6 Xδ =the third-best search agent
7 While t smaller than MaxIter
8 for each search agent
9 Update the current search agent’s position by Eq. (17)
10 end for

11 Update a, A, and C with Eq. (14), (12), (13), respectively
12 Compute each search agent’s fitness
13 Update Xα, Xβ, and Xδ
14 t=t+1
15 end while
16 return Xα

Fig. 4 Pseudocode of GWO

480

C. Proposed Inversed Control Parameter

Based on the literature, mWOA was designed for filter-

based feature selection to improve the convergence speed

while performing a 50% of feature reduction on four medical
HDDs [24]. However, its performance has not yet been tested

in a wrapper-based feature selection method nor evaluated on

datasets of different dimensionality. Hence, this study

proposed two wrapper-based feature selection methods using

modified WOA (mWOA) and modified GWO (mGWO) to

improve the convergence speed by inversing the control

parameter.

In the original WOA and GWO, the control parameter is

defined by Eq. (5) and Eq. (14), respectively. The values of �

in WOA and GWO decrease linearly from 2 to 0 and affect

both global and local search mechanisms. This is because the

values of the coefficient vector, �⃗, are contributed by �, while

�⃗ determines the updated position of search agents in both

methods. The values of the control parameter, � , and the

coefficient vector �⃗ , are shown in Fig. 5.

Fig. 5 Values of the control parameter, �, and coefficient vector �⃗ in original

WOA and GWO

Fig. 6 Values of the control parameter, � , and coefficient vector �⃗ in

proposed mWOA and mGWO

Meanwhile, the decreasing trend of � decreases the

distance and increases the possibility of changing positions,

which covers less search space at the initial phase of the

iterations, resulting in a slower convergence speed [23].

Hence, the situation had to be changed the other way around

to enable faster convergence speed [24]. Therefore, the

linearly decreasing control parameter in WOA and GWO was

inversed to be linearly increasing with Eq. (18) for the

proposed mWOA and mGWO. With the new control

parameter formula, the value of � linearly increases from 0 to

2, as depicted in Fig. 6.

� � 2� � 2
������
 (18)

TABLE I

COMPARISON OF THE ORIGINAL AND PROPOSED METHODS

 Original WOA
and GWO

Proposed mWOA
and mGWO

Value of � Decreasing Increasing
Distance between
search agents

Decreasing Increasing

Position-changing
possibility

Increasing Decreasing

Search space covered
Less at first, more
later

More at first, less
later

Resulting
Convergence Speed

Slower Faster

Table 1 shows the comparison of the original and proposed

methods. By using the inversed control parameter from Eq.

(18), the increasing trend of � increases the distance and

decreases the possibility of changing positions, which covers

more search space at the initial phase of the iterations, a faster

convergence speed in the proposed mWOA and mGWO.

The inversed control parameter in the proposed mWOA

and mGWO is expected to improve the convergence speed of
WOA and GWO in wrapper-based feature selection. With

better convergence speed reflecting the algorithm

performance, the search agents are most likely to excel in

selecting only the most important features in a dataset that

truly contribute to the classification accuracy. Therefore, in

the following subsection, the effectiveness of the inversed

control parameter for both mWOA and mGWO against their

original forms of GWO and WOA, was tested in experiments.

D. Experimental Setup

The experiments were implemented using MATLAB

version R2017b. A total of 12 benchmark datasets from UCI

[30] with different dimensionality were used. The datasets are

sorted in descending order based on dimensionality (instance

× feature), as shown in Table 2. There are four HDDs with

more than 2,000 features in the datasets, namely,

SMK_CAN_187, GLI_85, CNS, and Colon, where the rest of

the datasets were non-HDDs.

TABLE II

LIST OF DATASETS EMPLOYED IN THIS STUDY

Datasets Instances Features Dimensionality

SMK_CAN_187 187 19993 3738691
GLI_85 85 22283 1894055
CNS 60 7129 427740

Colon 62 2000 124000
Wdbc 569 30 17070
Ionosphere 351 34 11934
Yeast 1484 8 11872
SPECT 267 22 5874
Parkinson’s 195 22 4290
Wine 178 13 2314
Zoo 101 16 1616

Iris 150 4 600

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

0 20 40 60 80 100C
o
n
tr

o
l

p
a
ra

m
a
te

r
a
n
d
 c

o
ef

fi
ci

e
n
t

v
ec

to
r

Iterations

control paramater

coefficient vector

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

0 20 40 60 80 100C
o
n
tr

o
l

p
a
ra

m
a
te

r
a
n
d
 c

o
ef

fi
ci

e
n
t

v
ec

to
r

Iterations

control paramater

coefficient vector

481

A wrapper-based feature selection approach with the kNN

classifier was used, where the k was fixed to 5. Cross-

validation was implemented in this study, where each dataset

was randomly partitioned for hold-out in N validation, where

N denotes the number of instances in a dataset. The partition

randomly divided N instances into two subsets: 20% for

testing sets and 80% for training sets. The same setting was

used for each experiment to avoid bias in results. The

parameters for population maximum iteration were 10 and

100, respectively. The machine that was used to run the
experiments was Intel Core i7-10750H CPU @ 2.60GHz with

32GB RAM. The experiments were conducted for 10 runs

with two pairs of algorithms, which include WOA and

mWOA, as well as GWO and mGWO. In the next section,

both the proposed mWOA and mGWO were compared

against their original forms with the following criteria:

 The number of selected features in best, average, and

worst cases: the best number of selected features was

obtained by the minimum value in 10 runs, while the

maximum value was obtained by the worst number of

selected features in 10 runs. The average number of
selected features was computed by the mean of selected

features in all ten runs. The feature reduction rate can

also be computed using Eq. (19).

 :���;
�
�<;#�($=
���
� >1 � =;?��
 $) %���#��<)���;
�%

$
(@(=��)���;
� %(A� B × 100%
(19)

 The classification accuracy in best, average, and worst

cases was obtained using the selected features on the

test dataset. The maximum value selected the best

accuracy in 10 runs, while the worst accuracy was

selected by the minimum value in 10 runs. The average

accuracy was computed by the mean of accuracies in

all ten runs. The accuracy of each experiment was

calculated using Eq. (20) [10], where TP and TN

indicate the numbers of positive and negative instances

that are correctly classified, whereas FP and FN

represent the numbers of positive and negative

instances that are incorrectly classified.

�##;
�#E � FG � FH
FG � FH � :G � :H (20)

III. RESULTS AND DISCUSSION

This section presents the experimental results of the

proposed mWOA and mGWO against their original forms and

discusses the effectiveness of the inversed control parameter

based on the number of selected features and classification

accuracy.

A. The number of selected features

The wrapper-based feature selection experiments utilized

12 datasets in Table 2 for 10 runs, and the number of selected
features vary across each test case. Table 3 presents the

number of selected features by WOA and mWOA in their best,

average, and worst cases. Based on the experimental results,

mWOA performed better than WOA in 6, 6, and 8 out of 12

datasets in the best, average, and worst test cases, respectively.

Also, it achieved the same performance as WOA in 5, 3, and

2 out of 12 datasets in the best, average, and worst test cases,

respectively. It indicates that mWOA could select fewer

features in at least 50-91.67% of datasets in the best case, 50-

75% of datasets in average cases, and 66.67-83.33% of

datasets in the worst case.

TABLE III

COMPARISON OF THE NO. OF SELECTED FEATURES IN BEST, AVERAGE, AND WORST CASES FOR WOA AND MWOA

Datasets

No. of selected features (features reduction rate %)

Best Average Worst

WOA mWOA WOA mWOA WOA mWOA

SMK_CAN_187 13 (99.93) 8 (99.96) * 297 (98.51) 548 (97.26) 640 (96.80) 4106 (79.46)
GLI_85 15 (99.93) 3 (99.99) * 1071 (95.19) 792 (96.45) * 8821 (60.41) 2868 (87.13) *

CNS 5 (99.93) 2 (99.97) * 197 (97.24) 110 (98.46) * 1356 (80.98) 606 (91.50) *

Colon 8 (99.60) 6 (99.70) * 125 (93.75) 130 (93.50) 477 (76.15) 466 (76.70) *

Wdbc 3 (90.00) 2 (93.33) * 8 (73.33) 4 (86.67) * 12 (60.00) 8 (73.33) *

Ionosphere 3 (91.18) 3 (91.18) # 5 (85.29) 4 (88.24) * 7 (79.41) 7 (79.41) #

Yeast 5 (37.50) 5 (37.50) # 7 (12.50) 7 (12.50) # 8 (0.00) 8 (0.00) #

SPECT 6 (72.73) 1 (95.45) * 12 (45.45) 9 (59.09) * 16 (27.27) 15 (31.82) *

Parkinson’s 2 (90.91) 2 (90.91) # 6 (72.72) 4 (81.82) * 11 (50.00) 8 (63.64) *

Wine 2 (84.62) 2 (84.62) # 4 (69.23) 6 (53.85) 9 (30.77) 8 (38.46) *

Zoo 3 (81.25) 4 (75.00) 7 (56.25) 7 (56.25) # 12 (25.00) 9 (43.75) *

Iris 1 (75.00) 1 (75.00) # 2 (50.00) 2 (50.00) # 3 (25.00) 4 (0.00)

Mean 6 (85.21) 3 (86.88) 145 (70.79) 135 (72.84) 948 (50.98) 676 (55.43)
Note: Bold value with an asterisk (*) indicates that the proposed mWOA outperformed WOA, while a hash sign (#) indicates they achieved the same performance.

Based on Table 3, in the best case, mWOA outperformed

WOA in all HDDs, which includes SMK_CAN_187, GLI_85,

CNS, and Colon. In GLI_85 dataset, mWOA achieved the

highest feature reduction rate at 99.99% by only selecting 3

from 22,283 features. Besides, mWOA also showed the best

improvement of non-HDDs such as in SPECT dataset, as

mWOA reduced 95.45% of features by only choosing 1 from

22 features. It is equivalent to a 22.73% improvement

achieved by mWOA compared to WOA (72.73%).

In average cases, mWOA outperformed WOA in two

HDDs, which are GLI_85 and CNS. All four HDDs were

successfully reduced by more than 93.50% of features using

mWOA. Specifically, SMK_CAN_187 reduced to 548 from

19,993 features, GLI_85 reduced to 792 from 22,283 features,

CNS reduced to 110 from 7,129 features, and Colon reduced

to 130 from 2,000 features. For non-HDDs, mWOA managed

to reduce 86.67% of features in the Wdbc dataset, that is,

13.33% better than WOA, which reduced 73.33% of features.

482

Even in the worst case, mWOA showed its strength in

selecting fewer features than WOA in both HDDs and non-

HDDs. In the GLI_85 dataset, mWOA successfully selected

2,868 features resulting in feature reduction rates of 87.13%

as compared to WOA with 60.41%. The improvement that

mWOA achieved in this HDD is 26.72%. As for non-HDDs,

mWOA managed to reduce 43.75% of features as compared

to WOA with 25% of feature reduction rate, indicating that

mWOA was 18.75% better than WOA.

Table 4 shows the number of selected features by GWO

and mGWO in their best, average, and worst cases,

respectively. The experimental results show that the mGWO

outperformed GWO in 2 datasets in the worst case and

achieved the same performance as GWO in 6 datasets in the

best case, 3 in average cases, and 1 in the worst case. Overall,

the performance of mGWO was not significant as compared

to GWO.

TABLE IV

COMPARISON OF THE NO. OF SELECTED FEATURES IN BEST, AVERAGE, AND WORST CASES FOR GWO AND MGWO

Datasets

No. of selected features (features reduction rate %)

Best Average Worst

GWO mGWO GWO mGWO GWO mGWO

SMK_CAN_187 2944 (85.27) 3808 (80.95) 3302 (83.48) 5778 (71.10) 3801 (80.99) 8619 (56.89)

GLI_85 2706 (87.86) 3077 (86.19) 3282 (85.27) 3799 (82.95) 4706 (78.88) 4553 (79.57) *

CNS 820 (88.50) 1393 (80.46) 1006 (85.89) 1610 (77.42) 1138 (84.04) 1971 (72.35)
Colon 159 (92.05) 234 (88.30) 184 (90.80) 310 (84.50) 215 (89.25) 431 (78.45)
Wdbc 2 (93.33) 2 (93.33) # 4 (86.67) 6 (80.00) 7 (76.67) 10 (66.67)
Ionosphere 3 (91.18) 4 (88.24) 5 (85.29) 8 (76.47) 8 (76.47) 12 (64.71)
Yeast 5 (37.5) 5 (37.5) # 6 (25.00) 6 (25.00) # 8 (0) 8 (0) #

SPECT 3 (86.36) 5 (77.27) 6 (72.73) 7 (68.18) 8 (63.64) 9 (59.09)
Parkinson’s 2 (90.91) 2 (90.91) # 2 (90.91) 3 (86.36) 4 (81.82) 5 (77.27)

Wine 2 (84.62) 2 (84.62) # 4 (69.23) 4 (69.23) # 5 (61.54) 7 (46.15)
Zoo 4 (75.00) 4 (75.00) # 6 (62.50) 6 (62.50) # 8 (50.00) 7 (56.25) *

Iris 1 (75.00) 1 (75.00) # 1 (75.00) 2 (50.00) 3 (25.00) 4 (0.00)

Mean 554 (82.30) 711 (79.81) 651 (76.06) 962 (69.48) 826 (64.02) 1303 (54.78)
Note: Bold value with an asterisk (*) indicates that the proposed mGWO outperformed GWO, while a hash sign (#) indicates they achieved the same performance.

As shown by the best case results in Table 4, mGWO did

not outrun GWO in all four HDDs. However, mGWO was

still able to achieve high feature reduction rates on HDDs

where they were reduced by at least 80% of features. For

example, SMK_CAN_187 was reduced to 3,808 from 19,993

features, GLI_85 to 3,077 from 22,283 features, and CNS to

1,393 from 7,129 features, and the selected features for Colon

was 234 out of 2,000 features. As for the non-HDDs, mGWO

remained the same number of selected features as GWO in

most datasets. Nonetheless, mGWO and GWO both reduced
a maximum of 93.33% and 90.91% of features in Wdbc and

Parkinson’s datasets, respectively, indicating that both GWO

and mGWO were capable of dealing with HDDs and non-

HDDs.

While comparing the performance of mGWO and GWO in

selecting fewer features in the average cases, mGWO did not

show its strength in HDDs. As for non-HDDs, mGWO mostly

showed values that remained the same as GWO. It can be seen

that mGWO’s best performance was in non-HDDs, especially

the Parkinson’s dataset, where it was reduced to 86.36% by

selecting only 3 from 22 features. However, GWO selected 1

feature fewer than mGWO in the same dataset.
Further evaluating the worst case shown in Table 4,

mGWO was weaker than GWO. There were only two datasets

where mGWO outperformed GWO, which include an HDD

and a non-HDD, namely, GLI_85 and Zoo. In the GLI_85

dataset, mGWO selected 4,553 features with a 79.57% of

feature reduction rate while GWO only reduced 78.88%,

suggesting a slight improvement of 0.69% made by mGWO.

The improvement of mGWO in the non-HDD dataset, Zoo

was much higher than GWO, where mGWO achieved a

higher ability to select 6.25% fewer features than GWO.

To summarize the feature selection performance, by taking

the mean from all datasets, the proposed mWOA showed

greater performance in selecting 1.67%, 2.05%, and 4.45%

fewer features than WOA in its worst, average, and best cases.

Also, mWOA improved the feature reduction rate by 22.73%

better than WOA on SPECT dataset in the best case, 13.33%

better than WOA on Wdbc dataset in the average case, and

26.72% better than WOA on GLI_85 HDD even in its worst
case. Besides, the proposed mGWO's feature selection

performance was less significant because it was merely

maintaining similar results as the original GWO without

major improvement. The following subsection presents the

experimental results of the proposed mWOA and mGWO

against WOA and GWO based on classification accuracy.

B. Classification accuracy

The classification accuracy obtained by the selected

features was evaluated using the kNN classifier. The best,
average, and worst results obtained from mWOA against

WOA were tabulated in Table 5. Based on the results, mWOA

outperformed WOA in 2, 7, and 4 out of 12 datasets in the

best, average, and worst test cases, respectively. mWOA also

performed equally as WOA in 9, 1, and 5 out of 12 datasets.

It suggested that mWOA was able to produce higher accuracy

than WOA in at least 16.67-91.67% of datasets in the best case,

58.33-66.67% of datasets in average cases, and 33.33-41.67%

of datasets in the worst case.

483

TABLE V

COMPARISON OF THE CLASSIFICATION ACCURACY IN BEST, AVERAGE, AND WORST CASES FOR WOA AND MWOA

Datasets

Classification Accuracy (%)

Best Average Worst

WOA mWOA WOA mWOA WOA mWOA

SMK_CAN_187 83.78 81.08 78.11 77.57 72.97 72.97 #
GLI_85 100 100 # 96.47 96.47 # 88.24 82.35

CNS 100 100 # 89.17 87.50 75.00 83.33 *

Colon 100 100 # 96.67 98.33 * 91.67 91.67 #

Wdbc 98.23 98.23 # 95.75 94.96 91.15 92.04 *

Ionosphere 97.14 97.14 # 92.29 92.71 * 90.00 90.00 #

Yeast 60.81 60.81 # 57.20 57.64 * 54.05 50.68

SPECT 88.68 90.57 * 86.42 86.60 * 81.13 79.25

Parkinson’s 94.87 94.87 # 92.05 92.31 * 87.18 87.18 #

Wine 97.14 100 * 94.57 96.29 * 82.86 94.29 *

Zoo 100 100 # 97.00 97.50 * 85.00 90.00 *

Iris 100 100 # 98.00 97.67 93.33 93.33 #

Mean 93.39 93.56 89.48 89.63 82.72 83.92
Note: Bold value with an asterisk (*) indicates that the proposed mWOA outperformed WOA, while a hash sign (#) indicates they achieved the same performance.

It can be observed from the best case that mWOA had

similar results as WOA in general. In the four HDDs, mWOA

produced comparable results to WOA where GLI_85, CNS,

and Colon showed 100% accuracy. However, mWOA was

proven to have better performance in non-HDDs as compared

to WOA. Specifically, mWOA obtained 90.57% accuracy,

1.89% higher than WOA (88.68%) in the SPECT dataset.

Also, the highest performance of mWOA can be found in the
Wine dataset where mWOA achieved 100% of accuracy,

which is 2.86% higher than WOA.

Moreover, based on the results in the average case, mWOA

outperformed WOA in most non-HDDs, including

Ionosphere, Yeast, SPECT, Parkinson’s, Wine, and Zoo

datasets. The fact that mWOA also showed the highest

improvement in the Wine dataset by obtaining 1.72% better

than WOA, has proven the ability of mWOA to increase the

accuracy in non-HDDs. Although mWOA did not surpass

WOA in Wdbc and Iris datasets, mWOA still managed to

generate high accuracies at 94.96% and 97.67% in the Wdbc

and Iris datasets, respectively. Besides, mWOA triumphed

over WOA with a significant difference in Colon dataset.

mWOA and WOA attained 98.33% and 96.67% of accuracy

respectively, indicating that mWOA was able to select

relevant features that contributed to 1.66% higher

classification accuracy than WOA in HDD.

In addition, even in the worst-case scenario, mWOA was
able to display significant improvements across datasets with

different dimensionality. For instance, in the CNS dataset,

mWOA achieved 83.33% accuracy, equivalent to 8.33%

higher than WOA (75%). Not only showing its ability in

generating high accuracy in HDD, mWOA also attained an

11.43% improvement in a non-HDD when mWOA and WOA

achieved 94.29% and 82.86% of accuracy, respectively in the

Wine dataset. Another significant result of mWOA in non-

HDD can be found in the Zoo dataset with 90% of

classification accuracy, that is 5% better than WOA.

TABLE VI

CO COMPARISON OF THE CLASSIFICATION ACCURACY IN BEST, AVERAGE, AND WORST CASES FOR GWO AND MGWO

Datasets

Classification Accuracy (%)

Best Average Worst

GWO mGWO GWO mGWO GWO mGWO

SMK_CAN_187 86.49 83.78 80.0 77.57 75.68 72.97
GLI_85 100 100 # 97.06 97.06 # 88.24 88.24 #

CNS 100 100 # 92.50 90.00 83.33 75.00

Colon 100 100 # 99.17 98.33 91.67 91.67 #

Wdbc 98.23 98.23 # 95.93 95.93 # 92.04 92.04 #

Ionosphere 97.14 98.57 * 95.00 95.00 # 92.86 92.86 #

Yeast 60.81 60.47 56.96 57.84 * 54.05 55.07 *

SPECT 88.68 88.68 # 86.79 87.17 * 81.13 81.13 #

Parkinson’s 94.87 97.44 * 91.79 93.08 * 89.74 87.18

Wine 100 100 # 97.71 98.00 * 94.29 94.29 #

Zoo 100 100 # 98.00 98.00 # 95.00 95.00 #

Iris 100 100 # 97.67 98.33 * 93.33 93.33 #

Mean 93.85 93.93 90.72 90.53 85.95 84.90
Note: Bold value with an asterisk (*) indicates that the proposed mGWO outperformed GWO, while a hash sign (#) indicates they achieved the same performance.

Furthermore, Table 6 presents the classification accuracy

obtained by GWO and mGWO in best, average, and worst

cases. Based on the experimental results, mGWO surpassed

GWO on 2 datasets in the best case, 5 in the average case, and

1 in the worst case. Additionally, mGWO maintained the

same performance as GWO on 8, 4, and 8 datasets in the best,

average, and worst case, respectively. It means that mGWO

performed better than GWO in at least 16.67-83.33% of

datasets in the best case, 41.67-75% in the average case, and

8.33-75% in the worst case.

It can be seen that the best-case classification accuracies

obtained by mGWO and GWO on every dataset in Table 6

484

were mostly higher than 80% of accuracy. However, for the

Yeast dataset, mGWO and GWO only generated 60.47% and

60.81% accuracies, respectively. This might be because the

Yeast dataset may possess a complex or uncleaned data

structure that somehow degraded the classification process.

Besides, mGWO showed better classification accuracy on the

rest of the HDDs and non-HDDs in the best case. For instance,

mGWO achieved 97.44% of accuracy whereas GWO

obtained 94.87% of accuracy, indicating that mGWO was

2.57% better in the Parkinson’s dataset. In HDDs, mGWO
was able to attain 100% of accuracy in GLI_85, CNS, and

Colon datasets, the same as GWO.

As for the average case, the classification accuracy of the

four HDDs obtained by mGWO was either weaker or the

same as GWO. Nevertheless, mGWO outperformed GWO

mostly in non-HDDs. Similar to the best-case results, the

highest improvement made by mGWO against GWO in the

average case can be found in the Parkinson’s dataset, where

mGWO achieved 93.08% of accuracy, which was 1.29%

higher than GWO. In the worst case, mGWO only maintained

the performance as GWO in most datasets. The accuracy
attained by mGWO in HDDs was weaker than GWO. There

was only 1.02% improvement of mGWO in the Yeast dataset

compared to GWO.

In a nutshell, mWOA was able to achieve 0.17%, 0.15%,

and 1.21% higher accuracy than WOA in the best, average,

and worst cases, by taking the mean from all datasets. In non-

HDDs like the Wine dataset, mWOA achieved 2.86% better

than WOA in the best case, 1.66% better than WOA on the

Colon HDD in the average case, and 8.33% better than WOA

on the CNS HDD in the worst case. As for the proposed

mGWO, its performance in classification accuracy was
mostly maintaining comparable results as the original GWO.

However, mGWO did show some improvement in certain

non-HDDs with slightly better accuracy than GWO in the

average case.The following section concludes the

comparative study and suggests future work related to the

extension of this work.

IV. CONCLUSION

Previously, the authors proposed a filter-based feature
selection method with a modified WOA (mWOA) to improve

the convergence speed and achieve better accuracy

performance than WOA. However, GWO was also found to

be having the same issue of slow convergence speed.

Therefore, as an extension of the previous work, the authors

began with this comparative study by proposing wrapper-

based feature selection methods with mWOA and modified

GWO (mGWO) using an inversed control parameter, �. The

inversed control parameter was expected to allow search

agents to cover more search space in the early iterations to

improve the convergence speed by obtaining the optimal
solution faster. Twelve datasets with different dimensionality

from UCI were adopted in the experiments, and the kNN

classifier was used to evaluate the selected features. The

performance of the proposed methods was evaluated against

their original algorithms in terms of the number of selected

features and classification accuracy.

Based on the experimental results, it can be concluded that

the strength of the proposed mWOA and mGWO was shown

differently. Although GWO and WOA share similarities in

their algorithms and both have the issue of slow convergence,

using the same method is not applicable for both. In terms of

feature reduction rate, mWOA obtained 1.67%, 2.05%, and

4.45% better results than WOA in the best, average, and worst

cases, respectively. However, mGWO did not outperform

GWO in most cases. As for the classification accuracy,

mWOA outperformed WOA with 0.17%, 0.15%, and 1.2%

better results in the best, average, and worst cases,

respectively. Nonetheless, mGWO outperformed 0.08% in

classification accuracy than GWO in the best case, yet, no
improvements in the average and worst cases. It was proven

that the proposed inversed control parameter is only effective

in mWOA, but less effective in mGWO, when comparing

them against their original algorithms.

In the future, the execution time of feature selection could

be considered as one of the criteria to evaluate the proposed

methods. Besides, since the inversed control parameter

showed more significant improvement on mWOA, thus,

hybridizing mWOA with other recent well-perform

metaheuristic algorithms to further investigate the

performance would be an interesting study. Some recent
metaheuristic algorithms that could be hybridized with

mWOA include Manta Ray Foraging Optimization and Harris

Hawks Optimization. Lastly, other classifiers could be

wrapped with mGWO to select relevant features that produce

better classification accuracy in HDDs.

ACKNOWLEDGMENT

This research was supported by Ministry of Higher

Education (MOHE) through Fundamental Research Grant
Scheme (FRGS/1/2018/ICT02/UTHM/02/6).

REFERENCES

[1] O. Duncan and T. Sherer, “Feature Selection (Data Mining),”

Microsoft, 2018. [Online]. Available: https://docs.microsoft.com/en-

us/analysis-services/data-mining/feature-selection-data-

mining?view=asallproducts-allversions. [Accessed: 01-May-2021].

[2] V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-Betanzos,

Feature Selection for High-Dimensional Data. Springer International

Publishing, 2015.

[3] A. Bommert, X. Sun, B. Bischl, J. Rahnenführer, and M. Lang,

“Benchmark for filter methods for feature selection in high-

dimensional classification data,” Comput. Stat. Data Anal., vol. 143,

p. 106839, 2020.

[4] B. Zhang and P. Cao, “Classification of high dimensional biomedical

data based on feature selection using redundant removal,” PLoS One,

vol. 14, no. 4, pp. 1–19, 2019.

[5] A. Veeraswamy and A. M. Babu, “Classification of High Dimensional

Data Using Filtration Attribute Evaluation Feature Selection Method

of Data mining,” 4th Int. Conf. Electr. Electron. Commun. Comput.

Technol. Optim. Tech. ICEECCOT 2019, pp. 8–12, 2019.

[6] K. S. Adewole et al., “Hybrid Feature Selection Framework For

Sentiment Analysis On Large Corpora,” Jordanian J. Comput. Inf.

Technol., vol. 07, no. 02, pp. 15–33, 2021.

[7] Q. Al-Tashi, S. J. Abdulkadir, H. M. Rais, S. Mirjalili, and H.

Alhussian, “Approaches to Multi-Objective Feature Selection: A

Systematic Literature Review,” IEEE Access, vol. 8, pp. 125076–

125096, 2020.

[8] R. Alazaidah, M. A. Almaiah, and M. Al-Luwaici, “Associative

Classification In Multi-label Classification: An Investigative Study,”

Jordanian J. Comput. Inf. Technol., vol. 7, no. 2, pp. 166–179, 2021.

[9] Y. Bouchlaghem, Y. Akhiat, and S. Amjad, “Feature Selection: A

Review and Comparative Study,” E3S Web Conf., vol. 351, p. 01046,

2022.

[10] H. Nematzadeh, R. Enayatifar, M. Mahmud, and E. Akbari,

“Frequency based feature selection method using whale algorithm,”

Genomics, vol. 111, no. 6, pp. 1946–1955, 2019.

485

[11] H. M. Mohammed, S. U. Umar, and T. A. Rashid, “A systematic and

meta-analysis survey of whale optimization algorithm,” Comput. Intell.

Neurosci., vol. 2019, 2019.

[12] W. Zhao, Z. Zhang, and L. Wang, “Manta ray foraging optimization:

An effective bio-inspired optimizer for engineering applications,” Eng.

Appl. Artif. Intell., vol. 87, no. September 2019, p. 103300, 2020.

[13] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H.

Chen, “Harris hawks optimization: Algorithm and applications,” Futur.

Gener. Comput. Syst., vol. 97, pp. 849–872, 2019.

[14] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,”

Adv. Eng. Softw., vol. 69, pp. 46–61, 2014.

[15] S. Mirjalili and A. Lewis, “The Whale Optimization Algorithm,” Adv.

Eng. Softw., vol. 95, pp. 51–67, 2016.

[16] R. K. Saidala and N. Devarakonda, “Improved whale optimization

algorithm case study: Clinical data of anaemic pregnant woman,” Adv.

Intell. Syst. Comput., vol. 542, pp. 271–281, 2018.

[17] X. Li and K. M. Luk, “The Grey Wolf Optimizer and Its Applications

in Electromagnetics,” IEEE Trans. Antennas Propag., vol. 68, no. 3,

pp. 2186–2197, 2020.

[18] B. Sony, A. Chakravarti, and M. M. Reddy, “Traffic congestion

detection using whale optimization algorithm and multi-support vector

machine,” Int. J. Recent Technol. Eng., vol. 7, no. 6C2, pp. 589–593,

2019.

[19] M. Mafarja and S. Mirjalili, “Whale optimization approaches for

wrapper feature selection,” Appl. Soft Comput., vol. 62, pp. 441–453,

2018.

[20] M. M. Mafarja and S. Mirjalili, “Hybrid Whale Optimization

Algorithm with simulated annealing for feature selection,”

Neurocomputing, vol. 260, pp. 302–312, 2017.

[21] K. K. Ghosh, R. Guha, S. K. Bera, N. Kumar, and R. Sarkar, “S-shaped

versus V-shaped transfer functions for binary Manta ray foraging

optimization in feature selection problem,” Neural Comput. Appl., vol.

33, no. 17, pp. 11027–11041, 2021.

[22] Q. Al-Tashi, H. Rais, and S. Jadid, “Feature selection method based

on grey wolf optimization for coronary artery disease classification,”

Adv. Intell. Syst. Comput., vol. 843, no. November, pp. 257–266, 2019.

[23] P. Hu, J. S. Pan, and S. C. Chu, “Improved Binary Grey Wolf

Optimizer and Its application for feature selection,” Knowledge-Based

Syst., vol. 195, p. 105746, 2020.

[24] L. Y. Yab, N. Wahid, and R. A. Hamid, A Modified Whale

Optimization Algorithm as Filter-Based Feature Selection for High

Dimensional Datasets, vol. 457 LNNS. Springer International

Publishing, 2022.

[25] P. Niu, S. Niu, N. liu, and L. Chang, “The defect of the Grey Wolf

optimization algorithm and its verification method,” Knowledge-

Based Syst., vol. 171, pp. 37–43, 2019.

[26] E. Emary, H. M. Zawbaa, and A. E. Hassanien, “Binary grey wolf

optimization approaches for feature selection,” Neurocomputing, vol.

172, pp. 371–381, 2016.

[27] M. Zhong and W. Long, “Whale optimization algorithm with

nonlinear control parameter,” MATEC Web Conf., vol. 139, pp. 1–5,

2017.

[28] M. Abdel-Basset, G. Manogaran, D. El-Shahat, and S. Mirjalili, “A

hybrid whale optimization algorithm based on local search strategy for

the permutation flow shop scheduling problem,” Futur. Gener.

Comput. Syst., vol. 85, no. March, pp. 129–145, 2021.

[29] F. S. Gharehchopogh and H. Gholizadeh, “A comprehensive survey:

Whale Optimization Algorithm and its applications,” Swarm Evol.

Comput., vol. 48, no. November 2018, pp. 1–24, 2019.

[30] C. L. Blake and C. J. Merz, “UCI Machine Learning Repository,” 1998.

[Online]. Available: https://archive.ics.uci.edu/ml/index.php.

[Accessed: 28-Nov-2021].

486

