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Abstract—Indonesia is one of the largest countries globally with an area for planting sugarcane. The current problem is that determining 

the planting area of sugarcane is still done conventionally; this is very limited and wastes time. Thus, knowing the sugarcane planting 

area becomes essential for policymaking through Remote Sensing technology. However, the challenge of Remote Sensing is the limited 

data due to weather and the spectral variability of other plants. So, it is necessary to classify based on phenological knowledge. The 

study aims to classify sugarcane areas based on phenological knowledge using Remote Sensing and Machine Learning. This application 

finished on the cloud platform Google Earth Engine (GEE) through Landsat 8 satellite imagery data. The knowledge of sugarcane 

phenology was built based on the Normalized Difference Vegetation Index (NDVI) spectral value and built with the harmonic model. 

In addition, classification is accomplished by object-oriented (OO) methods for segmentation classification. Object-oriented is solved 

by the Simple Non-Iterative Clustering (SNIC) algorithm for spatial cluster identification, the Gray-Level Co-occurrence Matrix 

(GLCM) for texture extraction, and the Random Forest algorithm for Land Use-Land Cover (LULC) classification. The results of the 

accuracy analysis using the confusion matrix and the classification of sugar cane areas based on phenological knowledge obtained the 

best results with an overall accuracy of 95.9% with a Kappa coefficient of 0.92. It can be concluded that a classification approach with 

knowledge of plant phenology can help better classify the availability of land for plantations in the future. 
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I. INTRODUCTION

Indonesia is a country that has the seventh-largest 

sugarcane planting area in the world [1]. Sugarcane as a raw 
material for sugar is a strategic commodity for the economy 

in Indonesia, with an area of around 440 thousand ha in the 

2014-2018 period [2]. Indonesian sugarcane production is 

dominated in East Java at around 58.92%, with 14.54% in 

Kediri Regency [1]. As a basic need and a relatively popular 

source of calories, sugar production made from Indonesian 

sugarcane is supplied around 51.15% of the area of East Java 

Province [2]. So this makes East Java Province the center of 

sugarcane cultivation in Indonesia. 

As support for modern agriculture, ensuring the availability 

of sugarcane cultivation in a wide area can be done 
automatically, precisely using remote sensing combined with 

artificial intelligence to classify sugarcane areas. In particular, 

remote sensing with satellites provides effective methods due 

to its unique spectral, temporal, and spatial resolution [3]. 

From previous research, remote sensing users with satellite 

technology have been applied to support sugarcane farming, 

e.g., SPOT-5 High-Resolution Geometrical (HRG), Landsat-

7 Enhanced Thematic Mapper Plus (ETM+), Advanced

Spaceborne Thermal Emission and Reflection Radiometer

(ASTER), ENVISAT Advanced SAR (ASAR), High-
Resolution Imaging Camera (CCD), and Moderate Resolution

Imaging Spectroradiometer (MODIS). To estimate sugarcane

yield, map the area of sugarcane crops' area and differentiate

sugarcane varieties [3]–[8]. However, previous classification

studies still ignore phenology factors affecting the

classification results. Much less the challenge of using remote

sensing technology is limited data due to cloudy weather. In

addition, the characteristics of the heterogeneous landscape

(various spectral variations of other plant species) complicate

the extraction of sugarcane information [9]. Phenology

sugarcane is unique and different from other plants, e.g., rice
or tobacco. Sugarcane has a phenology of 10-12 months.
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Thus, information on sugarcane phenology is beneficial as a 

reference for remote-sensing image data. Because remote 

sensing with suitable time-series data can produce different 

land cover (sugarcane planting area) from other types of 

variability [10]. Thus, as an alternative to the classification of 

sugarcane areas based on phenological knowledge. 

The paradigm shift of expensive and sophisticated 

computing has now been replaced by cloud computing and 

free. In this respect, Google's platform, Google Earth Engine 

(GEE), is powerful for solving various challenges in cloud-
based geospatial analysis very efficiently and processing data, 

processing, storage, and integration [11]. On the GEE cloud 

platform, users can access and analyze spatial data anytime, 

anywhere via a user-friendly web with an effective scripting 

language and cloud-free data sets without limitations on 

storage space or computational resource images [12]–[14]. In 

this case, remote sensing applications can be implemented in 

GEE, for example, creating Land Use-Land Cover (LULC) 

physical of the earth's surface (i.e., rocks, grasslands, water) 

or maps of agriculture or residential areas [15]. The abased 

approach object is applied to Land Use-Land Cover (LULC) 
for sugarcane area classification [16]. Object-oriented objects 

have a geographic appearance, such as shape and length, so it 

is necessary to extract the texture [17]. So, GEE provides a 

Simple Non-Iterative Clustering (SNIC) algorithm that helps 

identify the potential of each object and group similar pixels 

[18]. Object-oriented generally classify objects by combining 

spatial, spectral, and texture information in the image. GEE 

also provides the Gray-Level Co-occurrence Matrix (GLCM) 

for obtaining texture information. The GLCM texture is also 

helpful in enhancing the LULC classification by combining 

vegetation indices and multispectral bands [19]. Then, non-
parametric Machine Learning, such as Random Forest (RF), 

was applied to the LULC classification because of its efficient 

and accurate results on remote sensing images [20], [21]. 

In solving existing problems. This study classified 

sugarcane areas by considering plant phenological knowledge 

in determining datasets. Determining datasets is crucial for 

the accuracy of an area mapping, especially for the limitations 

of datasets that are categorized as feasible due to natural 

factors. So, it is hoped that through plant phenology 

knowledge, the ability to map sugarcane areas with limited 

datasets can be resolved and mapping accuracy to be more 

precise.  
Therefore, this research aims to classify sugarcane areas 

based on phenological knowledge. The object-oriented 

classification technique approach is carried out by applying 

the SNIC and GLCM algorithms and using the Machine 

Learning (Random Forest) algorithm to classify the final 

object on the GEE code. GEE can perform classification 

settings for various parameters (e.g., selecting input lines, 

selecting classification algorithms, RF tests, and various 

segmentation scales). Meanwhile, accuracy tests (overall 

accuracy and kappa coefficient) were conducted through the 

confusion and visual matrices. 
In participating in the discussion in this paper, the author 

compiles systematically: materials and methods, which 

explain the location of the research and ways to obtain 

knowledge about the phenology of sugarcane plants. In 

addition, preprocessing to ensure that the image data used is 

correct. Then, the results section explaining phenological 

knowledge is used as a basis for mapping sugarcane plant 

areas with the Random Forest algorithm. Finally, a conclusion 

explaining the accuracy of the classification of sugarcane 

areas, as well as suggestions for subsequent research.  

II. MATERIALS AND METHOD 

A. Study Area 

The study area is in PT Perkebunan Nusantara X (PTPN 
X), as shown in Fig 1, between the sub-district Ploso Klaten 

and Ngancar, Djengkol Kediri, part of East Java Province, 

Indonesia. Djengkol Kediri has a tropical climate with an 

annual temperature between 23°C to 31°C with an average 

rainfall rate of about 1,652 mm per day. In addition, the field 

of this area is relatively flat, with a mean altitude of about 284 

m aloft sea level, and is located in (Lat: 112.1469, Long: -

7.9308), (Lat: 112.2065, Long: -7.9308) (Lat: 112.2065, 

Long: -7.8642), (Lat: 112.1469, Long: -7.8642), (Lat: 

112.1469, Long: -7.9308). Djengkol Kediri is East Java 

province's second-largest sugarcane planting area [1]. Besides 
sugarcane, the primary vegetation in this area is tobacco and 

grass. However, the dominant plant types in the area are 

sugarcane [22]. This site was selected because it represents 

the sugarcane community in Indonesia, which needs to be 

monitored for sustainability to support the economy. 

B. Phenology of Sugarcane 

Sugarcane phenology is essential as a knowledge base 

[23]–[25]. Sugarcane phenology is divided into four phases: 

germination, tillering, grand growth, and maturity, which lasts 
for one phenological cycle of 10-12 months. Phenological 

knowledge is used as a reference in determining image data 

to classify sugarcane areas. Sugarcane phenological 

knowledge is built based on cropping pattern trends. The 

phenology of sugarcane in the study area from October to 

early November was the seeding and seedling stage, early 

January to late April, the period of stem elongation, the 

accumulation of sugar in May, June to August, the maturation 

stage, the harvest stage in September until the following year. 

The phenological knowledge in this study was obtained 

from the maximum red wave absorption ability (NDVI 
spectral index) of sugarcane to differentiate between other 

crops; this is to determine the trend and seasonality of 

sugarcane in the study area on a per-pixel basis (Fig 2). The 

seasonal forecast is then built by combining the linear model 

with the harmonic model (Formula (1)) [26]. NDVI values 

(Formula (2)) were integrated and used as the basis for 

seasonal trend analysis (Fig 2) from image collection data for 

2018–2020. The NDVI spectral index is beneficial for 

identifying sugarcane seasonality and providing information 

on sugarcane cropping patterns. The analysis of seasonal 

trends shows that sugarcane planting peaks from January to 

June, with the beginning of planting in October and ending in 
September of the following year (Table I). Thus, the selection 

of image data used for classification in this study can be seen 

in Table III. 

pt = β0 + β1t + Acos(2πωt - φ) + et  

= β0 + β1t + β2cos(2πωt) + β3sin(2πωt) + et 
(1) 
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Image data selection is in the range of two months after 

seeding and two months before harvest because it can be 

easier to interpret in the phenological range phase. In addition, 

if only some image data meets the requirements (cloud-free) 

that include the phenology of sugarcane, then use the image 

data six months after seeding because the leaf area index value 

reaches the maximum, considering that it must guarantee the 

accuracy of the classification. 

 

 

Fig. 1  The study area in Djengkol Kediri, Indonesia, and an overview of the sugarcane plantation (region of interest) 

 

 
 

 

Fig. 2  The trend of sugarcane phenology in region of in field based on a region (part of the area of interest) using the harmonic model. 
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TABLE I 

THE PERIODS OF SUGARCANE PHENOLOGICAL IN THE STUDY AREA 

Crop 
2019 2020 

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Agt Sep 

Sugarcane SE SE/SL SL ST ST ST ST SA MA MA MA HA 
Note: HA: harvest stage; SE: seeding stage; SL: seedling stage; ST: stem elongation stage; SA: sugar accumulation stage; MA: maturation stage. 

 
Fig. 3  The sharpens L8 resolution (a) RGB image; (b) Pan-sharpened image 

 

C. Pre-Processing and Sample Data 

This application's dataset comes from images filtered by 

code and specific in 2019. The initial Landsat 8 dataset was 
created from "LANDSAT/LC08/C01/T1_TOA", a cloud-free 

polygon of the region of interest (ROI). In addition, a pan-

sharpening technique was also applied to sharpen the 

resolution by combining the panchromatic mode (Band 8) 

through the Brovey algorithm (which was initially 30m to 

15m) [27] (Formula (3)) (Fig (3)). In addition, an index was 

applied: Normalized Difference Vegetation Index (NDVI) to 

mapping land cover change to produce an increase in 

classification accuracy [28], [29]. 
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	��
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  (2) 

The diverse landscape mosaics of the study sites are 

presented with four classification classes: (1) sugarcane, 

composed of fragmented areas; (2) other crops, composed of 

small and fragmented areas such as tobacco; (3) built-up areas 
such as settlements and other manufactured surfaces; (4) bare 

soil, a planted area that is not planted. Then, to test the 

reliability and usability of the entire procedure, a total of 85 

class sample points were identified through the GEE interface 

and labeled manually through visual interpretation of the 

same base layer as shown (Fig 4) (Table II). The labeling was 

done in Landsat 8 RGB through high-resolution Google Maps 

and infrared composite layers [30], [31]. Furthermore, the 

sample points were divided randomly, with 70% training and 

30% validation. 

 

 
Fig. 4  Overview of sample points of class label 

TABLE II 

THE NUMBER OF POINTS FOR EACH CLASSIFICATION CLASS 

Classes Number of Points 

Built-up 7 
Bare soil  24 
Sugarcane 30 

Other crops 24 

TABLE III 

COMPARISON OF DATASETS USED OF CLASSIFICATION 

Based on Phenology 

Knowledge 

Without Phenology 

Knowledge 

Feb 
“LANDSAT/LC08/C01/T
1_TOA/LC08_119065_2
0190210” 

Feb 
“LANDSAT/LC08/C01/T1_T
OA/LC08_119065_20190210” 

May 
“LANDSAT/LC08/C01/T
1_TOA/LC08_119065_2
0190517” 

May 
“LANDSAT/LC08/C01/T1_T
OA/LC08_119065_20190517” 

Jun 
“LANDSAT/LC08/C01/T
1_TOA/LC08_118066_2
0190611” 

Jun 
“LANDSAT/LC08/C01/T1_T
OA/LC08_118066_2019061” 

Jul 
“LANDSAT/LC08/C01/T
1_TOA/LC08_118065_2
0190713” 

Jul 
“LANDSAT/LC08/C01/T1_T
OA/LC08_118065_20190713” 

 Aug 
“LANDSAT/LC08/C01/T1_T
OA/LC08_119065_20190805” 

 Sep 
“LANDSAT/LC08/C01/T1_T
OA/LC08_118066_20191001” 

 Oct 
“LANDSAT/LC08/C01/T1_T

OA/LC08_118066_20191118” 

D. Methodology 

The research workflow consists of three significant steps: 

dataset composition, object-oriented classification, and 

accuracy assessment, developed in two GEE scripts (Fig 5). 

First, the composition of the dataset is implemented in a 

detached script to speed up the classification and accuracy 

assessment procedure because, in the next stage, the basic 

composite image requires adjustments. Second, the GEE 

script for classification and accuracy assessment is developed 

with an object-oriented engineering approach and applies the 

Random Forest classifier [32]. Then, the latter performs a 
confusion matrix with validation data. 

1)   Dataset Composition: GEE provides a collection of 

Landsat 8 data. The available datasets are filtered or cloud-

(a) (b) 
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free. In addition, a pan-sharpening technique was also applied 

to sharpen the resolution by combining the panchromatic 

mode (Band 8). Following the process, to obtain 

augmentation data, the central statistics used NDVI (mean, 

max, and standard deviation) to produce an additional six 

bands loading the primary statistics of the spectrum indices 

used to represent the variability of the LULC class. Then, 

compute the median pixel value of the final composite data 

set for the selected band and add the index statistics of the 

selected spectrum among those available to the composite. 
Finally, export the desired ribbon from the data set. The input 

requirements are shown in Table IV. 

TABLE IV 

REQUIREMENTS TO SET FOR CREATING DATASET COMPOSITE 

Requirements Description 

Region of interest 

(ROI) 

The study site of PTPN X, Djengkol Kediri, 

Indonesia 

Periods of Interest Start date and end date (YYYY-MM-DD), 

period 2019 

Bands L8 bands selected 

(Band 2, Blue)  

(Band 3, Green)  

(Band 4, Red)  

(Band 5, NIR) 

(Band 6, SWIR 1)  

(Band 8, Panchromatic) and Create NDVI 

 
 

 

Fig. 5  Flow diagram in building sugarcane area classification with Random Forest algorithm through plant phenology knowledge 

 

 

Fig. 6  Multiple size spacing of segmentation to produce maximum accuracy 
 

2)   Land Use-Land Cover Classification:  In this study, 

performing LULC classification using a Random Forest (RF) 

based on supervised learning takes several inputs that can 

execute the code and requires information about the training 
points used to train the classifier [33] shown in Table V.  The 

sample point is included in the "Newfcr" feature set for 

training the selected classifier. Meanwhile, the Random 

Forest classifier has set the number of trees to three 

categories: 50, 100, and 150. The object-oriented 

classification process is carried out by combining spatial 

grouping steps. It aims to group similar and contiguous pixels, 

compute texture index on a clustering principle, and object-

based classification. This study proposes two methods 

combining the SNIC and GLCM algorithms implemented 

detached in GEE. SNIC uses a seed grid as input by 

"Image.Segmentation.seedGrid" function by requiring the 

distance of the super pixel seed location (in pixels), which 
affects the cluster character and can be changeable to find the 

best grade. Codes at the test stage using varying spacing (5, 

10, 15, 20, 25, 30) are shown in Fig 6. Next, these values are 

identified, considering the texture of the landscape patches in 

the study site. To identify objects (clusters), the SNIC is 

subject to parameters and produces a multi-band taster (input 

spacing), belonging to additional layers and clusters that 

contain the average value of the input features. In GEE, SNIC 

requires the setting of several key parameters: “compactness 

factor” affects cluster condition (more significant values 

Image Collection 

Filtering 
(Dates, Cloud Cover, Select 

Bands, ROI) 

Pan-sharpening & 

Composite Bands 

Spectral Indices 

Statistic 

(Mean, Std.Dev, Max) Spectral Indices 

(NDVI) 

Median Bands 

& Export Bands Linier Regression & 

Harmonic Model 

Cropping Pattern 
Farmers Knowledge 

Dataset Composition 

SNIC  
Clustering 

Merge Bands 

Random Forest 

LULC Classification 

PCA 
GLCM  

Textural Indices 

Object-Oriented 

Confusion Matrices 

Overall Acurracy 

and Kappa 

Coeficient 

Accuracy Assesment 

Sugarcane Mapping 

Size Spacing : 10 Size Spacing : 15 Size Spacing : 20 Size Spacing : 25 

1978



result in extra tight clusters); “Connectivity” (4 or 8) 

determines the proximity of Rooks or Queen's to join adjacent 

groups; “NeighborhoodSize” avoids boundary artifacts. In 

this case, the regional characteristics are a consideration for 

setting parameters because the SNIC output varies depending 

on the visualization scale; these parameters are defined as 

next: neighborhood size = 256, connectivity = 8, and 

compactness = 0, as well as setting a 15m radius cluster output 

scale. 

The GLCM algorithm approach uses a merger of NIR, 
GREEN, and RED bands on the elementary composite data to 

produce an image formula (4) [34] because GLCM requires 

an 8-bit gray-level image as input. In order to obtain a single 

representative band (PC first) containing most of the texture 

information, appropriate standardization was applied, 

selecting the most relevant PCA from the 7 GLCM metrics 

(Angular Second Moment (ASM); Contrast; Correlation; 

Entropy; Variance; Inverse Difference Moment (IDM); Sum 

Average (SAVG).) [34], [35]. After that, the mean of PC1 in 

a detached band is calculated for every object that belongs to 

the SNIC. The average band of PC1 objects is attached to the 
interested band from the process of segmentation SNIC. In the 

final part, the LULC classification is reproduced through the 

object-oriented approach by defining and practicing the 

procedure for the Random Forest classifier sourced from the 

dataset. Then, to speed up execution, all these stages of code 

are developed on the raster domain without applying 

conversion to the vector domain. 

 Gray = (0.3 × NIR) + (0.59 × Red) + (0.11 × Green) (4) 

TABLE V 

REQUIREMENTS TO SET FOR LULC CLASSIFYING 

Requirements Description 

Region of 
interest (ROI) 

The study site of PTPN X, Djengkol Kediri, 
Indonesia 

Newfcr A collection set labeled LULC class is then 
randomly divided for 70% training and 30% 
validation 

Bands The result of the “Dataset composition” step 

III. RESULTS AND DISCUSSION 

The various tests carried out in the study area and the 

overall accuracy results are presented in Table VI. The 

classification is divided into two schemes to find out the best 

accuracy of the proposed method: (1) composite dataset based 

on phenological knowledge (2) composite dataset without 

phenological knowledge. Classification based on 

phenological knowledge obtained the best overall accuracy 
results of 95.9% at size spacing 10, RF (100) and size spacing 

10, RF (150). In comparison, the classification without 

knowledge of phenology obtained the best overall accuracy of 

91.5% at size spacing 15, RF (50). So, from the two schemes 

applied, classification based on phenological knowledge is 

better than without phenological knowledge. 

The best accuracy on datasets with phenological 

knowledge, tuning the number of trees 100 and 150, has the 

same pattern. This shows that increasing the number tree does 

not affect the accuracy results, and obtained the accuracy 

results are almost the same. Whereas in datasets without 

phenological knowledge, changes in the number tree value 

have no effect, with the overall accuracy obtained 

approaching the same accuracy value. 

The classification results also separate sugarcane and other 

areas (Fig 7). From the best accuracy results, the most 

dominant sugarcane area ranged from 42.03% 

(20.350.781,318 m2, RF 100) and 42.65% (20.653.067,433 

m2, RF 150). In addition, other class distribution areas are bare 
soil 17.69% and 17.87%, Other crops 35.57% and 35.34%, 

Built-up 4.71% and 4.14% (Fig 8). 

Therefore, the classification of Land Use-Land Cover used 

phenological knowledge improves accuracy compared to 

those without sugarcane phenology knowledge. Phenology 

provides essential information on plants to determine the right 

time to use composite data as input for classifying sugarcane 

areas. In contrast to research [36], [37] still has not considered 

phenological knowledge. 

 

  
Fig. 7  The map of the distribution of sugarcane area in region of interest  

 

 
Fig. 8  The large area by classes (the best classification with phenological 

knowledge) 
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TABLE VI 

OVERALL ACCURACIES AND KAPPA RESULTED FROM THE OBJECT-ORIENTED (OO) APPROACHES, FROM SATELLITE DATA LANDSAT 8, APPLYING THE RANDOM 

FOREST (RF) CLASSIFIER, USING DIFFERENT SIZE SPACING (5, 10, 15, 20, 25, 30) 

Classifier 

With Phenology Knowledge 

Overall Accuracy (%) Kappa Coefficient 

5 10 15 20 25 30 5 10 15 20 25 30 

RF (50) 87.3 92.3 92.0 90.1 87.9 80.5 0.81 0.89 0.88 0.86 0.80 0.72 
RF (100) 88.8 95.9 90.0 86.6 87.9 76.9 0.83 0.92 0.85 0.80 0.80 0.65 
RF (150) 88.8 95.9 90.0 86.6 87.9 76.9 0.83 0.92 0.85 0.80 0.80 0.65 

 

Classifier 

Without Phenology Knowledge 

Overall Accuracy (%) Kappa Coefficient 

5 10 15 20 25 30 5 10 15 20 25 30 

RF (50) 84.1 85.7 91.5 82.1 88.6 76.1 0.78 0.79 0.87 0.74 0.83 0.67 
RF (100) 84.6 85.1 91.1 82.1 88.2 76.1 0.78 0.79 0.87 0.72 0.83 0.67 
RF (150) 84.1 85.1 91.1 82.6 88.2 73.9 0.78 0.79 0.82 0.74 0.82 0.63 

 

IV. CONCLUSION 

This study aims to classify land cover in the sugarcane area 

based on plant phenology knowledge. Classification is 

beneficial for the certainty of planting area and information 

on plant availability for the future. Classifying sugarcane 

areas was built using a Machine Learning approach and 

knowledge of plant phenology. In addition, in preprocessing 

segmentation with several segmentation scenarios. The 

classification results from the two comparisons that have been 

classified with phenological knowledge have better accuracy 

results. The accuracy obtained was 91.5%, and the kappa 

coefficient was 0.92 for size spacing ten and Random Forest 

trees 100 and 150. Suggestions for future research, 
optimization in conducting classification can be improved 

taking into account sharper satellite resolutions and Deep 

Learning algorithm approaches for more in-depth analysis. 
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