
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

CNN with Batch Normalization Adjustment for Offline Hand-written

Signature Genuine Verification

Wifda Muna Fatihia a, Arna Fariza a,*, Tita Karlita a
a Informatics and Computer Engineering Department, Politeknik Elektronika Negeri Surabaya, Surabaya, 60111, Indonesia

Corresponding author: *arna@pens.ac.id

Abstract—Signature genuine verifications of offline hand-written signatures are critical for preventing forgery and fraud. With the

growth of protecting personal identity and preventing fraud, the demand for an automatic system for signature verification is high. The

signature verification system is then studied by many researchers using various methods, especially deep learning-based methods.

Hence, deep learning has a problem. Deep learning requires much training time for the data to obtain the best model accuracy result.

Therefore, this paper proposed a CNN Batch Normalization, the CNN architectural adaptation model with a normalization batch

number added, to obtain a CNN model optimization with high accuracy and less training time for offline hand-written signature

verification. We compare CNN with our proposed model in the experiments. The research method in this study is data collection, pre-

processing, and testing using our private signature dataset (collected by capturing signature images using a smartphone), which becomes

the difficulties of our study because of the different lighting, media, and pen used to sign. Experiment results show that our model ranks

first, with a training accuracy of 88.89%, an accuracy validation of 75.93%, and a testing accuracy of 84.84%—also, the result of

2638.63 s for the training time consumed with CPU usage. The model evaluation results show that our model has a smaller EER value;

2.583, with FAR = 0.333 and FRR = 4.833. Although the results of our proposed model are better than basic CNN, it is still low and

overfitted. It has to be enhanced by better pre-processing steps using another augmentation method required to improve dataset quality.

Keywords— Hand-written signature; signature verification; batch normalization; convolutional neural network.

Manuscript received 5 Dec. 2022; revised 22 Dec. 2022; accepted 14 Jan. 2023. Date of publication 31 Mar. 2022.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Signatures come from the Latin 'signare'. Signature means

sign or initial, a unique form of hand-writing that contains

special characters, and additional forms are often used as

proof of authentication or verification of someone's identity.

A signature is a symbol of the name as it is commonly used,

including an initial, stamp, signature stamp, or other signs as

the representative of a signature or an electronic signature as

intended in the information and electronic transactions.

Signatures are a type of biometric authentication used to

verify a person's identity [1]. Since ancient times, signature

has been the government's most widely used and accepted

individual biometric mark [2]. Hand-written signatures are
widely used for verifying contract letters, checks, bank

applications, and statement documents [3]–[5]. Everybody

has a unique signature pattern. Even an expert cannot

duplicate their own signature precisely. This is referred to as

a natural diversity [6]. However, if tolerance for natural

diversity in agencies that require important valid documents

happens, there will be various cases of forgery when

signatures are verified manually. It can result in fraud, causing

financial and emotional loss to the victim.

Human error in manual signature verification is the reason

for the increasing number of signature forgery cases.
Signature forgery is the fraudulent copying of another

person's signature for a particular purpose. Due to every

person's different nature and personality, every signature has

a different pattern and shape, but human senses have

limitations in the verification process if the patterns compared

are very similar [7], [8]. This condition can result in a miss-

verified signature strikingly similar to the genuine one.

Signature forgery simulation levels are as follows:

 Skilled forgery when the forger knows the target's name

and practiced imitating the target's genuine signature.

 Simple forgery when the forger knows the target's name
but not the signature.

 Random forgery is when the forger does not have any

information about the target's signature, so instead of it,

he uses it [9].

200

JOIV : Int. J. Inform. Visualization, 7(1) - March 2023 200-207

The demand for protecting individual identity is growing,

so an automatic signature verification system design is needed

[10], [11]. It also helps previous manual verification by

human sense. This system's purpose is to verify a person's

identity based on their signature pattern and characteristics,

and it also important for preventing signature forgery and

fraud cases. Depending on the input format, there are two

kinds of signature verification: online and offline signature

verification [3], [10], [12]. Due to the necessity to tackle

various problems, such as fraud detection, personal identity,

banking transactions, and courtroom proceedings, many
researchers study offline and online signature verification

systems [13]. The online-based signatures are called

"dynamic signatures."

In the online signature verification process, dynamic

features like the movement of the pen used in the signature

process—the location, speed, and pressure of the pen—will

be recorded and identified [14]. This type of verification is

used on real-time access media, such as credit card

transactions. The benefit of online signature verification is the

information gained about dynamic features acquired when

someone signs the document, even though it needs a unique
device to capture the features. Offline-based signature

verification is static verification done by scanning physical

documents for hand-written signatures after the signing is

done [15]. The scan results are then verified using specific

methods [16]. As no dynamic features could be acquired by

offline signature verification, the problem becomes more

complicated. Also, the same person's signature could have a

bit of a different pattern because of sickness, psychology, age,

and media condition [17]. It creates the difficulties and

challenges of offline signature verification. In offline

signature verification, the signer doesn't need a special device
or to be present during the verification phase because the

signature has already been stored in the database. This is the

advantage of offline signature verification and makes it

suitable for authorizing bank checks, documents, and other

signed forms [18].

Since a few decades ago, original signature verification has

been a difficult research subject in the field of computer vision

(CV) because of extremely significant applications like banks

and others [2]. The signature image verification process

separates the image into two classes: genuine and forged

signature. According to the findings of the research literature

review, previous researchers used a variety of approaches to
verify offline signature images, including machine learning

and deep learning approaches [19]. Deep learning with deeper

neural networks proves to be more robust in performing

image classification than machine learning methods.

Convolutional Neural Networks inspired by human neural

networks are the most successful deep learning models in

computer vision [20]. In recent years, Convolutional Neural

Networks (CNN) have thoroughly outplayed the machine

vision field [21] and reliability in the image classification

field [22]–[24].

Loussaief and Abdelkrim [25] experimented with CNN's
ability to feature image extraction for classification using the

AlexNet architecture for the Caltech101 dataset. He compared

the image extraction feature using AlexNet with the Bag of

Features method, which was inspired by Bag of Words. The

results show that the classification performance after using

deep learning-based CNN increases by 20%, so CNN is very

effective in obtaining the image information needed in data

classification. Rabbi et al [26] compared several deep learning

signature identification methods, including CNN, CNN with

data augmentation, MLP (Multilayer Perceptron), and Single

Layer Perceptron (SLP). The dataset is derived from a private

dataset of 30 individuals, each with 24 authentic and 24

forged signatures. The results show that accuracy with the

CNN algorithm is 82.75%, accuracy with SLP is 39.91%, and

accuracy with MLP is 63.57%. The deeper architectures of

deep learning, the more training examples are needed when
trained from scratch [27]. Vorugunti, Gorthi, and Pulabaigari

[28] states that the current challenge for hand-written

signature verification is to make a small number of signature

training datasets that already represent the user to perform

signature image training based on intra- or inter-individual

variability. Another problem with using deep learning for

signature verification is the computational training cost or

time consumed to train the deep learning model. The

computational cost of training these complex networks might

need large amounts of data to reach the precision needed to

give the necessary accuracy. Contributing factors that make
the situation worse are: finding an "optimal" network

architecture that has the potential to perform as desired,

choosing the best set of hyper-parameters for the network,

estimating the data needed for training, and figuring out

whether training can be done within the necessary cost

envelope [29].

We also faced a degradation problem of using deep

learning while the deeper networks started converging. As the

network is deeper, the accuracy gets saturated and degrades

quickly [30]. Several studies have used Batch Normalization

(BN) to overcome this problem. Another benefit of Batch
Normalization is its capacity to regularize, which has a better

convergence speed. Consequently, BN will add some noise

with a similar purpose to drop out. However, the trained

model's generalization ability will improve [31]. Wang et al.

[32] show that enhanced LSTM with Batch Normalization

gives faster convergence than LSTM variants and gains

higher classification accuracy of learning tasks on a sequence.

Batch Normalization significantly outperforms the original

model, achieving the same accuracy with 14 times fewer

training steps [33]. They improved upon the best-published

result on ImageNet classification using an ensemble of Batch-

Normalized networks, achieving 4.9% top-5 validation error
(and 4.8% test error). Wu and He [34] stated that Batch

Normalization is the milestone of deep learning development,

which various networks are enabled to train. This is the cause

of the batch statistics' stochastic uncertainty functions as a

regularization term that can improve in generalization.

This paper proposed a CNN with Batch Normalization

Adjustment for Offline Hand-written Signature Genuine

Verification. It is the adaptation of CNN architecture with

Batch Normalization to obtain faster training time and higher

testing accuracy. This study collected one hundred individuals,

each providing three original signatures. Three signatures
collected for each person aim to increase the inter-individual

variability training dataset. Then to increase the data training

intra-individual variability, each original signature was forged

by three others. It is hoped that this can enrich the

characteristics of genuine and forged signatures. The

201

collected signature images will be subjected to pre-processing

and augmentation. Image training data is also related to

several conditions, such as lighting when capturing signature

images, the pens used, and different paper media.

Therefore, to overcome the problems mentioned above, we

have the following contributions:

 To propose a novel CNN-based architecture with the

addition of Batch Normalization.

 The proposed model is aimed to obtain the optimal

CNN model for offline hand-written signature

verification with high testing accuracy levels and faster
training time so that it can be implemented in a mobile

application for future work.

 To know model enhancement using Batch

Normalization, we compare CNN and CNN-Batch

Normalization models using the comparison of EER

network performance evaluation of each model.

The arrangement of this paper is as follows: material and

method of our proposed method in section II. Section III

discusses the results of our model experiments compared with

the other model. The last section, section IV, is the conclusion

of our study.

II. MATERIAL AND METHOD

Figure 1 depicts the study's procedure. There are five

distinct phases, and the phases are as follows: data collection,

data pre-processing and augmentation, architecture or model

generation, model validation testing, and model evaluation.

Fig. 1 The Procedure of the Study

A. Data Collection

Our private dataset was used in this study. It is signature

image data from 101 people, with three genuine and three

forged signatures. The signature images are created by writing

a signature on paper and photographing it with a cell phone

camera. We obtain the dataset both directly and through file-

sharing services. Meanwhile, we used skilled forgery to create

the forged signatures. Figure 2 depicts genuine signature

images from our private dataset.

Fig. 2 Genuine Signature Dataset Examples

It is genuinely signed three times by the same person, and

we can see that each picture has inter-individual variability.

Whereas Figure 3 depicts forged signature images forged by

three different people.

Fig. 3 Forged Signature Dataset Examples

Figures 2 and 3 are raw dataset images before the data pre-

processing step. The characteristics of the initial image

contained in the dataset vary, ranging from the use of pen,

paper, background or image background, size, and color, so it

is necessary to pre-process the dataset to reduce the bias factor

of the dataset. It is one of the research's difficulties. The

procedure was divided into two parts: training and testing data,

and the generated model was then tested against testing data.

B. Data Pre-processing and Augmentation

Pre-processing data is a step that improves image quality

and reduces the effect of the background image, grey variation,

size, and signature location on verification performance [15],

[23], [35]. Gideon et al. [11] propose using CNN to verify

hand-written signature forgery using several pre-processing

steps. He converts RGB images to grayscale to simplify

digital image processing. He then removes noise, converts the

image to grayscale, and resizes it to a standard resolution that

matches the network input.

The main features for identifying signatures can be
obtained by pre-processing the training data. During this

process, we resize the signature image to match the initial

convolution layer size. Furthermore, we convert RGB color

photos to greyscale images. After that, we normalize the

images so the network can efficiently process them. The

image is reduced to a single channel with '0' and '1' values.

The '0' value represents the background image value, whereas

the '1' value represents image feature information [36], [37].

We use the data augmentation process during the training

stage to add sample signature variants to the network during

the training process. Data augmentation is modifying image
data so that the computer recognizes it as a different image [6],

[26], [38]. Otherwise, it will be perceived as the same image

object. The goal is to improve generalization by enriching the

training dataset. Augmentation can increase the amount of

data the model receives, but it must be balanced with good

tuning to produce high performance [39]. This study employs

data augmentation through rotation. It can improve training

accuracy by enhancing the existing features or characteristics

of the signature image. The parameters used in the pre-

processing and augmentation of signature images are shown

in Table I.

TABLE I

PRE-PROCESSING AND AUGMENTATION PARAMETER

Parameter Value Description

Resize 100x100 A process to change the image
size into a certain pixel size to
match the convolution layer.

Normalization std = 0.1;
mean = 0.5

Normalization process is used to
change the image canal.

Augmentation Rotation (-
20, 20)

Random rotation of the training
data in the range of -20 to 20
degree.

First, the RGB image dataset is converted into greyscale.
Second, to sharpen the signature pattern, the image is

subjected to the random auto-contrast function from PyTorch.

202

Third, the image size is changed to be smaller to 100x100

pixels so that it is faster in convolution and dataset training.

Next, the reduced image will be rotated (augmented) and

normalized. The result examples of data pre-processing are

shown in Figure 4.

Fig. 4 Signature Dataset After Pre-processing and Augmentation

C. Model

This research compares basic CNN architecture with the

CNN Batch Normalization model (our proposed model).

1) CNN: One of the deep learning models, Convolutional

Neural Network (CNN), is used to classify signature images.

CNN extracts feature directly from a raw image dataset.

Related features are not pre-trained; they will be learned

during training. This is the most accurate learning model for

computer vision tasks such as object identification,

categorization, and recognition. CNN consists of three block

layers: convolutional, pooling, and fully connected [7], [18],

[40].

 Convolutional layers are made up of multiple

convolution operations. It is the process of repeatedly

applying functions to the output of other functions, and

Convolution is applied to the input image to extract

features.

 Subsampling or pooling layers are used to reduce image
size. This layer employs max pooling with a specific

kernel filter size, dividing the previous convolution

layer's output into several small grids and rearranging

the reduced image matrix. The goal is to reduce bias as

much as possible. At a later stage, only the most

important features will be processed.

 The final layer, fully connected, aims to transform

image dimensions so that they can be classified linearly.

The previous layer's nodes are flattened so that neurons

can be connected.

TABLE II
CNN ARCHITECTURE SUMMARY

Layer Size Extra Parameters

Input 100 x 100 x 1 none
Convolution 1 4 x 4 x 101 stride=1, pad=1
ReLU 4 x 4 x 101 none
Convolution 2 8 x 8 x 102 stride=1, pad=1

ReLU 8 x 8 x 102 none
Max-Pooling 8 x 8 x 51 stride=1

Layer Size Extra Parameters

Convolution 3 16 x 16 x 52 stride=1, pad=1
ReLU 3 16 x 16 x 52 none
MaxPool 16 x 16 x 26 stride=1
MaxPool 16 x 16 x 13 stride=1
Sigmoid 1 none

Table II shows the architecture summary of the CNN

model. The input size is 100x100 after pre-processing into

greyscale format and resizing. The total parameters and

trainable parameters used in this architecture are 542,086.

2) CNN Batch Normalization: CNN Batch Normalization

is a CNN architectural adaptation model with a normalization

batch number added on top. Batch normalization is a training

process stabilization function. It reduces the number of
epochs, which speeds up the training process. It also helps to

reduce generalization errors [41].

Fig. 5 CNN Batch Normalization

Figure 5 shows CNN Batch Normalization architecture

(our purposed model). The addition of batch normalization in

this model is intended to overcome the high loss during

training, allowing it to reach convergence more quickly. A

batch normalization layer can be applied to convolutional

neural networks directly between the convolutional layer and

the activation function layer, such as ReLU (Rectified Linear

Unit), a batch normalization layer can be applied to
convolutional neural networks [42]. Because CNN is the basic

architecture we used, this model is built the same way as the

CNN model, with a convolution layer (Conv2d), batch

normalization, the ReLU activation function, and a max

pooling layer (MaxPool2d).

By subtracting the batch mean and dividing it by the batch

standard deviation, batch normalization ensures that the batch

has a distribution of 0 and 1, respectively, for the mean and

standard deviation. It makes intuitive sense that this output

normalizes the inputs of a layer by statistically balancing the

batch samples and lowering the internal covariate shift
throughout the architecture, which may otherwise block

deeper layers from learning a given task [33].

As in Avola et al. [27], the BN is calculated using the

following equation for a layer activation function output of �

for a mini batch �:

 ���,���	
 � γx�� � � (1)

where ��	 is the output of the normalized layer, and � and �
are trainable parameters used to learn the proper

normalization for a certain layer as follows:

 ��	 � �����
������

 (2)

where �� and ��is mini-batch mean and standard deviation,

respectively.

203

TABLE IIII

CNN BATCH NORMALIZATION ARCHITECTURE SUMMARY

Layer Size Extra Parameters

Input 100 x 100 x 1 none
Convolution 1 4 x 4 x 101 stride=1, pad=1
BatchNorm2d-2 4 x 4 x 101 none
ReLU 4 x 4 x 101 none
Convolution 2 8 x 8 x 102 stride=1, pad=1
BatchNorm 8 x 8 x 102 none

ReLU 8 x 8 x 102 none
Max-Pooling 8 x 8 x 51 stride=1
Convolution 3 16 x 16 x 52 stride=1, pad=1
BatchNorm 16 x 16 x 52 32
ReLU 3 16 x 16 x 52 none
MaxPool 16 x 16 x 26 stride=1
MaxPool 16 x 16 x 13 stride=1
Sigmoid 1 none

Table III shows the architecture summary of CNN model.
The input size is 100x100 after pre-processing into greyscale

format and resizing. The total parameters and trainable

parameters used in this architecture is 542,142.

D. Model Evaluation

During the testing stage, we will use data testing to evaluate

the model formed in the previous training stage. The testing

dataset has been pre-processed to convert the signature picture

to a binary image, decrease the image's bias factor, and shrink
the image's pixel size. During the training process, the

network is through a learning process and extract features

from 90 individuals. The testing dataset is distinct from the

training dataset used in the testing process. In this case, the

signature image of 11 people out of a total of 101 people was

used.

The Confusion Matrix results can be used to assess the

model's accuracy. A confusion matrix provides a value for

comparing the image classification result to the model

performance. EER (Equal Error Rate) measures network

accuracy by balancing the False Acceptance Rate (FAR) and

False Rejection Rate (FRR) [19], [43]. A confusion matrix is
a matrix that provides a comparison value for the

classification result within the context of the model's

prediction performance. The confusion matrix is depicted in

Figure 6.

Fig. 6 Confusion Matrix

The components of the confusion matrix in Figure 6 are as

follows:

 True Positive (TP) is the number of positive data
predicted correctly. In this study, the genuine signature

is part of the positive data.

 True Negative (TN) is the number of negative data

predicted correctly. In this study, forged signatures are

part of negative data.

 False Positive (FP) is the number of positive data

predicted incorrectly. In this study, if data should be a

genuine signature but is predicted to be forged, it will

be included in the FP count.

 False Negative (FN) is the number of negative data

predicted incorrectly. In this study, if a forged signature

is detected as a genuine signature, it will be included in

the FN calculation.

The result is then reprocessed into a performance matrix to

calculate the accuracy, precision, and recall, or sensitivity

value, to measure network performance.

1) Accuracy is the percentage of time that a model

correctly predicts the data. Accuracy is determined by

comparing the correct prediction to the sum of all data. The

equation is the formula for calculating the accuracy value.

 !!"# !$ � %&�%'
%&�%'�(&�(' (3)

2) Precision is calculated by comparing the total number

of correct positive predictions to the total number of

positively predicted data. The precision value is calculated
using the formula in equation (4) by comparing the total

number of correct positive predictions to the total number of

positively predicted data.

)#*!+,,+-. � %&
%&�(& (4)

3) Recall or sensitivity will show the percentage of the

model's success in finding information. The formula for

calculating the precision value is in equation (5).

 #*! // � %&
%&�(' (5)

In the field of biometrics, network performance can be

evaluated by calculating the EER (Equal Error Rate) value,

which compares the FAR (False Acceptance Rate) with the

FRR (False Rejection Rate). It is represented as the value of
the ROC (Region of Convergence) curve crossed by the line

traveling through the cartesian coordinates (1,0) and (0,1).

(0,1). The more accurate a biometric system is, the lower the

EER value.

 FAR (False Acceptance Rate) determines the

probability of a forged signature being mistaken for a

genuine signature. The value is calculated by dividing

the number of false acceptance values by the number of

identification attempts, as shown in equation (6).

 012 � ('
%&�(' (6)

 The FRR (False Rejection Rate) assesses the

probability that a genuine signature may be incorrectly

identified as forged. As stated in the equation, the value

is determined by dividing the number of false rejections

by the number of identification attempts.

 022 � (&
%&�(' (7)

In this instance, the EER value will indicate network

precision, so a balance between FAR and FRR values is
necessary. The better the network, the higher the accuracy and

the lower the FAR and FRR values. These values will be used

to evaluate the three models tested.

204

III. RESULTS AND DISCUSSION

The test is carried out by training the dataset and testing the

same classifier only once. For the system to test data,

knowledge of feature extraction from genuine and forged

signature images is expected.

A. Learning Stage

The type and amount of input data influenced the

architecture's selection. Several learning parameters can be

adjusted to optimize the learning process during the learning

process. The same learning parameters are applied to each

model. Table IV shows the learning parameters used in this

experiment.

TABLE IV
LEARNING PARAMETER

Parameter Value

learning rate 0.00001
image size 100x100
optimizer Adam

epoch 150

This study's learning stage is using the CPU of intel core i5,

with 12 GB RAM installed. CNN Batch Normalization
architecture is consuming 2638.63 s for the training time.

Meanwhile, CNN architecture consumes 2553.83 s for 150

epochs, using the same learning parameter as our proposed

model.

B. Model Validation Testing

CNN and CNN Batch Normalization models were used,

and they trained over 150 epochs. The test image is 100x100

pixels, has a grayscale color channel, and is drawn randomly

from the testing data. The test results will be displayed in a
classification report that includes recall, precision, and the f1-

score, as well as a confusion matrix with false positive, false

negative, true positive, and true negative components. They

will be used to calculate the false rejection rate, false

acceptance rate, and equal error rate resulting from model

performance evaluation.

The test phase puts the model to the test with 66 signature

images gathered from 3 signatures per individual that the

network has not recognized. Figures 7–9 show the confusion

matrix from CNN and CNN Batch Normalization models test

results.

Fig. 7 Confusion Matrix of CNN

Figure 7 shows the classification results from the CNN

Batch Normalization model. There are 31 data for TN, 2 for

FN, 31 for FP, and 2 for TP.

Fig. 8 Confusion Matrix of CNN Batch Normalization

Figure 8 shows the classification results from CNN model.

There are 32 data for TN, 1 for FN, 29 for FP, and 4 for TP.

This is how the Confusion Matrix is described:

 Row 0 column 0: True Negative/TN (Sum of genuine

signatures predicted to be forged).

 Row 0 column 1: False Negative/FN (Sum of forged

signatures predicted to be genuine).

 Row 1 column 0: False Positive/FP (Sum of forged

signatures predicted to be false).

 Row 1 column 1: True Positive/TP (Sum of genuine

and predicted genuine signatures).

TABLE V

MATRIX EVALUATION OF CNN

 Precision Recall F1-Score Support

0 0.52 0.97 0.68 33

1 0.80 0.12 0.21 33

accuracy 0.55 66

Macro avg 0.66 0.55 0.45 66

TABLE VI
MATRIX EVALUATION OF CNN BATCH NORMALIZATION

 Precision Recall F1-Score Support

0 0.38 0.18 0.24 33

1 0.46 0.70 0.55 33

accuracy 0.44 66

Macro avg 0.42 0.44 0.40 66

C. Model Comparison Result

Table V displays the experimental results of CNN and

CNN Batch Normalization models with 150 training epochs.

The values in the table represent the final values obtained

when the epoch reaches 150. The models with the highest

testing accuracy values in Table VII are CNN Batch

Normalization and CNN in that order.

TABLE VII

EXPERIMENT RESULT

Model

Training Validation Testing

Accuracy

(%)

Loss

(%)

Accuracy

(%)

Loss

(%)

Accuracy

(%)

CNN 81.28 0.483 77.78 0.639 78.78

CNN Batch

Normalization
88.89 0.291 75.93 0.499 84.84

205

We evaluate network performance by calculating FAR,

FRR, and EER using the confusion matrix components (TP,

TN, FP, and FN). Table VI displays the model performance

evaluation results for each model with 150 training epochs

using FAR, FRR, and EER. Equations (6) and (7) are used to

calculate the FAR and FRR of each model. The EER is the

average of each model's FAR and FRR.

TABLE VIII

MODEL PERFORMANCE EVALUATION USING FAR, FRR, AND EER

Evaluation CNN CNN Batch Normalization

FAR 0.500 0.333
FRR 7.750 4.833
EER 4.125 2.583

The smaller and closer to zero, the FAR, FRR, and EER

values are, the better the network or model performance.

According to Table VIII, the CNN Batch Normalization

model has the lowest FAR and FRR values. As a result, the

CNN Batch Normalization model obtains the smallest EER

value.

IV. CONCLUSIONS

When the training accuracy and validation accuracy results

are compared to the results of the experiment for each model

for 150 epochs, most models are still overfitting, despite

having a high percentage of testing accuracy. This condition

can occur because the data used during training is less varied,

and the dataset is too small for complex models (CNN is data-

hungry). We still have signature dataset images that were not

affected by the normalization process as a result of the pre-
processing results. The background and signature features are

needed to be differed using any other pre-processing method

to enrich the feature extraction.

However, our model has a faster training time than CNN

without Batch Normalization added. With a training loss of

0.291%, training accuracy of 88.89%, a validation loss of

0.499%, an accuracy validation of 75.93%, and a testing

accuracy of 84.84%, our model, CNN Batch Normalization,

took first place in a testing scenario. In future work, we

propose a model adjustment to achieve better model

performance with fewer datasets. Additionally, better pre-
processing steps using another augmentation method are

required to improve dataset quality and prevent overfitting.

The better results could be developed into a mobile signature

verification application, allowing us to apply the benefits to a

real-world signature verification problem.

REFERENCES

[1] C. Wencheng, G. Xiaopeng, S. Hong, and Z. Limin, "Offline Chinese

signature verification based on AlexNet," in Lecture Notes of the

Institute for Computer Sciences, Social-Informatics and

Telecommunications Engineering, LNICST, 2018, vol. 219, pp. 33–37,

doi: 10.1007/978-3-319-73317-3_5.

[2] A. Sanjoy, P. Soumya, R. Nayak, and T. Hanne, "Off-line signature

verification using elementary combinations of directional codes from

boundary pixels," Neural Comput. Appl., vol. 6, 2021, doi:

10.1007/s00521-021-05854-6.

[3] F. E. Batool et al., "Offline signature verification system: a novel

technique of fusion of GLCM and geometric features using SVM,"

Multimed. Tools Appl., 2020, doi: 10.1007/s11042-020-08851-4.

[4] G. Suhas, S. Chiranjeevi, S. S. Mokshagundam, and S. Suraj, "SIFR-

signature fraud recognition," in 2018 International Conference on

Networking, Embedded and Wireless Systems, ICNEWS 2018 -

Proceedings, 2018, pp. 1–6, doi: 10.1109/ICNEWS.2018.8903995.

[5] S. N. Srihari, H. Srinivasan, S. Chen, and M. J. Beal, "Machine

learning for signature verification," Stud. Comput. Intell., vol. 90, pp.

387–408, 2008, doi: 10.1007/978-3-540-76280-5_15.

[6] M. M. Yapıcı, A. Tekerek, and N. Topaloğlu, "Deep learning-based

data augmentation method and signature verification system for

offline hand-written signature," Pattern Anal. Appl., vol. 24, no. 1, pp.

165–179, 2021, doi: 10.1007/s10044-020-00912-6.

[7] M. M. Yapici, A. Tekerek, and N. Topaloglu, "Convolutional Neural

Network Based Offline Signature Verification Application," Int.

Congr. Big Data, Deep Learn. Fight. Cyber Terror. IBIGDELFT 2018

- Proc., no. December, pp. 30–34, 2019, doi:

10.1109/IBIGDELFT.2018.8625290.

[8] A. Dutta, U. Pal, and J. Llados, "Compact correlated features for writer

independent signature verification," in Proceedings - International

Conference on Pattern Recognition, 2016, pp. 3422–3427, doi:

10.1109/ICPR.2016.7900163.

[9] L. G. Hafemann, R. Sabourin, and L. S. Oliveira, "Meta-learning for

fast classifier adaptation to new users of Signature Verification

systems," IEEE Trans. Inf. Forensics Secur., vol. PP, no. c, p. 1, 2019,

doi: 10.1109/TIFS.2019.2949425.

[10] P. Singh, P. Verma, and N. Singh, "Offline Signature Verification : An

Application of GLCM Features in Machine Learning," Ann. Data Sci.,

no. 0123456789, 2021, doi: 10.1007/s40745-021-00343-y.

[11] S. Jerome Gideon, A. Kandulna, A. A. Kujur, A. Diana, and K.

Raimond, "Hand-written Signature Forgery Detection using

Convolutional Neural Networks," Procedia Comput. Sci., vol. 143, pp.

978–987, 2018, doi: 10.1016/j.procs.2018.10.336.

[12] H. Bunke, J. Csirik, Z. Gingl, and E. Griechisch, "Online signature

verification method based on the acceleration signals of hand-writing

samples," in Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2011, vol. 7042 LNCS, pp. 499–506, doi:

10.1007/978-3-642-25085-9_59.

[13] T. Younesian, S. Masoudnia, R. Hosseini, and B. N. Araabi, "Active

Transfer Learning for Persian Offline Signature Verification," 4th Int.

Conf. Pattern Recognit. Image Anal. IPRIA 2019, pp. 234–239, 2019,

doi: 10.1109/PRIA.2019.8786013.

[14] M. M. Hameed, R. Ahmad, M. L. M. Kiah, and G. Murtaza, "Machine

Learning-based Offline Signature Verification Systems: A Systematic

Review," Signal Process. Image Commun., vol. 93, no. October 2020,

p. 116139, 2021, doi: 10.1016/j.image.2021.116139.

[15] E. Guerra-Segura, A. Ortega-Pérez, and C. M. Travieso, "In-air

signature verification system using Leap Motion," Expert Syst. Appl.,

vol. 165, no. August 2020, 2021, doi: 10.1016/j.eswa.2020.113797.

[16] D. Impedovo and G. Pirlo, "Automatic signature verification: The state

of the art," IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., vol. 38,

no. 5, pp. 609–635, 2008, doi: 10.1109/TSMCC.2008.923866.

[17] S. C. Satapathy, A. Govardhan, K. Srujan Raju, and J. K. Mandal,

"Emerging ICT for Bridging the Future - Proceedings of the 49th

Annual Convention of the Computer Society of India (CSI) Volume

1," in Advances in Intelligent Systems and Computing, 2015, vol. 337,

pp. 337–338, doi: 10.1007/978-3-319-13728-5.

[18] C. Ishikawa, J. A. U. Marasigan, and M. V. C. Caya, "Cloud-based

Signature Validation Using CNN Inception-ResNet Architecture,"

2020, doi: 10.1109/HNICEM51456.2020.9400027.

[19] M. Hanmandlu, A. B. Sronothara, and S. Vasikarla, "Deep Learning

based Offline Signature Verification," in 2018 9th IEEE Annual

Ubiquitous Computing, Electronics and Mobile Communication

Conference, UEMCON 2018, 2018, pp. 732–737, doi:

10.1109/UEMCON.2018.8796678.

[20] S. J. Lee, T. Chen, L. Yu, and C. H. Lai, "Image Classification Based

on the Boost Convolutional Neural Network," IEEE Access, vol. 6, no.

c, pp. 12755–12768, 2018, doi: 10.1109/ACCESS.2018.2796722.

[21] M. Hussain, J. J. Bird, and D. R. Faria, "A study on CNN transfer

learning for image classification," Adv. Intell. Syst. Comput., vol. 840,

pp. 191–202, 2019, doi: 10.1007/978-3-319-97982-3_16.

[22] L. Liu, L. Huang, F. Yin, and Y. Chen, "Offline signature verification

using a region based deep metric learning network," Pattern Recognit.,

vol. 118, p. 108009, 2021, doi: 10.1016/j.patcog.2021.108009.

[23] N. Sharma, V. Jain, and A. Mishra, "An Analysis of Convolutional

Neural Networks for Image Classification," Procedia Comput. Sci.,

vol. 132, no. Iccids, pp. 377–384, 2018, doi:

10.1016/j.procs.2018.05.198.

[24] S. Alkaabi, S. Yussof, S. Almulla, H. Al-Khateeb, and A. A.

Alabdulsalam, "A novel architecture to verify offline hand-written

206

signatures using convolutional neural network," in 2019 International

Conference on Innovation and Intelligence for Informatics,

Computing, and Technologies, 3ICT 2019, 2019, pp. 0–3, doi:

10.1109/3ICT.2019.8910275.

[25] S. Loussaief and A. Abdelkrim, "Deep learning vs. bag of features in

machine learning for image classification," 2018 Int. Conf. Adv. Syst.

Electr. Technol. IC_ASET 2018, pp. 6–10, 2018, doi:

10.1109/ASET.2018.8379825.

[26] M. T. F. Rabbi et al., "Hand-written Signature Verification Using

CNN with Data Augmentation," J. Contents Comput., vol. 1, no. 1, pp.

25–37, 2019, doi: 10.9728/jcc.2019.12.1.1.25.

[27] D. Avola, M. J. Bigdello, L. Cinque, A. Fagioli, and M. R. Marini, "R-

SigNet : Re duce d space writer-independent feature learning for

offline writer-dependent signature verification," Pattern Recognit.

Lett., vol. 150, pp. 189–196, 2021, doi: 10.1016/j.patrec.2021.06.033.

[28] C. S. Vorugunti, R. K. S. Gorthi, and V. Pulabaigari, "Online signature

verification by few-shot separable convolution based deep learning,"

in Proceedings of the International Conference on Document Analysis

and Recognition, ICDAR, 2019, pp. 1125–1130, doi:

10.1109/ICDAR.2019.00182.

[29] D. Justus, J. Brennan, S. Bonner, and A. S. McGough, "Predicting the

Computational Cost of Deep Learning Models," Proc. - 2018 IEEE Int.

Conf. Big Data, Big Data 2018, pp. 3873–3882, 2019, doi:

10.1109/BigData.2018.8622396.

[30] Kaiming He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning

for Image Recognition," IEEE, 2015, [Online]. Available:

http://image-net.org/challenges/LSVRC/2015/.

[31] H. Yong, J. Huang, D. Meng, X. Hua, and L. Zhang, "Momentum

Batch Normalization for Deep Learning with Small Batch Size," Lect.

Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.

Notes Bioinformatics), vol. 12357 LNCS, pp. 224–240, 2020, doi:

10.1007/978-3-030-58610-2_14.

[32] L. N. Wang, G. Zhong, S. Yan, J. Dong, and K. Huang, Enhanced

LSTM with batch normalization, vol. 11953 LNCS. 2019.

[33] S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep

network training by reducing internal covariate shift," 32nd Int. Conf.

Mach. Learn. ICML 2015, vol. 1, pp. 448–456, 2015.

[34] Y. Wu and K. He, Group Normalization, vol. 128, no. 3. Springer

International Publishing, 2020.

[35] L. Liu, L. Huang, F. Yin, and Y. Chen, "Offline Signature Verification

using a Region Based Deep Metric Learning Network," Pattern

Recognit., vol. 118, p. 108009, 2021, doi:

10.1016/j.patcog.2021.108009.

[36] D. Banerjee, B. Chatterjee, P. Bhowal, T. Bhattacharyya, S. Malakar,

and R. Sarkar, "A new wrapper feature selection method for language-

invariant offline signature verification," Expert Syst. Appl., vol. 186,

no. March, 2021, doi: 10.1016/j.eswa.2021.115756.

[37] S. Dey, A. Dutta, J. I. Toledo, S. K. Ghosh, J. Llados, and U. Pal,

"SigNet: Convolutional Siamese Network for Writer Independent

Offline Signature Verification," Elsevier, no. 1, pp. 1–7, 2017,

[Online]. Available: http://arxiv.org/abs/1707.02131.

[38] M. Hron and N. Obwegeser, "Scrum in Practice: An Overview of

Scrum Adaptations," Proc. Annu. Hawaii Int. Conf. Syst. Sci., vol.

2018-Janua, pp. 5445–5454, 2018, doi: 10.24251/hicss.2018.679.

[39] J. F. Vargas, M. A. Ferrer, C. M. Travieso, and J. B. Alonso, "Off-line

signature verification based on grey level information using texture

features," Pattern Recognit., vol. 44, no. 2, pp. 375–385, 2011, doi:

10.1016/j.patcog.2010.07.028.

[40] S. M. A. Navid, S. H. Priya, N. H. Khandakar, Z. Ferdous, and A. B.

Haque, "Signature Verification Using Convolutional Neural

Network," 2019 IEEE Int. Conf. Robot. Autom. Artif. Internet-of-

Things, RAAICON 2019, vol. 16, no. 1, pp. 35–39, 2019, doi:

10.1109/RAAICON48939.2019.19.

[41] D. D. Franceschi and J. H. Jang, "Demystifying batch normalization:

Analysis of normalizing layer inputs in neural networks," Commun.

Comput. Inf. Sci., vol. 1173 CCIS, pp. 49–57, 2020, doi: 10.1007/978-

3-030-41913-4_5.

[42] Z. Q. Zhao, H. Bian, D. Hu, W. Cheng, and H. Glotin, "Pedestrian

detection based on fast R-CNN and batch normalization," Lect. Notes

Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 10361 LNCS, pp. 735–746, 2017, doi:

10.1007/978-3-319-63309-1_65.

[43] A. Foroozandeh, A. Askari Hemmat, and H. Rabbani, "Offline Hand-

written Signature Verification and Recognition Based on Deep

Transfer Learning," in Iranian Conference on Machine Vision and

Image Processing, MVIP, 2020, vol. 2020-Janua, doi:

10.1109/MVIP49855.2020.9187481.

207

