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Abstract—Whale Optimization Algorithm (WOA) and Grey Wolf Optimizer (GWO) are well-perform metaheuristic algorithms used 

by various researchers in solving feature selection problems. Yet, the slow convergence speed issue in the Whale Optimization Algorithm 

and Grey Wolf Optimizer could demote the performance of feature selection and classification accuracy. Therefore, to overcome this 

issue, a modified WOA (mWOA) and modified GWO (mGWO) for wrapper-based feature selection were proposed in this study. The 

proposed mWOA and mGWO were given a new inversed control parameter expected to enable more search areas for the search agents 

in the early phase of the algorithms, resulting in a faster convergence speed. This comparative study aims to investigate and compare 

the effectiveness of the inversed control parameter in the proposed methods against the original algorithms in terms of the number of 

selected features and the classification accuracy. The proposed methods were implemented in MATLAB where 12 datasets with 

different dimensionality from the UCI repository were used. kNN was chosen as the classifier to evaluate the classification accuracy of 

the selected features. Based on the experimental results, mGWO did not show significant improvements in feature reduction and 

maintained similar accuracy as the original GWO. On the contrary, mWOA outperformed the original WOA regarding the two criteria 

mentioned, even on high-dimensional datasets. Evaluating the execution time of the proposed methods, utilizing different classifiers, 

and hybridizing proposed methods with other metaheuristic algorithms to solve feature selection problems would be future works worth 

exploring. 
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I. INTRODUCTION

Feature selection has been a popular topic for researchers 

over the past decades. It is known as the process of reducing 

dimensionality by selecting the most relevant features and 

discarding less relevant features in a dataset [1]. The objective 

of such dimensionality reduction is due to the ever-growing 

dataset dimensionality rate throughout technological 

advancement. A high-dimensional dataset (HDD) is a matrix 

consisting of many columns or rows representing a huge size 

of features or instances [2]. Generally, not every feature could 

provide significant information for classification, and the less 

relevant features in a dataset could demote classification 

accuracy. Especially for HDDs, irrelevant features cause 
memory constraints and result in the expensive cost of 

training and computing, which is also known as the “curse of 

dimensionality” [2], [3]. Therefore, feature selection is often 

related to two main tasks, that is, to promote maximum 

classification accuracy and to select a minimum number of 

selected features to avoid the “curse of dimensionality” [4]–

[7]. Besides, feature selection can be interpreted as the pre-

processing process for data classification, where the class 
label of an instance is assigned based on the learning model 

trained [8]. Since the training data is contributed from the 

features selected, the ability to select fewer features without 

lowering the classification accuracy is the criteria to evaluate 

the effectiveness of a feature selection method. 

There are three feature selection methods: filter-based, 

embedded-based, and wrapper-based [9]. The filter-based 

method carries out feature selection without using any 

learning algorithms, and it solely depends on the mutual 

information provided by the features and their relationship 

with the class label [10]. After the filter-based feature 

selection process takes place, any classifiers can be utilized to 
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evaluate the quality of selected features in a dataset. Therefore, 

the filter-based method is flexible to implement and fast to 

execute. Besides, the embedded-based method performs 

feature selection during the classification process; hence, it 

can produce high classification accuracy [9]. Unlike filter-

based and embedded-based methods, the wrapper-based 

method uses a certain classifier to obtain the quality of each 

feature subset. Thus, it has higher time complexity and higher 

classification accuracy [9]. Therefore, the wrapper-based 

method feature selection is the focus of this study. 
Over the years, metaheuristic optimization algorithms have 

been utilized with feature selection. In metaheuristic 

algorithms, exploration and exploitation phases determine the 

search mechanism to obtain the optimal solution [11]. The 

exploration phase is where the algorithm randomly looks for 

potential areas in the search space, whereas the exploitation 

phase is where the algorithm further scrutinizes a certain 

search space area found during exploration. These two phases 

are further discussed in Section 2. Some of the recent 

metaheuristic optimization algorithms are Manta Ray 

Foraging Optimization [12], Harris Hawks Optimization [13],  
Grey Wolf Optimizer (GWO) [14], and Whale Optimization 

Algorithm (WOA) [15]. Many researchers have employed 

these metaheuristic algorithms in various domains, such as 

solving medical problems [16], electromagnetic problems 

[17], predicting the rate of traffic congestion [18], and 

handling feature selection problems [10], [19]–[21]. 

Notably, WOA and GWO have shown similarities in terms 

of the parameters and characteristics in their algorithm 

designs, which will be explained in Section 2. These two 

algorithms are excellent optimizers and have yielded great 

performance in both filter-based and wrapper-based feature 
selection methods due to their strengths in exploration and 

exploitation  [10], [19], [20], [22]–[24]. Al-Tashi et al. 

implemented a wrapper-based feature selection with GWO to 

select the most relevant features to be used in diagnosing 

coronary artery disease with a two-stage approach [22]. The 

most relevant features in the Cleveland Heart disease dataset 

were identified in the first stage, while the fitness function 

was evaluated by the Support Vector Machine (SVM) 

classifier in the second stage. Based on the experimental 

results, the proposed GWO method obtained 89.83%, 93%, 

and 91% for classification accuracy, sensitivity, and 

specificity, respectively.  
Another research by Hu, Pan, and Chu. [23] implemented 

a wrapper-based feature selection using a binary variant of 

GWO (BGWO) and another improved BGWO variant 

(ABGWO). The binary conversion was achieved by using 

four V-shaped transfer functions so that the continuous values 

were mapped to binary values, whereas a new control 

parameter in ABGWO was utilized to improve the 

convergence speed of BGWO. The classifier used to obtain 

classification accuracy in the study is the K-nearest neighbor 

(kNN). Based on the experimental results, with improved 

convergence speed, the proposed ABGWO outperformed 
BGWO in both classification accuracy and execution time for 

most cases. 

Mafarja and Mirjalili [19], [20] introduced two wrapper-

based feature selection studies with WOA. Both studies have 

produced outstanding classification accuracy using the kNN 

classifier. In the first study, WOA was improved by 

Tournament selection (WOA-T), roulette wheel selection 

(WOA-R), as well as the crossover and mutation operators 

(WOA-CM) [19]. The execution time of WOA-CM was the 

least as compared to other methods. The average feature 

selection ratio of WOA-CM was smaller than WOA, and the 

average classification accuracy of WOA-CM was higher than 

WOA in most datasets [19]. In the second study, WOA was 

hybridized with Simulated Annealing (WOA-SA), where 

WOA handled the global search, whereas SA handled the 

local search [20]. In addition, WOA-SA with the Tournament 
selection mechanism (WOA-SAT) was also introduced in the 

same study. The average feature selection ratio of WOA-SAT 

was lower than WOA, while the average classification 

accuracy of WOA-SAT was greater than WOA in most 

datasets [20]. 

Nematzadeh et al. [10] implemented a filter-based feature 

selection method with WOA and Mutual Congestion that 

applied different rates for discarding the feature size starting 

from 20% to 80% on four medical HDDs. Using the SVM, 

Naïve Bayes, and Decision Tree classifiers to evaluate the 

quality of the selected features, the proposed method yielded 
the highest average classification accuracy when 50% of 

features from the original HDDs were discarded. The 

promising results from Nematzadeh et al.  [10] have inspired 

the work of another filter-based feature selection method by 

Yab, Wahid, and Hamid [24] with modified WOA (mWOA). 

The study adopted a similar approach of using a 50% feature 

selection size for dimensionality reduction and introduced a 

new control parameter formula in mWOA to improve the 

convergence speed of WOA. 

According to the literature, the slow convergence speed in 

WOA is a known issue, as the problem is also found in GWO 
[25]. GWO is compared to WOA as they have similar 

characteristics and parameters [23], [26]. In both WOA and 

GWO, the control parameter, �, determines the trade-off for 

the exploration and exploitation phases [11], [25], [27]. Since 

the value of � affects the coefficient vector, �⃗, it contributes 

to the distance between the search agents and the prey over 

iterations. As a result, the global and local search mechanisms 

that decide when to converge to the optimal solution, are 

affected by � . Therefore, to reduce the impact of slow 

convergence speed, the modification of the control 

parameter’s formula is required [11], [28]. Previous studies 

reported that ABGWO for wrapper-based feature selection 

[23] and mWOA for filter-based feature selection [24] have 

both improved the convergence speed. However, the 

performance of filter-based mWOA has only been tested 

against filter-based WOA and without feature selection (NO 
FS).  

Therefore, this study presents a comparative study of (i) a 

proposed mWOA as a wrapper-based feature selection and (ii) 

a modified GWO (mGWO) by inversing its control parameter 

formula as in mWOA. This comparative study aims to 

evaluate the effectiveness of the modified control parameter’s 

formula for both mWOA and mGWO against the original 

GWO and WOA. The proposed wrapper-based mWOA and 

mGWO were implemented in MATLAB, and the kNN 

classifier was used to evaluate the significance of the selected 

features toward the classification accuracy. 
The rest of the paper is organized as follows. Section 2 

presents the materials and methods used in this work, which 
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covers the inspiration and mathematical equations for original 

WOA and GWO, and introduces the proposed method 

involving the inversed control parameter for mWOA and 

mGWO. The experimental results are tabulated and 

thoroughly discussed in Section 3. Lastly, Section 4 concludes 

the findings of this comparative study and provides insights 

into the potential future work. 

II. MATERIALS AND METHOD 

This section presents the materials used in this study: 

Whale Optimization Algorithm and Grey Wolf Optimizer. 

The proposed method and experimental setups used in 

realizing the comparative study are also included in this 

section. 

A. Whale Optimization Algorithm 

Whale Optimization Algorithm (WOA) is a nature-inspired 

metaheuristic algorithm introduced by Mirjalili and Lewis [15] 

in 2016 for solving optimization problems. WOA has shown 

its spectacular performance in various research areas such as 

engineering, transportation, and medical diagnosis [16], [18], 

[19], [29]. The reason behind WOA’s excellent performance 

is because of its searching mechanism, where it imitates the 

bubble-net feeding method of humpback whales, as shown in 

Fig. 1. 

 
Fig. 1  The bubble-net feeding method of humpback whales [15] 

1)  Encircling prey:  In this phase, the whales encircle the 

prey. Since the optimal solution of the prey is not yet 

identified, the current best position is assumed to be the prey. 

Once the best position is known, the whales update their 

positions toward the current best position over iterations. The 

scenario is represented by Eq. (1) and Eq. (2), where � denotes 

the current iteration, �⃗ is the position vector, � ∗������⃗  represents 

the position vector of the best position obtained at the moment, 

while | | and  ∙ indicate the absolute value and dot product 

operator, respectively. The value of � ∗������⃗  would be updated if 

a better position is found at each iteration. The distance 

between the current whale and the best position is denoted by 

���⃗ . The coefficient vectors �⃗ and �⃗ are shown in Eq. (3) and 

Eq. (4) where ⃗ is a random vector between 0 and 1, while �⃗ 

is a control parameter that decreases linearly from 2 to 0 using 

Eq. (5), where ������ indicates the maximum iteration. 

���⃗ � |�⃗ ∙ � ∗������⃗ ��� � �⃗���| (1) 

�⃗�� � 1� �  � ∗������⃗ ��� � �⃗ ∙ ���⃗  (2) 

�⃗ � 2�⃗ ∙ ⃗ � �⃗ (3) 

�⃗ � 2 ∙ ⃗ (4) 

� � 2 � � 2
������ (5) 

2)  Bubble-net attacking (exploitation):  In this phase, the 

whales perform bubble-net attacking by two maneuvers: 
shrinking the circle and moving along the spiral-shaped route. 

The first maneuver is achieved by Eq. (2) while the second 

maneuver is achieved by Eq. (6) where � indicates a constant 

to create the shape of the logarithmic spiral, �  denotes a 

random number between –1 and 1, and ������⃗  is computed from 

������⃗  �  |� ∗������⃗ ��� � �⃗���|, which means the distance between 

the ith whale to the prey. Since the whales need to carry out 

these two maneuvers at the same time, hence, � is used as a 

probability to decide which maneuver to perform. This 

scenario is presented in Eq. (7). If � � 0.5, the whales shrink 

the circle, otherwise they move along the spiral-shaped route. 

�⃗�� � 1� �  ������⃗ ∙ �!" ∙ #$%�2&�� � � ∗������⃗ ���  (6) 

�⃗�� � 1�
� '  � ∗������⃗ ��� � �⃗ ∙ ���⃗                               () � � 0.5

������⃗ ∙ �!" ∙ #$%�2&�� � � ∗������⃗ ���       () � * 0.5 
(7) 

3)  Searching for prey (exploration):  In this phase, whales 
look for the potential position randomly based on their 

positions among one another. It is unlike the exploitation 

phase because the position of a whale is updated using a 

randomly selected whale, instead of using the best position 

discovered. This scenario is represented in Eq. (8) and Eq. (9), 

where �+,-.�����������⃗  indicates a random whale’s position selected 

from the population. 

���⃗ � |�⃗ ∙ �+,-.�����������⃗ � �⃗| (8) 

�⃗�� � 1� �  �+,-.�����������⃗ � �⃗ ∙ ���⃗  (9) 

The pseudocode of WOA is shown in Fig. 2. 

 
1 Initialize whales’ population Xi (i = 1, 2, ..., n) 

2 Compute each search agent’s fitness 

3 X*=the best search agent 

4 While t smaller than MaxIter 

5 for each search agent 

6 Update a, A, C, l, and p with Eq. (5), (3), (4), [-1,1], [0,1]  

7 if p smaller than 0.5 

8 if |A| smaller than 1 

9 Update the current search agent’s position by Eq. (2) 

10 else 

11 Choose a search agent by random (Xrand) 

12 Update the current search agent’s position by Eq. (9) 

13 end if 

14 else 

15 Update the current search agent’s position by Eq. (6) 

16 end if 

17 end for 

18 Fix the search agent’s position if it outstrips the search space 

19 Compute each search agent’s fitness 

20 Update X* if a fitter solution is found 

21 t=t+1 

22 end while 

23 return X* 

Fig. 2  Pseudocode of WOA 
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B. Grey Wolf Optimizer 

Grey Wolf Optimizer (GWO) is a nature-inspired 

metaheuristic algorithm introduced by Mirjalili et al. in 2014 

for solving optimization issues [14]. It has shown great 
performance in electromagnetics [17] and feature selection 

[22], [23]. GWO is well-perform due to the grey wolves’ 

hunting mechanism that involves a special social hierarchy. 

1)  Social hierarchy:  The algorithm of GWO is inspired by 

the grey wolves’ social hierarchy in group hunting. The 

hierarchy consists of four levels which are alpha (α), beta (β), 

delta (δ), and omega (ω) from top to bottom as illustrated in 

Fig. 3. 

 
Fig. 3  Grey wolves’ social hierarchy [14] 

 

The alpha wolves are the highest in the social hierarchy, 

and they lead the other three levels below them. Being the 

second highest in the hierarchy, beta wolves obey alpha 

wolves and dominate delta and omega wolves. Similarly, 

delta wolves are dominated by the first two levels of wolves 

and dominate the bottom level of wolves. The last in the 

hierarchy is called the omega wolves, and the top three levels 

of wolves dominate them. The social hierarchy concept is 

transformed into the algorithm of GWO where alpha, beta, 
and delta are categorized as the fittest, second fittest, and third 

fittest solutions, respectively. The solutions other than the top 

three fittest ones are called omega. 

2)  Encircling prey:  In this phase, the wolves encircle the 

prey (best position). The scenario is represented by Eq. (10) 

and Eq. (11) where � represents current iteration, �⃗ denotes 

the position vector of a grey wolf, �⃗/ represents the position 

vector of the fittest solution obtained so far, and ∙ is the dot 

product operator. �⃗/ will be updated in each iteration once 

better position is found. Parameter ���⃗  denotes the distance 

between the current wolf and the as-is best position. The 

coefficient vectors �⃗ and �⃗ are presented in Eq. (12) and Eq. 

(13), respectively, where ⃗0  and ⃗1  are random numbers 

between 0 and 1, whereas �⃗  is a control parameter that 

decreases linearly from 2 to 0. The decrease in �⃗ is done using 

Eq. (14), where ������ indicates the maximum iteration, 

similar to WOA. 

���⃗ � |�⃗ ∙ �⃗/��� � �⃗���| (10) 

�⃗�� � 1� �  �⃗/��� � �⃗ ∙ ���⃗  (11) 

�⃗ � 2�⃗ ∙ ⃗0 � �⃗ (12) 

�⃗ � 2 ∙ ⃗1  (13) 

� � 2 � � 2
������ (14) 

3)  Hunting:  The hunting mechanism of GWO depends on 

alpha, beta, and delta wolves, as shown in Eq. (15) and Eq. 

(16). It is worth mentioning that the top three fittest solutions 

are assumed to be the best position since the optimal solution 

is unknown. Hence, GWO uses the mean position from alpha, 

beta, and delta wolves to update each wolf’s position based 

on Eq. (17). 

�∝�����⃗ � 3�0����⃗ ∙ �∝����⃗ � �⃗3, �5����⃗ � 3�1����⃗ ∙ �5����⃗ � �⃗3, �6����⃗
� |�7����⃗ ∙ �6����⃗ � �⃗| (15) 

�0����⃗ �  �∝����⃗ � �0����⃗ ∙ �∝�����⃗ , �1����⃗ �  �5����⃗ � �1����⃗ ∙ �5����⃗ , �7����⃗
�  �6����⃗ � �7����⃗ ∙ �6����⃗  

(16) 

�⃗�� � 1� �  �0����⃗ �  �1����⃗ �  �7����⃗
3  (17) 

4)  Attacking prey (exploitation):  The process of attacking 

prey is also known as the local search, where grey wolves hunt 

the prey as it stops moving. The value of �⃗ is affected by �⃗ 

whereby �⃗ falls randomly between the range of �2� to 2� 

based on Eq. (12). If 3�⃗ 3 � 1, the value of �⃗ is between –1 to 

1, thus, the wolf attacks the prey because the wolf’s next 

position would be between its current position and the prey’s 

position. 

5)  Searching for prey (exploration):  The search process is 

also known as the global search, where all the top three levels 

of wolves’ position are used to look for the best solution. The 
global search is the opposite of the local search. Each wolf 

looks for prey separately and then converges toward the best 

solution found. If 3�⃗ 3 9 1, the value of �⃗ is smaller than –1 

or larger than 1, thus, the wolf stays away from the current 

prey position to find a better solution. Therefore, this vector 
manages the balance of exploration and exploitation. Besides 

�⃗, the �⃗ vector also determines the exploration. The value of 

�⃗ is a random number between 0 to 2, and it randomly weights 

(� 9 1) and unweights (� � 1) the effect of prey by the 

distance. This concept allows the algorithm to exhibit random 

behavior during optimization, encouraging exploration and 

eradicating local optima. 

The pseudocode of GWO is shown in Fig. 4. 

1 Initialize wolves’ population Xi (i = 1, 2, ..., n) 
2 Initialize a, A, and C with Eq. (14), (12), (13), respectively 

3 Compute each search agent’s fitness 
4 Xα=the best search agent 
5 Xβ =the second-best search agent 
6 Xδ =the third-best search agent 
7 While t smaller than MaxIter 
8 for each search agent 
9 Update the current search agent’s position by Eq. (17) 
10 end for 

11 Update a, A, and C with Eq. (14), (12), (13), respectively 
12 Compute each search agent’s fitness 
13 Update Xα, Xβ, and Xδ 
14 t=t+1 
15 end while 
16 return Xα 

Fig. 4  Pseudocode of GWO 
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C. Proposed Inversed Control Parameter 

Based on the literature, mWOA was designed for filter-

based feature selection to improve the convergence speed 

while performing a 50% of feature reduction on four medical 
HDDs [24]. However, its performance has not yet been tested 

in a wrapper-based feature selection method nor evaluated on 

datasets of different dimensionality. Hence, this study 

proposed two wrapper-based feature selection methods using 

modified WOA (mWOA) and modified GWO (mGWO) to 

improve the convergence speed by inversing the control 

parameter. 

In the original WOA and GWO, the control parameter is 

defined by Eq. (5) and Eq. (14), respectively. The values of � 

in WOA and GWO decrease linearly from 2 to 0 and affect 

both global and local search mechanisms. This is because the 

values of the coefficient vector, �⃗, are contributed by �, while 

�⃗ determines the updated position of search agents in both 

methods. The values of the control parameter, � , and the 

coefficient vector �⃗ , are shown in Fig. 5.  

 

 

Fig. 5  Values of the control parameter, �, and coefficient vector �⃗ in original 

WOA and GWO 
 

 

Fig. 6  Values of the control parameter, � , and coefficient vector �⃗  in 

proposed mWOA and mGWO 

 

Meanwhile, the decreasing trend of �  decreases the 

distance and increases the possibility of changing positions, 

which covers less search space at the initial phase of the 

iterations, resulting in a slower convergence speed [23]. 

Hence, the situation had to be changed the other way around 

to enable faster convergence speed [24]. Therefore, the 

linearly decreasing control parameter in WOA and GWO was 

inversed to be linearly increasing with Eq. (18) for the 

proposed mWOA and mGWO. With the new control 

parameter formula, the value of � linearly increases from 0 to 

2, as depicted in Fig. 6. 

� � 2� � 2
������ (18) 

TABLE I 

COMPARISON OF THE ORIGINAL AND PROPOSED METHODS 

 Original WOA 
and GWO 

Proposed mWOA 
and mGWO 

Value of � Decreasing Increasing 
Distance between 
search agents 

Decreasing Increasing 

Position-changing 
possibility 

Increasing Decreasing 

Search space covered 
Less at first, more 
later 

More at first, less 
later 

Resulting 
Convergence Speed 

Slower Faster 

 

Table 1 shows the comparison of the original and proposed 

methods. By using the inversed control parameter from Eq. 

(18), the increasing trend of �  increases the distance and 

decreases the possibility of changing positions, which covers 

more search space at the initial phase of the iterations, a faster 

convergence speed in the proposed mWOA and mGWO. 

The inversed control parameter in the proposed mWOA 

and mGWO is expected to improve the convergence speed of 
WOA and GWO in wrapper-based feature selection. With 

better convergence speed reflecting the algorithm 

performance, the search agents are most likely to excel in 

selecting only the most important features in a dataset that 

truly contribute to the classification accuracy. Therefore, in 

the following subsection, the effectiveness of the inversed 

control parameter for both mWOA and mGWO against their 

original forms of GWO and WOA, was tested in experiments. 

D. Experimental Setup 

The experiments were implemented using MATLAB 

version R2017b. A total of 12 benchmark datasets from UCI 

[30] with different dimensionality were used. The datasets are 

sorted in descending order based on dimensionality (instance 

× feature), as shown in Table 2. There are four HDDs with 

more than 2,000 features in the datasets, namely, 

SMK_CAN_187, GLI_85, CNS, and Colon, where the rest of 

the datasets were non-HDDs. 

TABLE II 

LIST OF DATASETS EMPLOYED IN THIS STUDY 

Datasets Instances Features Dimensionality 

SMK_CAN_187 187 19993 3738691 
GLI_85 85 22283 1894055 
CNS 60 7129 427740 

Colon 62 2000 124000 
Wdbc 569 30 17070 
Ionosphere 351 34 11934 
Yeast 1484 8 11872 
SPECT 267 22 5874 
Parkinson’s 195 22 4290 
Wine 178 13 2314 
Zoo 101 16 1616 

Iris 150 4 600 
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A wrapper-based feature selection approach with the kNN 

classifier was used, where the k was fixed to 5. Cross-

validation was implemented in this study, where each dataset 

was randomly partitioned for hold-out in N validation, where 

N denotes the number of instances in a dataset. The partition 

randomly divided N instances into two subsets: 20% for 

testing sets and 80% for training sets. The same setting was 

used for each experiment to avoid bias in results. The 

parameters for population maximum iteration were 10 and 

100, respectively. The machine that was used to run the 
experiments was Intel Core i7-10750H CPU @ 2.60GHz with 

32GB RAM. The experiments were conducted for 10 runs 

with two pairs of algorithms, which include WOA and 

mWOA, as well as GWO and mGWO. In the next section, 

both the proposed mWOA and mGWO were compared 

against their original forms with the following criteria: 

 The number of selected features in best, average, and 

worst cases: the best number of selected features was 

obtained by the minimum value in 10 runs, while the 

maximum value was obtained by the worst number of 

selected features in 10 runs. The average number of 
selected features was computed by the mean of selected 

features in all ten runs. The feature reduction rate can 

also be computed using Eq. (19). 

                      :���;� �<;#�($= ���                        
�  >1 � =;?�� $) %���#��< )���;�%

$(@(=�� )���;� %(A� B × 100% 
(19)

 The classification accuracy in best, average, and worst 

cases was obtained using the selected features on the 

test dataset. The maximum value selected the best 

accuracy in 10 runs, while the worst accuracy was 

selected by the minimum value in 10 runs. The average 

accuracy was computed by the mean of accuracies in 

all ten runs. The accuracy of each experiment was 

calculated using Eq. (20) [10], where TP and TN 

indicate the numbers of positive and negative instances 

that are correctly classified, whereas FP and FN 

represent the numbers of positive and negative 

instances that are incorrectly classified. 

�##;�#E �  FG � FH
FG � FH � :G � :H (20)

III. RESULTS AND DISCUSSION 

This section presents the experimental results of the 

proposed mWOA and mGWO against their original forms and 

discusses the effectiveness of the inversed control parameter 

based on the number of selected features and classification 

accuracy. 

A. The number of selected features 

The wrapper-based feature selection experiments utilized 

12 datasets in Table 2 for 10 runs, and the number of selected 
features vary across each test case. Table 3 presents the 

number of selected features by WOA and mWOA in their best, 

average, and worst cases. Based on the experimental results, 

mWOA performed better than WOA in 6, 6, and 8 out of 12 

datasets in the best, average, and worst test cases, respectively. 

Also, it achieved the same performance as WOA in 5, 3, and 

2 out of 12 datasets in the best, average, and worst test cases, 

respectively. It indicates that mWOA could select fewer 

features in at least 50-91.67% of datasets in the best case, 50-

75% of datasets in average cases, and 66.67-83.33% of 

datasets in the worst case. 

TABLE III 

COMPARISON OF THE NO. OF SELECTED FEATURES IN BEST, AVERAGE, AND WORST CASES FOR WOA AND MWOA 

Datasets 

No. of selected features (features reduction rate %) 

Best Average Worst 

WOA mWOA WOA mWOA WOA mWOA 

SMK_CAN_187 13 (99.93) 8 (99.96) * 297 (98.51) 548 (97.26) 640 (96.80) 4106 (79.46) 
GLI_85 15 (99.93) 3 (99.99) * 1071 (95.19) 792 (96.45) * 8821 (60.41) 2868 (87.13) * 

CNS 5 (99.93) 2 (99.97) * 197 (97.24) 110 (98.46) * 1356 (80.98) 606 (91.50) * 

Colon 8 (99.60) 6 (99.70) * 125 (93.75) 130 (93.50) 477 (76.15) 466 (76.70) * 

Wdbc 3 (90.00) 2 (93.33) * 8 (73.33) 4 (86.67) * 12 (60.00) 8 (73.33) * 

Ionosphere 3 (91.18) 3 (91.18) # 5 (85.29) 4 (88.24) * 7 (79.41) 7 (79.41) # 

Yeast 5 (37.50) 5 (37.50) # 7 (12.50) 7 (12.50) # 8 (0.00) 8 (0.00) # 

SPECT 6 (72.73) 1 (95.45) * 12 (45.45) 9 (59.09) * 16 (27.27) 15 (31.82) * 

Parkinson’s 2 (90.91) 2 (90.91) # 6 (72.72) 4 (81.82) * 11 (50.00) 8 (63.64) * 

Wine 2 (84.62) 2 (84.62) # 4 (69.23) 6 (53.85) 9 (30.77) 8 (38.46) * 

Zoo 3 (81.25) 4 (75.00) 7 (56.25) 7 (56.25) # 12 (25.00) 9 (43.75) * 

Iris 1 (75.00) 1 (75.00) # 2 (50.00) 2 (50.00) # 3 (25.00) 4 (0.00) 

Mean 6 (85.21) 3 (86.88) 145 (70.79) 135 (72.84) 948 (50.98) 676 (55.43) 
Note: Bold value with an asterisk (*) indicates that the proposed mWOA outperformed WOA, while a hash sign (#) indicates they achieved the same performance. 

 

Based on Table 3, in the best case, mWOA outperformed 

WOA in all HDDs, which includes SMK_CAN_187, GLI_85, 

CNS, and Colon. In GLI_85 dataset, mWOA achieved the 

highest feature reduction rate at 99.99% by only selecting 3 

from 22,283 features. Besides, mWOA also showed the best 

improvement of non-HDDs such as in SPECT dataset, as 

mWOA reduced 95.45% of features by only choosing 1 from 

22 features. It is equivalent to a 22.73% improvement 

achieved by mWOA compared to WOA (72.73%). 

In average cases, mWOA outperformed WOA in two 

HDDs, which are GLI_85 and CNS. All four HDDs were 

successfully reduced by more than 93.50% of features using 

mWOA. Specifically, SMK_CAN_187 reduced to 548 from 

19,993 features, GLI_85 reduced to 792 from 22,283 features, 

CNS reduced to 110 from 7,129 features, and Colon reduced 

to 130 from 2,000 features. For non-HDDs, mWOA managed 

to reduce 86.67% of features in the Wdbc dataset, that is, 

13.33% better than WOA, which reduced 73.33% of features. 
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Even in the worst case, mWOA showed its strength in 

selecting fewer features than WOA in both HDDs and non-

HDDs. In the GLI_85 dataset, mWOA successfully selected 

2,868 features resulting in feature reduction rates of 87.13% 

as compared to WOA with 60.41%. The improvement that 

mWOA achieved in this HDD is 26.72%. As for non-HDDs, 

mWOA managed to reduce 43.75% of features as compared 

to WOA with 25% of feature reduction rate, indicating that 

mWOA was 18.75% better than WOA. 

Table 4 shows the number of selected features by GWO 

and mGWO in their best, average, and worst cases, 

respectively. The experimental results show that the mGWO 

outperformed GWO in 2 datasets in the worst case and 

achieved the same performance as GWO in 6 datasets in the 

best case, 3 in average cases, and 1 in the worst case. Overall, 

the performance of mGWO was not significant as compared 

to GWO. 

TABLE IV 

COMPARISON OF THE NO. OF SELECTED FEATURES IN BEST, AVERAGE, AND WORST CASES FOR GWO AND MGWO 

Datasets 

No. of selected features (features reduction rate %) 

Best Average Worst 

GWO mGWO GWO mGWO GWO mGWO 

SMK_CAN_187 2944 (85.27) 3808 (80.95) 3302 (83.48) 5778 (71.10) 3801 (80.99) 8619 (56.89) 

GLI_85 2706 (87.86) 3077 (86.19) 3282 (85.27) 3799 (82.95) 4706 (78.88) 4553 (79.57) * 

CNS 820 (88.50) 1393 (80.46) 1006 (85.89) 1610 (77.42) 1138 (84.04) 1971 (72.35) 
Colon 159 (92.05) 234 (88.30) 184 (90.80) 310 (84.50) 215 (89.25) 431 (78.45) 
Wdbc 2 (93.33) 2 (93.33) # 4 (86.67) 6 (80.00) 7 (76.67) 10 (66.67) 
Ionosphere 3 (91.18) 4 (88.24) 5 (85.29) 8 (76.47) 8 (76.47) 12 (64.71) 
Yeast 5 (37.5) 5 (37.5) # 6 (25.00) 6 (25.00) # 8 (0) 8 (0) # 

SPECT 3 (86.36) 5 (77.27) 6 (72.73) 7 (68.18) 8 (63.64) 9 (59.09) 
Parkinson’s 2 (90.91) 2 (90.91) # 2 (90.91) 3 (86.36) 4 (81.82) 5 (77.27) 

Wine 2 (84.62) 2 (84.62) # 4 (69.23) 4 (69.23) # 5 (61.54) 7 (46.15) 
Zoo 4 (75.00) 4 (75.00) # 6 (62.50) 6 (62.50) # 8 (50.00) 7 (56.25) * 

Iris 1 (75.00) 1 (75.00) # 1 (75.00) 2 (50.00) 3 (25.00) 4 (0.00) 

Mean 554 (82.30) 711 (79.81) 651 (76.06) 962 (69.48) 826 (64.02) 1303 (54.78) 
Note: Bold value with an asterisk (*) indicates that the proposed mGWO outperformed GWO, while a hash sign (#) indicates they achieved the same performance. 

 

As shown by the best case results in Table 4, mGWO did 

not outrun GWO in all four HDDs. However, mGWO was 

still able to achieve high feature reduction rates on HDDs 

where they were reduced by at least 80% of features. For 

example, SMK_CAN_187 was reduced to 3,808 from 19,993 

features, GLI_85 to 3,077 from 22,283 features, and CNS to 

1,393 from 7,129 features, and the selected features for Colon 

was 234 out of 2,000 features. As for the non-HDDs, mGWO 

remained the same number of selected features as GWO in 

most datasets. Nonetheless, mGWO and GWO both reduced 
a maximum of 93.33% and 90.91% of features in Wdbc and 

Parkinson’s datasets, respectively, indicating that both GWO 

and mGWO were capable of dealing with HDDs and non-

HDDs.  

While comparing the performance of mGWO and GWO in 

selecting fewer features in the average cases, mGWO did not 

show its strength in HDDs. As for non-HDDs, mGWO mostly 

showed values that remained the same as GWO. It can be seen 

that mGWO’s best performance was in non-HDDs, especially 

the Parkinson’s dataset, where it was reduced to 86.36% by 

selecting only 3 from 22 features. However, GWO selected 1 

feature fewer than mGWO in the same dataset. 
Further evaluating the worst case shown in Table 4, 

mGWO was weaker than GWO. There were only two datasets 

where mGWO outperformed GWO, which include an HDD 

and a non-HDD, namely, GLI_85 and Zoo. In the GLI_85 

dataset, mGWO selected 4,553 features with a 79.57% of 

feature reduction rate while GWO only reduced 78.88%, 

suggesting a slight improvement of 0.69% made by mGWO. 

The improvement of mGWO in the non-HDD dataset, Zoo 

was much higher than GWO, where mGWO achieved a 

higher ability to select 6.25% fewer features than GWO. 

To summarize the feature selection performance, by taking 

the mean from all datasets, the proposed mWOA showed 

greater performance in selecting 1.67%, 2.05%, and 4.45% 

fewer features than WOA in its worst, average, and best cases. 

Also, mWOA improved the feature reduction rate by 22.73% 

better than WOA on SPECT dataset in the best case, 13.33% 

better than WOA on Wdbc dataset in the average case, and 

26.72% better than WOA on GLI_85 HDD even in its worst 
case. Besides, the proposed mGWO's feature selection 

performance was less significant because it was merely 

maintaining similar results as the original GWO without 

major improvement. The following subsection presents the 

experimental results of the proposed mWOA and mGWO 

against WOA and GWO based on classification accuracy. 

B. Classification accuracy 

The classification accuracy obtained by the selected 

features was evaluated using the kNN classifier. The best, 
average, and worst results obtained from mWOA against 

WOA were tabulated in Table 5. Based on the results, mWOA 

outperformed WOA in 2, 7, and 4 out of 12 datasets in the 

best, average, and worst test cases, respectively. mWOA also 

performed equally as WOA in 9, 1, and 5 out of 12 datasets. 

It suggested that mWOA was able to produce higher accuracy 

than WOA in at least 16.67-91.67% of datasets in the best case, 

58.33-66.67% of datasets in average cases, and 33.33-41.67% 

of datasets in the worst case. 
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TABLE V 

COMPARISON OF THE CLASSIFICATION ACCURACY IN BEST, AVERAGE, AND WORST CASES FOR WOA AND MWOA 

Datasets 

Classification Accuracy (%) 

Best Average Worst 

WOA mWOA WOA mWOA WOA mWOA 

SMK_CAN_187 83.78 81.08 78.11 77.57 72.97 72.97 # 
GLI_85 100 100 # 96.47 96.47 # 88.24 82.35 

CNS 100 100 # 89.17 87.50 75.00 83.33 * 

Colon 100 100 # 96.67 98.33 * 91.67 91.67 # 

Wdbc 98.23 98.23 # 95.75 94.96 91.15 92.04 * 

Ionosphere 97.14 97.14 # 92.29 92.71 * 90.00 90.00 # 

Yeast 60.81 60.81 # 57.20 57.64 * 54.05 50.68 

SPECT 88.68 90.57 * 86.42 86.60 * 81.13 79.25 

Parkinson’s 94.87 94.87 # 92.05 92.31 * 87.18 87.18 # 

Wine 97.14 100 * 94.57 96.29 * 82.86 94.29 * 

Zoo 100 100 # 97.00 97.50 * 85.00 90.00 * 

Iris 100 100 # 98.00 97.67 93.33 93.33 # 

Mean 93.39 93.56 89.48 89.63 82.72 83.92 
Note: Bold value with an asterisk (*) indicates that the proposed mWOA outperformed WOA, while a hash sign (#) indicates they achieved the same performance. 

 

It can be observed from the best case that mWOA had 

similar results as WOA in general. In the four HDDs, mWOA 

produced comparable results to WOA where GLI_85, CNS, 

and Colon showed 100% accuracy. However, mWOA was 

proven to have better performance in non-HDDs as compared 

to WOA. Specifically, mWOA obtained 90.57% accuracy, 

1.89% higher than WOA (88.68%) in the SPECT dataset. 

Also, the highest performance of mWOA can be found in the 
Wine dataset where mWOA achieved 100% of accuracy, 

which is 2.86% higher than WOA. 

Moreover, based on the results in the average case, mWOA 

outperformed WOA in most non-HDDs, including 

Ionosphere, Yeast, SPECT, Parkinson’s, Wine, and Zoo 

datasets. The fact that mWOA also showed the highest 

improvement in the Wine dataset by obtaining 1.72% better 

than WOA, has proven the ability of mWOA to increase the 

accuracy in non-HDDs. Although mWOA did not surpass 

WOA in Wdbc and Iris datasets, mWOA still managed to 

generate high accuracies at 94.96% and 97.67% in the Wdbc 

and Iris datasets, respectively. Besides, mWOA triumphed 

over WOA with a significant difference in Colon dataset. 

mWOA and WOA attained 98.33% and 96.67% of accuracy 

respectively, indicating that mWOA was able to select 

relevant features that contributed to 1.66% higher 

classification accuracy than WOA in HDD.  

In addition, even in the worst-case scenario, mWOA was 
able to display significant improvements across datasets with 

different dimensionality. For instance, in the CNS dataset, 

mWOA achieved 83.33% accuracy, equivalent to 8.33% 

higher than WOA (75%). Not only showing its ability in 

generating high accuracy in HDD, mWOA also attained an 

11.43% improvement in a non-HDD when mWOA and WOA 

achieved 94.29% and 82.86% of accuracy, respectively in the 

Wine dataset. Another significant result of mWOA in non-

HDD can be found in the Zoo dataset with 90% of 

classification accuracy, that is 5% better than WOA. 

TABLE VI 

CO COMPARISON OF THE CLASSIFICATION ACCURACY IN BEST, AVERAGE, AND WORST CASES FOR GWO AND MGWO 

Datasets 

Classification Accuracy (%) 

Best Average Worst 

GWO mGWO GWO mGWO GWO mGWO 

SMK_CAN_187 86.49 83.78 80.0 77.57 75.68 72.97 
GLI_85 100 100 # 97.06 97.06 # 88.24 88.24 # 

CNS 100 100 # 92.50 90.00 83.33 75.00 

Colon 100 100 # 99.17 98.33 91.67 91.67 # 

Wdbc 98.23 98.23 # 95.93 95.93 # 92.04 92.04 # 

Ionosphere 97.14 98.57 * 95.00 95.00 # 92.86 92.86 # 

Yeast 60.81 60.47 56.96 57.84 * 54.05 55.07 * 

SPECT 88.68 88.68 # 86.79 87.17 * 81.13 81.13 # 

Parkinson’s 94.87 97.44 * 91.79 93.08 * 89.74 87.18 

Wine 100 100 # 97.71 98.00 * 94.29 94.29 # 

Zoo 100 100 # 98.00 98.00 # 95.00 95.00 # 

Iris 100 100 # 97.67 98.33 * 93.33 93.33 # 

Mean 93.85 93.93 90.72 90.53 85.95 84.90 
Note: Bold value with an asterisk (*) indicates that the proposed mGWO outperformed GWO, while a hash sign (#) indicates they achieved the same performance. 

 

Furthermore, Table 6 presents the classification accuracy 

obtained by GWO and mGWO in best, average, and worst 

cases. Based on the experimental results, mGWO surpassed 

GWO on 2 datasets in the best case, 5 in the average case, and 

1 in the worst case. Additionally, mGWO maintained the 

same performance as GWO on 8, 4, and 8 datasets in the best, 

average, and worst case, respectively. It means that mGWO 

performed better than GWO in at least 16.67-83.33% of 

datasets in the best case, 41.67-75% in the average case, and 

8.33-75% in the worst case. 

It can be seen that the best-case classification accuracies 

obtained by mGWO and GWO on every dataset in Table 6 
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were mostly higher than 80% of accuracy. However, for the 

Yeast dataset, mGWO and GWO only generated 60.47% and 

60.81% accuracies, respectively. This might be because the 

Yeast dataset may possess a complex or uncleaned data 

structure that somehow degraded the classification process. 

Besides, mGWO showed better classification accuracy on the 

rest of the HDDs and non-HDDs in the best case. For instance, 

mGWO achieved 97.44% of accuracy whereas GWO 

obtained 94.87% of accuracy, indicating that mGWO was 

2.57% better in the Parkinson’s dataset. In HDDs, mGWO 
was able to attain 100% of accuracy in GLI_85, CNS, and 

Colon datasets, the same as GWO.  

As for the average case, the classification accuracy of the 

four HDDs obtained by mGWO was either weaker or the 

same as GWO. Nevertheless, mGWO outperformed GWO 

mostly in non-HDDs. Similar to the best-case results, the 

highest improvement made by mGWO against GWO in the 

average case can be found in the Parkinson’s dataset, where 

mGWO achieved 93.08% of accuracy, which was 1.29% 

higher than GWO. In the worst case, mGWO only maintained 

the performance as GWO in most datasets. The accuracy 
attained by mGWO in HDDs was weaker than GWO. There 

was only 1.02% improvement of mGWO in the Yeast dataset 

compared to GWO. 

In a nutshell, mWOA was able to achieve 0.17%, 0.15%, 

and 1.21% higher accuracy than WOA in the best, average, 

and worst cases, by taking the mean from all datasets. In non-

HDDs like the Wine dataset, mWOA achieved 2.86% better 

than WOA in the best case, 1.66% better than WOA on the 

Colon HDD in the average case, and 8.33% better than WOA 

on the CNS HDD in the worst case. As for the proposed 

mGWO, its performance in classification accuracy was 
mostly maintaining comparable results as the original GWO. 

However, mGWO did show some improvement in certain 

non-HDDs with slightly better accuracy than GWO in the 

average case.The following section concludes the 

comparative study and suggests future work related to the 

extension of this work. 

IV. CONCLUSION 

Previously, the authors proposed a filter-based feature 
selection method with a modified WOA (mWOA) to improve 

the convergence speed and achieve better accuracy 

performance than WOA. However, GWO was also found to 

be having the same issue of slow convergence speed. 

Therefore, as an extension of the previous work, the authors 

began with this comparative study by proposing wrapper-

based feature selection methods with mWOA and modified 

GWO (mGWO) using an inversed control parameter, �. The 

inversed control parameter was expected to allow search 

agents to cover more search space in the early iterations to 

improve the convergence speed by obtaining the optimal 
solution faster. Twelve datasets with different dimensionality 

from UCI were adopted in the experiments, and the kNN 

classifier was used to evaluate the selected features. The 

performance of the proposed methods was evaluated against 

their original algorithms in terms of the number of selected 

features and classification accuracy. 

Based on the experimental results, it can be concluded that 

the strength of the proposed mWOA and mGWO was shown 

differently. Although GWO and WOA share similarities in 

their algorithms and both have the issue of slow convergence, 

using the same method is not applicable for both. In terms of 

feature reduction rate, mWOA obtained 1.67%, 2.05%, and 

4.45% better results than WOA in the best, average, and worst 

cases, respectively. However, mGWO did not outperform 

GWO in most cases. As for the classification accuracy, 

mWOA outperformed WOA with 0.17%, 0.15%, and 1.2% 

better results in the best, average, and worst cases, 

respectively. Nonetheless, mGWO outperformed 0.08% in 

classification accuracy than GWO in the best case, yet, no 
improvements in the average and worst cases. It was proven 

that the proposed inversed control parameter is only effective 

in mWOA, but less effective in mGWO, when comparing 

them against their original algorithms. 

In the future, the execution time of feature selection could 

be considered as one of the criteria to evaluate the proposed 

methods. Besides, since the inversed control parameter 

showed more significant improvement on mWOA, thus, 

hybridizing mWOA with other recent well-perform 

metaheuristic algorithms to further investigate the 

performance would be an interesting study. Some recent 
metaheuristic algorithms that could be hybridized with 

mWOA include Manta Ray Foraging Optimization and Harris 

Hawks Optimization. Lastly, other classifiers could be 

wrapped with mGWO to select relevant features that produce 

better classification accuracy in HDDs. 
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