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Abstract—Signature genuine verifications of offline hand-written signatures are critical for preventing forgery and fraud. With the 

growth of protecting personal identity and preventing fraud, the demand for an automatic system for signature verification is high. The 

signature verification system is then studied by many researchers using various methods, especially deep learning-based methods. 

Hence, deep learning has a problem. Deep learning requires much training time for the data to obtain the best model accuracy result. 

Therefore, this paper proposed a CNN Batch Normalization, the CNN architectural adaptation model with a normalization batch 

number added, to obtain a CNN model optimization with high accuracy and less training time for offline hand-written signature 

verification. We compare CNN with our proposed model in the experiments. The research method in this study is data collection, pre-

processing, and testing using our private signature dataset (collected by capturing signature images using a smartphone), which becomes 

the difficulties of our study because of the different lighting, media, and pen used to sign. Experiment results show that our model ranks 

first, with a training accuracy of 88.89%, an accuracy validation of 75.93%, and a testing accuracy of 84.84%—also, the result of 

2638.63 s for the training time consumed with CPU usage. The model evaluation results show that our model has a smaller EER value; 

2.583, with FAR = 0.333 and FRR = 4.833. Although the results of our proposed model are better than basic CNN, it is still low and 

overfitted. It has to be enhanced by better pre-processing steps using another augmentation method required to improve dataset quality.  
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I. INTRODUCTION 

Signatures come from the Latin 'signare'. Signature means 

sign or initial, a unique form of hand-writing that contains 

special characters, and additional forms are often used as 

proof of authentication or verification of someone's identity. 

A signature is a symbol of the name as it is commonly used, 

including an initial, stamp, signature stamp, or other signs as 

the representative of a signature or an electronic signature as 

intended in the information and electronic transactions. 

Signatures are a type of biometric authentication used to 

verify a person's identity [1]. Since ancient times, signature 

has been the government's most widely used and accepted 

individual biometric mark [2]. Hand-written signatures are 
widely used for verifying contract letters, checks, bank 

applications, and statement documents [3]–[5]. Everybody 

has a unique signature pattern. Even an expert cannot 

duplicate their own signature precisely. This is referred to as 

a natural diversity [6]. However, if tolerance for natural 

diversity in agencies that require important valid documents 

happens, there will be various cases of forgery when 

signatures are verified manually. It can result in fraud, causing 

financial and emotional loss to the victim. 

Human error in manual signature verification is the reason 

for the increasing number of signature forgery cases. 
Signature forgery is the fraudulent copying of another 

person's signature for a particular purpose. Due to every 

person's different nature and personality, every signature has 

a different pattern and shape, but human senses have 

limitations in the verification process if the patterns compared 

are very similar [7], [8]. This condition can result in a miss-

verified signature strikingly similar to the genuine one. 

Signature forgery simulation levels are as follows:  

 Skilled forgery when the forger knows the target's name 

and practiced imitating the target's genuine signature. 

 Simple forgery when the forger knows the target's name 
but not the signature. 

 Random forgery is when the forger does not have any 

information about the target's signature, so instead of it, 

he uses it [9]. 
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The demand for protecting individual identity is growing, 

so an automatic signature verification system design is needed 

[10], [11]. It also helps previous manual verification by 

human sense. This system's purpose is to verify a person's 

identity based on their signature pattern and characteristics, 

and it also important for preventing signature forgery and 

fraud cases. Depending on the input format, there are two 

kinds of signature verification: online and offline signature 

verification [3], [10], [12]. Due to the necessity to tackle 

various problems, such as fraud detection, personal identity, 

banking transactions, and courtroom proceedings, many 
researchers study offline and online signature verification 

systems [13]. The online-based signatures are called 

"dynamic signatures."  

In the online signature verification process, dynamic 

features like the movement of the pen used in the signature 

process—the location, speed, and pressure of the pen—will 

be recorded and identified [14]. This type of verification is 

used on real-time access media, such as credit card 

transactions. The benefit of online signature verification is the 

information gained about dynamic features acquired when 

someone signs the document, even though it needs a unique 
device to capture the features. Offline-based signature 

verification is static verification done by scanning physical 

documents for hand-written signatures after the signing is 

done [15]. The scan results are then verified using specific 

methods [16]. As no dynamic features could be acquired by 

offline signature verification, the problem becomes more 

complicated. Also, the same person's signature could have a 

bit of a different pattern because of sickness, psychology, age, 

and media condition [17]. It creates the difficulties and 

challenges of offline signature verification. In offline 

signature verification, the signer doesn't need a special device 
or to be present during the verification phase because the 

signature has already been stored in the database. This is the 

advantage of offline signature verification and makes it 

suitable for authorizing bank checks, documents, and other 

signed forms [18].  

Since a few decades ago, original signature verification has 

been a difficult research subject in the field of computer vision 

(CV) because of extremely significant applications like banks 

and others [2]. The signature image verification process 

separates the image into two classes: genuine and forged 

signature. According to the findings of the research literature 

review, previous researchers used a variety of approaches to 
verify offline signature images, including machine learning 

and deep learning approaches [19]. Deep learning with deeper 

neural networks proves to be more robust in performing 

image classification than machine learning methods. 

Convolutional Neural Networks inspired by human neural 

networks are the most successful deep learning models in 

computer vision [20]. In recent years, Convolutional Neural 

Networks (CNN) have thoroughly outplayed the machine 

vision field [21] and reliability in the image classification 

field [22]–[24]. 

Loussaief and Abdelkrim [25] experimented with CNN's 
ability to feature image extraction for classification using the 

AlexNet architecture for the Caltech101 dataset. He compared 

the image extraction feature using AlexNet with the Bag of 

Features method, which was inspired by Bag of Words. The 

results show that the classification performance after using 

deep learning-based CNN increases by 20%, so CNN is very 

effective in obtaining the image information needed in data 

classification. Rabbi et al [26] compared several deep learning 

signature identification methods, including CNN, CNN with 

data augmentation, MLP (Multilayer Perceptron), and Single 

Layer Perceptron (SLP). The dataset is derived from a private 

dataset of 30 individuals, each with 24 authentic and 24 

forged signatures. The results show that accuracy with the 

CNN algorithm is 82.75%, accuracy with SLP is 39.91%, and 

accuracy with MLP is 63.57%. The deeper architectures of 

deep learning, the more training examples are needed when 
trained from scratch [27]. Vorugunti, Gorthi, and  Pulabaigari 

[28] states that the current challenge for hand-written 

signature verification is to make a small number of signature 

training datasets that already represent the user to perform 

signature image training based on intra- or inter-individual 

variability. Another problem with using deep learning for 

signature verification is the computational training cost or 

time consumed to train the deep learning model. The 

computational cost of training these complex networks might 

need large amounts of data to reach the precision needed to 

give the necessary accuracy. Contributing factors that make 
the situation worse are: finding an "optimal" network 

architecture that has the potential to perform as desired, 

choosing the best set of hyper-parameters for the network, 

estimating the data needed for training, and figuring out 

whether training can be done within the necessary cost 

envelope [29].  

We also faced a degradation problem of using deep 

learning while the deeper networks started converging. As the 

network is deeper, the accuracy gets saturated and degrades 

quickly [30]. Several studies have used Batch Normalization 

(BN) to overcome this problem. Another benefit of Batch 
Normalization is its capacity to regularize, which has a better 

convergence speed. Consequently, BN will add some noise 

with a similar purpose to drop out. However, the trained 

model's generalization ability will improve [31]. Wang et al. 

[32] show that enhanced LSTM with Batch Normalization 

gives faster convergence than LSTM variants and gains 

higher classification accuracy of learning tasks on a sequence. 

Batch Normalization significantly outperforms the original 

model, achieving the same accuracy with 14 times fewer 

training steps [33]. They improved upon the best-published 

result on ImageNet classification using an ensemble of Batch-

Normalized networks, achieving 4.9% top-5 validation error 
(and 4.8% test error). Wu and He [34] stated that Batch 

Normalization is the milestone of deep learning development, 

which various networks are enabled to train. This is the cause 

of the batch statistics' stochastic uncertainty functions as a 

regularization term that can improve in generalization. 

This paper proposed a CNN with Batch Normalization 

Adjustment for Offline Hand-written Signature Genuine 

Verification. It is the adaptation of CNN architecture with 

Batch Normalization to obtain faster training time and higher 

testing accuracy. This study collected one hundred individuals, 

each providing three original signatures. Three signatures 
collected for each person aim to increase the inter-individual 

variability training dataset. Then to increase the data training 

intra-individual variability, each original signature was forged 

by three others. It is hoped that this can enrich the 

characteristics of genuine and forged signatures. The 
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collected signature images will be subjected to pre-processing 

and augmentation. Image training data is also related to 

several conditions, such as lighting when capturing signature 

images, the pens used, and different paper media.  

Therefore, to overcome the problems mentioned above, we 

have the following contributions:  

 To propose a novel CNN-based architecture with the 

addition of Batch Normalization. 

 The proposed model is aimed to obtain the optimal 

CNN model for offline hand-written signature 

verification with high testing accuracy levels and faster 
training time so that it can be implemented in a mobile 

application for future work. 

 To know model enhancement using Batch 

Normalization, we compare CNN and CNN-Batch 

Normalization models using the comparison of EER 

network performance evaluation of each model.  

The arrangement of this paper is as follows: material and 

method of our proposed method in section II. Section III 

discusses the results of our model experiments compared with 

the other model. The last section, section IV, is the conclusion 

of our study. 

II. MATERIAL AND METHOD 

Figure 1 depicts the study's procedure. There are five 

distinct phases, and the phases are as follows: data collection, 

data pre-processing and augmentation, architecture or model 

generation, model validation testing, and model evaluation. 

 
Fig. 1  The Procedure of the Study 

A. Data Collection 

Our private dataset was used in this study. It is signature 

image data from 101 people, with three genuine and three 

forged signatures. The signature images are created by writing 

a signature on paper and photographing it with a cell phone 

camera. We obtain the dataset both directly and through file-

sharing services. Meanwhile, we used skilled forgery to create 

the forged signatures. Figure 2 depicts genuine signature 

images from our private dataset.  

    
Fig. 2  Genuine Signature Dataset Examples 

It is genuinely signed three times by the same person, and 

we can see that each picture has inter-individual variability. 

Whereas Figure 3 depicts forged signature images forged by 

three different people. 

   

Fig. 3  Forged Signature Dataset Examples 

Figures 2 and 3 are raw dataset images before the data pre-

processing step. The characteristics of the initial image 

contained in the dataset vary, ranging from the use of pen, 

paper, background or image background, size, and color, so it 

is necessary to pre-process the dataset to reduce the bias factor 

of the dataset. It is one of the research's difficulties. The 

procedure was divided into two parts: training and testing data, 

and the generated model was then tested against testing data. 

B. Data Pre-processing and Augmentation 

Pre-processing data is a step that improves image quality 

and reduces the effect of the background image, grey variation, 

size, and signature location on verification performance [15], 

[23], [35]. Gideon et al. [11] propose using CNN to verify 

hand-written signature forgery using several pre-processing 

steps. He converts RGB images to grayscale to simplify 

digital image processing. He then removes noise, converts the 

image to grayscale, and resizes it to a standard resolution that 

matches the network input. 

The main features for identifying signatures can be 
obtained by pre-processing the training data. During this 

process, we resize the signature image to match the initial 

convolution layer size. Furthermore, we convert RGB color 

photos to greyscale images. After that, we normalize the 

images so the network can efficiently process them. The 

image is reduced to a single channel with '0' and '1' values. 

The '0' value represents the background image value, whereas 

the '1' value represents image feature information [36], [37]. 

We use the data augmentation process during the training 

stage to add sample signature variants to the network during 

the training process. Data augmentation is modifying image 
data so that the computer recognizes it as a different image [6], 

[26], [38]. Otherwise, it will be perceived as the same image 

object. The goal is to improve generalization by enriching the 

training dataset. Augmentation can increase the amount of 

data the model receives, but it must be balanced with good 

tuning to produce high performance [39]. This study employs 

data augmentation through rotation. It can improve training 

accuracy by enhancing the existing features or characteristics 

of the signature image. The parameters used in the pre-

processing and augmentation of signature images are shown 

in Table I. 

TABLE I 

PRE-PROCESSING AND AUGMENTATION PARAMETER 

Parameter Value Description 

Resize 100x100 A process to change the image 
size into a certain pixel size to 
match the convolution layer. 

Normalization std = 0.1; 
mean = 0.5 

Normalization process is used to 
change the image canal. 

Augmentation Rotation (-
20, 20) 

Random rotation of the training 
data in the range of -20 to 20 
degree. 

First, the RGB image dataset is converted into greyscale. 
Second, to sharpen the signature pattern, the image is 

subjected to the random auto-contrast function from PyTorch. 
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Third, the image size is changed to be smaller to 100x100 

pixels so that it is faster in convolution and dataset training. 

Next, the reduced image will be rotated (augmented) and 

normalized. The result examples of data pre-processing are 

shown in Figure 4.  

 
Fig. 4  Signature Dataset After Pre-processing and Augmentation 

C. Model 

This research compares basic CNN architecture with the 

CNN Batch Normalization model (our proposed model).  

1) CNN: One of the deep learning models, Convolutional 

Neural Network (CNN), is used to classify signature images. 

CNN extracts feature directly from a raw image dataset. 

Related features are not pre-trained; they will be learned 

during training. This is the most accurate learning model for 

computer vision tasks such as object identification, 

categorization, and recognition. CNN consists of three block 

layers: convolutional, pooling, and fully connected [7], [18], 

[40]. 

 Convolutional layers are made up of multiple 

convolution operations. It is the process of repeatedly 

applying functions to the output of other functions, and 

Convolution is applied to the input image to extract 

features. 

 Subsampling or pooling layers are used to reduce image 
size. This layer employs max pooling with a specific 

kernel filter size, dividing the previous convolution 

layer's output into several small grids and rearranging 

the reduced image matrix. The goal is to reduce bias as 

much as possible. At a later stage, only the most 

important features will be processed. 

 The final layer, fully connected, aims to transform 

image dimensions so that they can be classified linearly. 

The previous layer's nodes are flattened so that neurons 

can be connected. 

TABLE II 
CNN ARCHITECTURE SUMMARY 

Layer Size Extra Parameters 

Input 100 x 100 x 1 none 
Convolution 1 4 x 4 x 101 stride=1, pad=1 
ReLU 4 x 4 x 101 none 
Convolution 2 8 x 8 x 102 stride=1, pad=1 

ReLU 8 x 8 x 102 none 
Max-Pooling 8 x 8 x 51 stride=1 

Layer Size Extra Parameters 

Convolution 3 16 x 16 x 52 stride=1, pad=1 
ReLU 3 16 x 16 x 52 none 
MaxPool 16 x 16 x 26 stride=1 
MaxPool 16 x 16 x 13 stride=1 
Sigmoid 1 none 

 

Table II shows the architecture summary of the CNN 

model. The input size is 100x100 after pre-processing into 

greyscale format and resizing. The total parameters and 

trainable parameters used in this architecture are 542,086.  

2) CNN Batch Normalization: CNN Batch Normalization 

is a CNN architectural adaptation model with a normalization 

batch number added on top. Batch normalization is a training 

process stabilization function. It reduces the number of 
epochs, which speeds up the training process. It also helps to 

reduce generalization errors [41].  

 
Fig. 5  CNN Batch Normalization 

Figure 5 shows CNN Batch Normalization architecture 

(our purposed model). The addition of batch normalization in 

this model is intended to overcome the high loss during 

training, allowing it to reach convergence more quickly. A 

batch normalization layer can be applied to convolutional 

neural networks directly between the convolutional layer and 

the activation function layer, such as ReLU (Rectified Linear 

Unit), a batch normalization layer can be applied to 
convolutional neural networks [42]. Because CNN is the basic 

architecture we used, this model is built the same way as the 

CNN model, with a convolution layer (Conv2d), batch 

normalization, the ReLU activation function, and a max 

pooling layer (MaxPool2d).  

By subtracting the batch mean and dividing it by the batch 

standard deviation, batch normalization ensures that the batch 

has a distribution of 0 and 1, respectively, for the mean and 

standard deviation. It makes intuitive sense that this output 

normalizes the inputs of a layer by statistically balancing the 

batch samples and lowering the internal covariate shift 
throughout the architecture, which may otherwise block 

deeper layers from learning a given task [33]. 

As in Avola et al. [27], the BN is calculated using the 

following equation for a layer activation function output of � 

for a mini batch �: 

 ���,���	
 �  γx�� � �  (1) 

where ��	 is the output of the normalized layer, and � and � 
are trainable parameters used to learn the proper 

normalization for a certain layer as follows: 

 ��	 � �����
������

 (2) 

where �� and ��is mini-batch mean and standard deviation, 

respectively. 
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TABLE IIII 

CNN BATCH NORMALIZATION ARCHITECTURE SUMMARY 

Layer Size Extra Parameters 

Input 100 x 100 x 1 none 
Convolution 1 4 x 4 x 101 stride=1, pad=1 
BatchNorm2d-2 4 x 4 x 101 none 
ReLU 4 x 4 x 101 none 
Convolution 2 8 x 8 x 102 stride=1, pad=1 
BatchNorm 8 x 8 x 102 none 

ReLU 8 x 8 x 102 none 
Max-Pooling 8 x 8 x 51 stride=1 
Convolution 3 16 x 16 x 52 stride=1, pad=1 
BatchNorm 16 x 16 x 52 32 
ReLU 3 16 x 16 x 52 none 
MaxPool 16 x 16 x 26 stride=1 
MaxPool 16 x 16 x 13 stride=1 
Sigmoid 1 none 

 

Table III shows the architecture summary of CNN model. 
The input size is 100x100 after pre-processing into greyscale 

format and resizing. The total parameters and trainable 

parameters used in this architecture is 542,142.  

D. Model Evaluation 

During the testing stage, we will use data testing to evaluate 

the model formed in the previous training stage. The testing 

dataset has been pre-processed to convert the signature picture 

to a binary image, decrease the image's bias factor, and shrink 
the image's pixel size. During the training process, the 

network is through a learning process and extract features 

from 90 individuals. The testing dataset is distinct from the 

training dataset used in the testing process. In this case, the 

signature image of 11 people out of a total of 101 people was 

used. 

The Confusion Matrix results can be used to assess the 

model's accuracy. A confusion matrix provides a value for 

comparing the image classification result to the model 

performance. EER (Equal Error Rate) measures network 

accuracy by balancing the False Acceptance Rate (FAR) and 

False Rejection Rate (FRR) [19], [43]. A confusion matrix is 
a matrix that provides a comparison value for the 

classification result within the context of the model's 

prediction performance. The confusion matrix is depicted in 

Figure 6. 

 
Fig. 6 Confusion Matrix 

 

The components of the confusion matrix in Figure 6 are as 

follows: 

 True Positive (TP) is the number of positive data 
predicted correctly. In this study, the genuine signature 

is part of the positive data. 

 True Negative (TN) is the number of negative data 

predicted correctly. In this study, forged signatures are 

part of negative data. 

 False Positive (FP) is the number of positive data 

predicted incorrectly. In this study, if data should be a 

genuine signature but is predicted to be forged, it will 

be included in the FP count. 

 False Negative (FN) is the number of negative data 

predicted incorrectly. In this study, if a forged signature 

is detected as a genuine signature, it will be included in 

the FN calculation. 

The result is then reprocessed into a performance matrix to 

calculate the accuracy, precision, and recall, or sensitivity 

value, to measure network performance. 

1)  Accuracy is the percentage of time that a model 

correctly predicts the data. Accuracy is determined by 

comparing the correct prediction to the sum of all data. The 

equation is the formula for calculating the accuracy value.  

  !!"# !$ �  %&�%'
%&�%'�(&�('  (3) 

2) Precision is calculated by comparing the total number 

of correct positive predictions to the total number of 

positively predicted data. The precision value is calculated 
using the formula in equation (4) by comparing the total 

number of correct positive predictions to the total number of 

positively predicted data.  

)#*!+,,+-. �  %&
%&�(&  (4) 

3) Recall or sensitivity will show the percentage of the 

model's success in finding information. The formula for 

calculating the precision value is in equation (5). 

 #*! // �  %&
%&�(' (5) 

In the field of biometrics, network performance can be 

evaluated by calculating the EER (Equal Error Rate) value, 

which compares the FAR (False Acceptance Rate) with the 

FRR (False Rejection Rate). It is represented as the value of 
the ROC (Region of Convergence) curve crossed by the line 

traveling through the cartesian coordinates (1,0) and (0,1). 

(0,1). The more accurate a biometric system is, the lower the 

EER value. 

 FAR (False Acceptance Rate) determines the 

probability of a forged signature being mistaken for a 

genuine signature. The value is calculated by dividing 

the number of false acceptance values by the number of 

identification attempts, as shown in equation (6). 

 012 �  ('
%&�(' (6) 

 The FRR (False Rejection Rate) assesses the 

probability that a genuine signature may be incorrectly 

identified as forged. As stated in the equation, the value 

is determined by dividing the number of false rejections 

by the number of identification attempts. 

 022 �  (&
%&�(' (7) 

In this instance, the EER value will indicate network 

precision, so a balance between FAR and FRR values is 
necessary. The better the network, the higher the accuracy and 

the lower the FAR and FRR values. These values will be used 

to evaluate the three models tested. 
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III. RESULTS AND DISCUSSION 

The test is carried out by training the dataset and testing the 

same classifier only once. For the system to test data, 

knowledge of feature extraction from genuine and forged 

signature images is expected.  

A. Learning Stage 

The type and amount of input data influenced the 

architecture's selection. Several learning parameters can be 

adjusted to optimize the learning process during the learning 

process. The same learning parameters are applied to each 

model. Table IV shows the learning parameters used in this 

experiment. 

TABLE IV 
LEARNING PARAMETER  

Parameter Value 

learning rate 0.00001 
image size 100x100 
optimizer Adam 

epoch 150 

 

This study's learning stage is using the CPU of intel core i5, 

with 12 GB RAM installed. CNN Batch Normalization 
architecture is consuming 2638.63 s for the training time. 

Meanwhile, CNN architecture consumes 2553.83 s for 150 

epochs, using the same learning parameter as our proposed 

model.  

B. Model Validation Testing 

CNN and CNN Batch Normalization models were used, 

and they trained over 150 epochs. The test image is 100x100 

pixels, has a grayscale color channel, and is drawn randomly 

from the testing data. The test results will be displayed in a 
classification report that includes recall, precision, and the f1-

score, as well as a confusion matrix with false positive, false 

negative, true positive, and true negative components. They 

will be used to calculate the false rejection rate, false 

acceptance rate, and equal error rate resulting from model 

performance evaluation. 

The test phase puts the model to the test with 66 signature 

images gathered from 3 signatures per individual that the 

network has not recognized. Figures 7–9 show the confusion 

matrix from CNN and CNN Batch Normalization models test 

results.  

 
Fig. 7  Confusion Matrix of CNN 

Figure 7 shows the classification results from the CNN 

Batch Normalization model. There are 31 data for TN, 2 for 

FN, 31 for FP, and 2 for TP. 

 
Fig. 8  Confusion Matrix of CNN Batch Normalization 

Figure 8 shows the classification results from CNN model. 

There are 32 data for TN, 1 for FN, 29 for FP, and 4 for TP. 

This is how the Confusion Matrix is described: 

 Row 0 column 0: True Negative/TN (Sum of genuine 

signatures predicted to be forged). 

 Row 0 column 1: False Negative/FN (Sum of forged 

signatures predicted to be genuine). 

 Row 1 column 0: False Positive/FP (Sum of forged 

signatures predicted to be false). 

 Row 1 column 1: True Positive/TP (Sum of genuine 

and predicted genuine signatures). 

TABLE V 

MATRIX EVALUATION OF CNN  

 Precision Recall F1-Score Support 

0 0.52 0.97 0.68 33 

1 0.80 0.12 0.21 33 

accuracy  0.55 66 

Macro avg 0.66 0.55 0.45 66 

TABLE VI 
MATRIX EVALUATION OF CNN BATCH NORMALIZATION 

 Precision Recall F1-Score Support 

0 0.38      0.18       0.24  33 

1 0.46       0.70       0.55   33 

accuracy  0.44 66 

Macro avg 0.42 0.44 0.40 66 

C. Model Comparison Result 

Table V displays the experimental results of CNN and 

CNN Batch Normalization models with 150 training epochs. 

The values in the table represent the final values obtained 

when the epoch reaches 150. The models with the highest 

testing accuracy values in Table VII are CNN Batch 

Normalization and CNN in that order. 

TABLE VII 

EXPERIMENT RESULT 

Model 

Training Validation Testing 

Accuracy 

(%) 

Loss 

(%) 

Accuracy 

(%) 

Loss 

(%) 

Accuracy 

(%) 

CNN 81.28 0.483 77.78 0.639 78.78 

CNN Batch 

Normalization 
88.89 0.291 75.93 0.499 84.84 
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We evaluate network performance by calculating FAR, 

FRR, and EER using the confusion matrix components (TP, 

TN, FP, and FN). Table VI displays the model performance 

evaluation results for each model with 150 training epochs 

using FAR, FRR, and EER. Equations (6) and (7) are used to 

calculate the FAR and FRR of each model. The EER is the 

average of each model's FAR and FRR. 

TABLE VIII 

MODEL PERFORMANCE EVALUATION USING FAR, FRR, AND EER 

Evaluation CNN CNN Batch Normalization 

FAR 0.500 0.333 
FRR 7.750 4.833 
EER 4.125 2.583 

 

The smaller and closer to zero, the FAR, FRR, and EER 

values are, the better the network or model performance. 

According to Table VIII, the CNN Batch Normalization 

model has the lowest FAR and FRR values. As a result, the 

CNN Batch Normalization model obtains the smallest EER 

value.  

IV. CONCLUSIONS 

When the training accuracy and validation accuracy results 

are compared to the results of the experiment for each model 

for 150 epochs, most models are still overfitting, despite 

having a high percentage of testing accuracy. This condition 

can occur because the data used during training is less varied, 

and the dataset is too small for complex models (CNN is data-

hungry). We still have signature dataset images that were not 

affected by the normalization process as a result of the pre-
processing results. The background and signature features are 

needed to be differed using any other pre-processing method 

to enrich the feature extraction. 

However, our model has a faster training time than CNN 

without Batch Normalization added. With a training loss of 

0.291%, training accuracy of 88.89%, a validation loss of 

0.499%, an accuracy validation of 75.93%, and a testing 

accuracy of 84.84%, our model, CNN Batch Normalization, 

took first place in a testing scenario. In future work, we 

propose a model adjustment to achieve better model 

performance with fewer datasets. Additionally, better pre-
processing steps using another augmentation method are 

required to improve dataset quality and prevent overfitting. 

The better results could be developed into a mobile signature 

verification application, allowing us to apply the benefits to a 

real-world signature verification problem. 
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