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Abstract— This study proposes a framework for improving performance and exploring the application of Deep Convolutional Networks 

(DCN) using the best parameters and criteria to accurately produce aerial imagery semantic segmentation of natural disaster-affected 

areas. This study utilizes two models: U-Net and Pyramid Scene Parsing Network (PSPNet). Extensive study results show that the Grid 

Search algorithm can improve the performance of the two models used, whereas previous research has not used the Grid Search 

algorithm to improve performance in aerial imagery segmentation of natural disaster-affected areas. The Grid Search algorithm 

performs parameter tuning on DCN, data augmentation criteria tuning, and dataset criteria tuning for pre-training. The most optimal 

DCN model is shown by PSPNet (152) (bpc), using the best parameters and criteria, with a mean Intersection over Union (mIoU) of 

83.34%, a significant mIoU increase of 43.09% compared to using only the default parameters and criteria (baselines). The validation 

results using the k-fold cross-validation method on the most optimal DCN model produced an average accuracy of 99.04%. PSPNet(152) 

(bpc) can detect and identify various objects with irregular shapes and sizes, can detect and identify various important objects affected 

by natural disasters such as flooded buildings and roads, and can detect and identify objects with small shapes such as vehicles and 

pools, which are the most challenging task for semantic segmentation network models. This study also shows that increasing the network 

layers in the PSPNet-(18, 34, 50, 101, 152) model, which uses the best parameters and criteria, improves the model's performance. The 

results of this study indicate the need to utilize a special dataset from aerial imagery originating from the Unmanned Aerial Vehicle 

(UAV) during the pre-training stage for transfer learning to improve DCN performance for further research.  
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I. INTRODUCTION 

Image segmentation is an essential topic in image 
processing and computer vision. Classification, detection, 
localization, and segmentation are the four primary steps in 
identifying objects in an image through image processing. 
Image segmentation can be defined as a problem of 
classifying pixels with semantic labels (semantic 
segmentation) or partitioning individual objects. In contrast, 
image classification must identify what is in the image. 
Semantic segmentation performs pixel-level labeling with a 
set of object categories for all image pixels, so it is generally 
a more difficult task than image classification, predicting a 
single label for the entire image [1]. In computer vision, 
semantic segmentation is a fundamental task that assigns a 
label to each pixel, aka pixel-level classification [2]. Since the 

advent of deep neural networks, segmentation has made 
tremendous progress. We refer to [1]–[4] for a full description 
of deep learning techniques for semantic segmentation. 

Numerous researchers are interested in image 
segmentation due to the numerous application domains that 
can be implemented. Conversely, increasing datasets are 
accessible over the internet and are becoming easier to acquire. 
Due to this convenience, it is necessary to automate image 
segmentation operations to handle various daily life 
challenges. These tasks can be in the form of urban remote 
sensing image segmentation to map land cover [5]–[7], river 
segmentation on remote sensing imagery [8], image 
segmentation for building extraction [9], [10], forest fire 
segmentation [11]–[14], segmentation of roads and buildings 
that diverse [15], and coconut tree segmentation [16]. 
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In recent years, image segmentation in the context of 
natural disasters has attracted considerable interest. It is one 
of the essential research topics in artificial intelligence and 
image processing. The advent of advanced technology for 
capturing natural disaster events has increased. An Unmanned 
Aerial Vehicle (UAV) is one such device that captures aerial 
images of natural disaster damage and the affected area. The 
use of aerial images for monitoring and responding to natural 
disasters is gaining popularity. Even for difficult-to-explore 
areas on the ground, it is possible to create aerial imagery 
rapidly. This image can then identify the locations most in 
need of support. Such image analysis is typically performed 
manually (manual interpretation with ordinary eyesight). The 
procedure is time-consuming and frequently yields incorrect 
findings. 

Until now, many methods have been proposed by 
researchers to produce accurate segmentation of aerial 
imagery. The current state-of-the-art methods are divided 
into two parts: models that rely on conventional handcrafted 
features, as done in studies [17]–[19], and deep neural 
networks. The benefit of using the latter is its ability to study 
end-to-end data. Driven by the highly developed success of 
Deep Convolutional Networks (DCN), several researchers 
used it for segmentation and natural disaster troubleshooting, 
including research [20] that used AlexNet to detect 
landslides and floods, detecting drifting buildings from 
aerial imagery before and after tsunamis used AlexNet and 
VGG [21], detecting objects and classifying damage after 
typhoons used Nazr-CNN [22], semantic segmentation of 
flooded areas with the integration of CNN and RNN 
networks [23], detecting flood areas used Generative 
Adversarial Networks (GAN) [24], extracting flooded areas 
from UAV imagery used the Fully Convolutional Network 
(FCN) based on Visual Geometry Group (VGG) [25], and 
identifying affected areas and access roads in post-disaster 
scenarios used multiple models for the binary semantic 
segmentation task and multi-class in aerial images, e.g., U-
Net, LinkNet, and ENet [26].  

Other studies analyzed and evaluated the performance of 
popular semantic segmentation methods named DeepLabv3+, 
Pyramid Scene Parsing Network (PSPNet), and ENet on 
problems related to natural disaster datasets [27], detecting 
and segmenting important objects in aerial footage of disaster 
locations used Mask-Region Based Convolutional Neural 
Networks (Mask-RCNN) and PSPNet [28], segmentation of 
damage to buildings after a natural disaster used MSNet [29], 
a self-attention-based semantic segmentation named ReDNet 
on a disaster UAV dataset and compared with three other 
advanced segmentation models: ENet, DeepLabv3+, and 
PSPNet [30], flood detection based on CNN AlexNet to 
extract flood-related features from disaster zone images [31], 
semantic segmentation of aerial images for post-flood 
landscape understanding by applying three advanced 
semantic segmentation networks namely ENet, PSPNet, and 
DeepLabv3+ [32], detecting buildings damaged after an 
earthquake used a network model Convolutional neural 
network VGG-16, VGG-19, and NASNet [33], semantic 
segmentation of natural disaster datasets used self-attention-
based methods combined with Global Average Pooling and 
U-Net [34], semantic segmentation of post-flood datasets with 
U-Net, PSPNet, and DeepLabV3+ [35], detecting flooding 

used segmentation with three deep neural networks: PSPNet, 
DeepLabV3, and U-Net [36], and extracted residential 
buildings with a modified Mask R-CNN [37], semantic 
segmentation of volcanic ash eruptions used SegNet and U-
Net convolutional neural networks for volcano monitoring in 
volcanic eruptions [38], landslide detection and identification 
used Lightweight Attention U-Net [39], finding buildings 
damaged by disasters used transfers-learning deep attention 
network (TDA-Net) [40], and semantic segmentation to detect 
landslides used U-Net [41], [42], and self-training method 
[43]. 

Although DCN is highly dependent on architectural 
modifications, as shown in several studies above, tuning and 
selecting the appropriate parameters and criteria allows us to 
have enormous potential to improve further DCN 
performance for aerial imagery segmentation of natural 
disaster-affected areas. The main challenge is to improve the 
performance of DCN to accurately produce aerial imagery 
semantic segmentation of natural disaster-affected areas. 
Therefore, this study presents a framework and reveals 
practical knowledge through experimental studies for aerial 
imagery segmentation of natural disaster-affected areas. We 
summarize the experiments carried out and the knowledge 
gained in the trials, which are our main contributions to this 
paper as follows: 

 Improve the performance of the network model for 
aerial imagery semantic segmentation of natural 
disaster-affected areas by integrating the Grid Search 
algorithm and DCN and validating the results with the 
k-fold cross-validation method. 

 Conduct comprehensive testing using several 
parameters, data augmentation, evaluation dataset of 
aerial imagery of natural disaster-affected areas, large-
scale datasets for pre-training, and DCN, which 
accurately produces the best parameters and criteria for 
aerial imagery semantic segmentation of natural 
disaster-affected areas. 

 Based on the results of the best parameters, appropriate 
data augmentation criteria, and suitable pre-training 
dataset criteria, we conducted a comprehensive test and 
produced the most optimal DCN performance for aerial 
imagery semantic segmentation of natural disaster-
affected areas. We utilize two semantic segmentation 
network models, U-Net [44] and PSPNet [45], two 
advanced semantic segmentation networks that have 
demonstrated promising performance on various 
segmentation benchmarks. We used the Residual 
Network (ResNet) architecture [46] as the backbone of 
an information encoder capable of extracting fine 
image patterns. Using the PSPNet model, we also 
determined the relationship between the number of 
layers and performance improvements, utilizing 
PSPNet-(18, 34, 50, 101, 152). 

 The U-Net and PSPNet models with the best parameters 
and criteria, resulting from this study, were compared 
with the same network model, which only used default 
parameters and criteria (baselines). We also compared 
the results of our study with those in the literature 
review. We conducted these comparisons to prove that 
our proposed framework has significantly increased 
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DCN's performance for aerial imagery semantic 
segmentation of natural disaster-affected areas. 

This study addresses recognizing aerial imagery of natural 
disaster-affected areas through semantic segmentation, 
resulting in improved DCN performance. Therefore, research 
that is closely related to the use of parameters, the use of data 
augmentation criteria, the use of dataset criteria in pre-
training, and the use of natural disaster aerial imagery datasets, 
we describe representatively in the following. 

A. Use of Parameters and Criteria on Deep Convolutional 

Networks for Aerial Imagery Segmentation 

Previous researchers have used parameters such as learning 
rate, data split, optimizer, and data augmentation criteria on 
DCN for segmentation. Research [21] used Stochastic 
Gradient Descent (SGD) with a learning rate of 0.001 and data 
augmentation with vertical and horizontal flipping. CNN was 
trained using Adam optimization with a learning rate of 1e-5 
and a batch size of 12, and RNN was trained using Adagrad 
with a learning rate of 0.01 and a batch size of 8 [23]. A 
learning rate of 0.0001 and a maximum epoch of 6 were used 
for all classes [25]. The model was trained using the Adam 
optimizer with a learning rate of 10-4 for 600 epochs and used 
horizontal and vertical flipping data augmentation [26]. [27], 
[32] used random shuffling, scaling, flipping, and random 
rotation data augmentation; the batch size was set to 2; for 
semantic segmentation implementing PSPNet used a learning 
rate of 0.0001; for ENet 0.0005; and DeepLabv3+ 0.01. The 
dataset was separated into training (60%), validation (20%), 
and testing (20%); the Mask-RCNN learning rate was set as 
10-3; and visual augmentation was done with zoom, blur, pixel 
dropout, adding clouds, and color equalization operation [28]. 
Research [29] trained the model using 80% of the dataset and 
tested it on the remaining 20% dataset, at 100 epochs, with an 
initial learning rate of 0.003, then reduced to 0.001 after 10 
epochs, and SGD was used as an optimizer with a batch size 
equal to 8. [30] used a learning rate of 0.0001 and 
augmentation of random shuffling, scaling, flipping, and 
random rotation. 

Divide the dataset into training, validation, and test sets, 
with 70% for training and 30% for validation and testing 
[32]. 70%, 15%, and 15% of the dataset were used for 
training, validation, and test sets, respectively, with 300 
epochs, and the learning rate was 0.0001 [33]. The learning 
rate of 0.001 and used random shuffling, scaling, flipping, 
and random rotation augmentations [34]. For U-Net, the 
learning rate of 0.01; for PSPNet and DeepLabV3+, the 
learning rate of 0.001; image augmentation used shuffling, 
rotation, scaling, shifting, and brightness contrast; Adam 
optimizer; and a batch size of 24 was used for all models 
[35]. For PSPNet and U-Net training, a learning rate of 0.001 
for 15 epochs; for DeepLabV3, a learning rate of 0.01 for 10 
epochs; and used albumentation tools for image 
augmentation that implement various image transformation 
operations such as Resize, ShiftScaleRotate, RGBShift, 
RandomBrightnessContrast, and Normalize [36]. The 
optimizer used in Mask R-CNN during training was SGD, 
with a learning rate of 0.0025 and a batch size of 3 [37]. 

Research [38] used a learning rate of 0.0001, batch size 
equal to 4, the number of epochs 100, Adam optimizer, data 
augmentation with horizontal flips, zoom, random noise, and 

rotations, and the data set was divided into two sets: training 
and validation respectively in the proportion of 80% and 20%. 
Research [39] used a learning rate of 1 × 10-5, the maximum 
number of epochs was 150, with a batch size of 16, the 
division of the dataset for training was 70%, and validation 
was 30%, and the Adam optimizer. Research [40] chose 
Adam as the optimizer, and the learning rate was 1 × 10-4. 
Research [41] used augmentation consisting of random 
rotations and vertical and horizontal flips; the model was 
trained for 200 epochs with a dynamic learning rate of 0.001, 
Adam was used as optimization, the model was trained with 
four different batch sizes (16, 32, 64, 128), and 30% of each 
dataset was used as validation data. Research [42] used the 
Adam optimizer with 100 epoc; the learning rate was 0.01. 
For the overall training setting, research [43] used the SGD 
optimizer, batch size set to 16, and used data augmentation 
random flipping, random resizing, and cropping. 

Research [20] resulted f-scores for landslide and flood 
detection in the range of 80%-90%, but only detected 1 class, 
[21] achieved a classification accuracy of 94%-96% in all 
conditions, but only detected 1 class, namely bulding, [23] 
obtained accuracy and mean Intersection over Union (mIoU) 
of semantic segmentation of 96% and 92%, but only used 1 
class, namely flooded areas, [24] resulted accuracy for flood 
segmentation, in rural areas 89%-95.5% and in urban areas 
80.5%-88%, [27] achieved the highest mIoU of 79.43% with 
the PSPNet method used 9 classes, [30] resulted a mIoU value 
of 80.27% for the PSPNet method with 9 classes, [31] had an 
accuracy of 91% for segmentation with only 1 class, namely 
flooding, [32] resulted a mIoU value for segmentation of 
80.35% used the PSPNet method and used 9 classes, [33] 
achieved the highest accuracy of 70% for the VGG-19 model 
used 3 building classes, namely normal, less damaged, and 
damaged, [34] achieved a PSPNet mIoU value of 79.43% for 9 
classes, and [35] resulted the best segmentation mIoU value of 
52.23% used the DeepLabV3+ (pseudo-labels) method. 
Research [38] resulted in a mIoU of 90.13% obtained for the 
U-Net architecture, and for SegNet, a mIoU value of 88%, 
calculated using a validation dataset, to extract volcanic ash 
eruption forms automatically. Research [39] resulted in mIoU, 
and F1_score values of Lightweight Attention U-Net achieved 
82.29% and 87.45%, which are the best performance for 
landslide segmentation. Research [41] achieved the highest 
mIoU value of 43%. Research [42] achieved an Area under the 
Precision-Recall curve (AUPRC) value exceeding 0.7. 

B. Exploration Study in Transfer Learning 

Previous researchers have used several natural disaster 
aerial imagery datasets. Here, we show what datasets the 
researchers used. Research [20], [31] used datasets from 
Google Earth. The AIST Building Change Detection 
(ABCD) dataset was used in the study [21]. Typhoon 
disaster dataset [22], UAV dataset from flooded area [23], 
[25], OpenStreetMap (OSM) dataset [26], High Resolution 
UAV Dataset (HRUD) [27], [30], [34], Volan2019 dataset 
[28], and the Instance Segmentation in Building Damage 
Assessment (ISBDA) dataset [29], used in each of these 
studies. The FloodNet dataset was used in studies [32], [35], 
[36]. Datasets from open sources such as 
images.google.com and images.baidu.com were used in the 
study [33], and datasets taken from the Geospatial 
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Information Authority of Japan (GSI) were used in the study 
[37]. Research [38] used the Etna_NETVIS dataset. The Red 
Relief Image Map (RRIM) dataset was used in the study [39]. 
The xView2 dataset, WHU Building, and other data from 
Google Earth were used in the study [40]. Research [41] 
used three different datasets created by RapidEye, the 
Normalized Vegetation Index (NDVI), and the digital 
elevation model (DEM). Synthetic Aperture Radar (SAR) 
datacubes were used in the study [42]. Research [43] used 
Sentinel-2 and ALOS PALSAR data. 

Several previous researchers have also used transfer 
learning with well-organized datasets; for example, research 
[22], [25], [26], [33], [36], [43] used ImageNet [47], research 
[28], [29] used Common Objects in Context (COCO) [48], 
and research [40] used a high-quality xBD dataset for the pre-
training model. 

The use of transfer learning in research [22] resulted in an 
overall accuracy for the best segmentation of 40.90% with the 
Nazr-CNN model for three damage classes, [25] resulted in 
the highest overall accuracy on FCN-8s of 95.520% for four 
classes: water, building, vegetation, and road, [26] achieved 
the highest mIoU for segmentation on the UNetUp (VGG16) 
model of 44.99% used only road, and building classes, [28] 
achieved the best performance mIoU of 32.17% and accuracy 
of 77.01% on the PSPNet model with class namely, flood area, 
debris, roads, and vegetation, [29] achieved an AP value 
(averaged over all IoU thresholds) for MSNet of 37.2%, [36] 
reached 56% mIoU on the PSPNet model, together with the 
Resnet-152 encoder, [37] resulted in the highest mAP value 
for segmentation used the Mask R-CNN model of 37.3% for 
four levels of damage, [40] resulted F1-scores (F1), precision 
(P), recall (R) on TDA-Net with respective values of 95.6%, 
94.9%, and 96.4% for detected damaged buildings, and [43] 
resulted the highest F1-score of 73.50%. 

The related studies above produced various accuracy 
values for aerial imagery segmentation according to the 
parameters and criteria used. The resulting accuracy value is 
quite high in several studies that only used one class or a small 
number of classes. However, the resulting accuracy is quite 
small in studies that used a large number of classes. High 
accuracy does not necessarily result in high mIoU values, so 
it is necessary to display mIoU values in each final test result 
in displaying segmentation results so that the accuracy of the 
DCN model used can be seen. Some of the mIoU values 
displayed in these related studies are still quite small, 
especially for segmentation tasks with many classes; this is 
due to the inaccuracy of the use of parameters and criteria for 
the DCN model. Our study used nine object classes and 
presented a complete performance evaluation consisting of 
accuracy, precision, recall, F1-score, and Intersection over 
Union (IoU). 

The previous studies that have been described 
representatively above used parameters (such as learning rate, 
data split, and optimizer), data augmentation criteria, and pre-
training dataset criteria that had been determined only based 
on their respective literature studies or only applied different 
settings in a trial-and-error manner, or only used the default 
parameters and criteria. None of these previous studies have 
improved DCN performance for aerial imagery semantic 
segmentation of natural disaster-affected areas, no one has 
used the Grid Search algorithm to tune DCN parameters (such 

as learning rate, data split, and optimizer), tuning data 
augmentation criteria, and tuning dataset criteria for pre-
training comprehensively for aerial imagery semantic 
segmentation of natural disaster-affected areas, no one has yet 
searched for the best combination of parameters and criteria, 
and no one has validated using the k-fold cross-validation 
method on the most optimal DCN model. 

These previous studies also have not conducted tests to 
verify the relationship between the number of layers and 
increased performance. No one has carried out transfer 
learning using a combination of general datasets (real-world 
images + urban images + road images) and a combination of 
special aerial imagery datasets originating from the UAV for 
aerial imagery semantic segmentation of natural disaster-
affected areas. No one has tested and compared model 
performance with several scenarios, namely using default 
parameters and criteria, using the best parameters, and using 
the best parameters and criteria. 

Our study proposes a framework for improving 
performance and exploring the application of DCN using the 
best parameters and criteria to accurately produce aerial 
imagery semantic segmentation of natural disaster-affected 
areas. Our study takes the initiative to perform aerial imagery 
semantic segmentation of natural disaster-affected areas by 
integrating the Grid Search algorithms and DCN. This study 
performs parameter and criteria tuning comprehensively 
using the Grid Search algorithm and validates the results 
using the k-fold cross-validation method, taking into account 
the parameters used in DCN, paying attention to various 
appropriate data augmentation methods, and paying attention 
to various datasets that are suitable for pre-training. 
Combinations of each parameter and criteria were tried to get 
the most optimal performance results in producing aerial 
imagery semantic segmentation of natural disaster-affected 
accurately. We provide the results of tuning the best 
combination of parameters and criteria and comparing 
performance with models using default parameters and 
criteria (baselines). We also try to optimize PSPNet with 
multiple layers using the best parameters and criteria. This 
effort is beneficial for revealing practical knowledge and fair 
comparison with several approaches/scenarios. 

We believe that transfer learning considerations make the 
aerial imagery semantic segmentation of natural disaster-
affected areas more reliable and knowledgeable. We validated 
the effect of general datasets (real-world, urban, or road 
images), a special dataset of aerial imagery derived from 
UAVs, and a combined dataset for transfer learning on the 
performance of DCNs for semantic segmentation. We also 
display the results of aerial imagery semantic segmentation of 
natural disaster-affected areas visually to see the accuracy of 
the DCN model. 

We organize this paper as follows: Section II of Materials 
and Method describes Deep Convolutional Networks (DCN), 
the dataset used, the Grid Search algorithm, the k-fold cross-
validation method, the implementation of semantic 
segmentation, and the proposed framework or method. The 
experimental results are presented and discussed in Results 
and Discussion in Section III. Finally, Section IV presents our 
conclusions and suggests further research in the future. 
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II. MATERIALS AND METHOD 

A. Deep Convolutional Networks (DCN) 

We mainly use U-Net [44] and PSPNet [45] as DCN 
models for semantic segmentation in this study and ResNet 
architecture [46] as the backbone. At the start of the test, we 
confirmed performance with the PSPNet(50) model and 
added layers to PSPNet(101). Next, we retest with various 
layers, such as PSPNet(18), PSPNet(34), and PSPNet(152). 
In addition, we compared the results with U-Net. All these 
network models use the best parameters, the appropriate data 
augmentation criteria, and the suitable pre-training dataset 
criteria and compare the results with the network models 
using the default parameters and criteria (baselines). 

1) U-Net: U-Net modifies and expands the FCN 
architecture so that the network uses fewer training images 
and generates more accurate segmentation. The objective and 
concept behind this strategy are to augment the conventional 
contract network with successive layers so that the 
upsampling operator replaces the pooling operator as this 
layer increases output resolution. One of the most significant 
changes to the U-Net architecture is upsampling. Many 
feature maps are included, allowing the network to propagate 
context information to higher-resolution layers. The 
architectural model is shaped like a U [44]. U-Net was 
initially designed for biomedical image segmentation tasks. In 
recent years, research has demonstrated that U-Net is also 
applicable and has significant potential for semantic 
segmentation of aerial imagery. 

2) PSPNet: Scene decomposition is a fundamental 
concept in computer vision based on semantic segmentation. 
Scene parsing aims to comprehensively understand the scene 
by predicting object labels, locations, and shapes. Previously 
developed frameworks for advanced scene decoding relied 
heavily on Fully Connected Networks (FCN). The usage of 
CNN presents a number of challenges because it is difficult to 
examine the variety of scenes. To overcome these challenges, 
the Pyramid Scene Parsing Network (PSPNet) was released 
[45]. Pixel prediction is based on FCN in PSPNet. In addition, 
the pixel-level features have been expanded to a series of built 
global pyramids in which local and global values are merged 
to produce more accurate final predictions. In addition, 
optimization techniques with highly supervised losses have 
been integrated. For the previous global scene construction on 
the final layer feature map of the neural network, the Pyramid 
Pooling Module was implemented to reduce the loss of 
context information between distinct sub-regions. This 
module has operations under four different stages of the 
pyramid. PSPNet is a proven and effective pyramid scene 
parsing network for comprehending complex scenes. PSPNet 
achieves state-of-the-art performance on various datasets, 
including the 2016 ImageNet scene decoding, 2012 PASCAL 
VOC, and Cityscapes benchmarks. PSPNet utilizes ResNet as 
its backbone with an extended network to extract feature maps. 
Then a 4-level pyramid pooling is applied to the feature map 
to extract the previous global context. The final prediction 
map is produced by combining these global priorities with the 
original feature map, followed by a convolution layer. 

3) ResNet:  The PSPNet model utilizes a backbone 
capable of extracting fine patterns of images in the form of an 
information encoder. A Microsoft Research team developed 
deep Residual Learning for Image Recognition to solve the 
fundamental issues of VGG and AlexNet. The scalability of 
the network is a challenge for AlexNet and VGG. As 
increasingly deep networks begin to coalesce, the degradation 
problem becomes apparent. As the network depth increases, 
the accuracy saturates and then rapidly falls. ResNet is based 
on implementing a residual block of "identity shortcut 
connections" that traverse one or more layers. When the 
identity mapping reaches optimal, it pushes the residual to 
zero and matches the identity mapping. With these actions and 
modifications, ResNet outperforms current state-of-the-art 
convolution networks [46]. 

B. Datasets 

The datasets used in this study are divided into pre-training 
and evaluation datasets for training, validation, and testing. 
The selection of the two kinds of datasets is based on the 
availability of datasets that include segmentation and 
annotations and are publicly available and easily accessible. 
The datasets used in this study and their characteristics are 
shown in Table I. 

1) Pre-Training Dataset:  For the pre-training dataset, 
we used two types of external datasets: general datasets (real-
world images, urban images, or road images) and special 
datasets of aerial imagery derived from UAVs. Both types of 
datasets were tested to verify the effect of these datasets on 
DCN performance for semantic segmentation. In order to 
successfully optimize the DCN model for semantic segmentation, 
a large number of pre-trained datasets are required. We define a 
dataset that is larger in scale than the evaluation dataset, is easy 
to obtain, and has segmentation annotations. The transfer 
learning procedure consists of pre-training with a large-scale 
dataset and training by a relatively small evaluation dataset. 
However, due to the limited capabilities of personal computers 
and the availability of existing datasets, we limited the number of 
images in each dataset, as shown in Table I. We selected the 
COCO, VOC, Cityscapes, DSRS, and Mapillary Vistas datasets 
for the pre-training datasets containing real-world, urban, or road 
images and the USS and Semantic Drone datasets derived from 
UAV aerial imagery. The VOC and DSRS datasets have a 
single label on each image, while the COCO, Cityscapes, 
Mapillary Vistas, USS, and Semantic Drone datasets have 
multiple labels. We collected these datasets from the relevant 
sites (COCO, VOC, Cityscapes, Mapillary Vistas, USS, and 
Semantic Drone) and the data science community site Kaggle 
(DSRS). In transfer learning, a trained model is needed; this 
trained model is called a pre-trained model. Pre-trained 
models are usually already trained on larger, structured, and 
labeled datasets. Currently, many pre-trained models are 
provided for various needs, such as pre-trained models for 
image classification and object detection. Still, obtaining a 
pre-trained model for image segmentation that fits the overall 
DCN model we use in this study isn't easy. Therefore, in this 
study, we use all of the above datasets and their annotations 
in the pre-training process to create their pre-trained models 
to get a special pre-trained model for image segmentation and 
have a good quality pre-trained model.

2325



TABLE I 
DATASET DETAILS 

Dataset name Types of images Objective 
The number of images that 

match the segmentation 

Resolution of 

images 

Annotation 

type 

Common Objects in Context 
(COCO) [48] 

General (real-
world images) 

Pre-training 5000 Varies in size Multiple 
labels 

PASCAL Visual Object 
Classes (VOC) [49] 

General (real-
world images) 

Pre-training 2913 Varies in size Single label 

Cityscapes [50] General (urban 
images) 

Pre-training 2975 2048 × 1024 Multiple 
labels 

Dira-Simulator-Road-
Segment (DSRS) [51] 

General (road 
images) 

Pre-training 5000 320 × 160 Single label 

Mapillary Vistas [52] General (urban 
images) 

Pre-training 5000 Varies in size Multiple 
labels 

Combined general dataset 
(balanced) 

General Pre-training 6250 Varies in size Multiple 
labels 

Combined general dataset 
(unbalanced) 

General Pre-training 20888 Varies in size Multiple 
labels 

UAVid Semantic 
Segmentation (USS) [53] 

Aerial imagery 
(UAV) 

Pre-training 270 Average 3840 × 
2160 

Multiple 
labels 

Semantic Drone [54] Aerial imagery 
(UAV) 

Pre-training 400 6000 × 4000 Multiple 
labels 

Combined aerial imagery 
dataset 

Aerial imagery 
(UAV) 

Pre-training 670 Varies in size Multiple 
labels 

FloodNet [32] Aerial imagery 
(UAV) 

Evaluation 
(training, validation, 
and testing) 

2343 Average 4000 × 
3000 

Multiple 
labels 

2) Evaluation Dataset:  We use FloodNet as an 
evaluation dataset for training, validation, and testing in 
image recognition for aerial imagery semantic segmentation 
of natural disaster-affected areas, which are aerial imagery 
datasets originating from UAVs. We obtained this dataset 
from research [32]using high-resolution aerial image data 
collection to understand post-disaster (flood) landscapes. 
FloodNet delivers high-resolution images taken from low 
altitudes, which have an advantage over satellite images 
captured from higher altitudes that clouds and smoke may 
obscure. The collection was acquired using a small UAV 
platform, DJI Mavic Pro quadcopters, at an altitude of 60 
meters, resulting in images with a very high spatial resolution 
(about 1.5 centimeters) that distinguishes it from previous 
natural disaster datasets. Post-flood damage in the affected 
area is shown in all images. This dataset contains pixel-level 
semantic segmentation annotations. There are 2343 images 
and their respective annotations, categorized into 9 classes: 
building-flooded, building-non-flooded, road-flooded, road-
flooded, road-non-flooded, water, tree, vehicle, pool, and 
grass. 

C. Implementation Details 

1) Optimization of Parameters and Criteria Using Grid 

Search Algorithm and K-Fold Cross-Validation Method:  The 
Grid Search (GS) algorithm is a complete search method 
with a uniform grid in the search parameter space defined. 
The primary purpose of this method is to identify optimal 
model parameters so that model performance can be 

improved as much as possible [55]. The basic principle of 
the GS method is to divide the grid into a certain range and 
traverse all points in the network with the parameter values 
used. Finally, the parameter with the highest accuracy was 
determined as the best parameter [56]. GS was developed to 
match parameters and criteria and optimize the solution of 
complex problems, especially in this study in accurately 
producing aerial imagery semantic segmentation of natural 
disaster-affected areas. 

The Grid Search algorithm is used in this study to be 
tuning and completely identify the parameters and criteria 
that lead to the highest accuracy. The parameters consist of 
the learning rate, data split, and optimizer. The criteria used 
consisted of data augmentation criteria and pre-training 
dataset criteria. We use several augmentation methods on 
the data augmentation criteria, namely photometric 
distortion, geometric distortion, cutout, and a combination 
of all data augmentation methods. The pre-training dataset 
criteria consist of general and special aerial imagery datasets 
using the datasets described in Table I. The highest accuracy 
of the DCN model for semantic segmentation with all 
parameters and criteria is compared to determine the best 
combination of parameters and criteria to produce the most 
optimal model performance in accurately producing aerial 
imagery semantic segmentation of natural disaster-affected 
areas. 

The results of the most optimal model using the best 
parameters and criteria were validated based on the cross-
validation method using the k-fold cross-validation method. 
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The performance of the DCN model can be improved by 
using a combination of GS and k-fold cross-validation, and 
the model’s performance can be evaluated based on the 
cross-validation method. In k-fold cross-validation, the 
training set is first divided into k subsets of equal size. The 
model will be trained and tested k times. In each training 
process, one data set will be used as a test, while the rest will 
be used as train data. Sequentially, each subset is tested by 
a model trained on another k−1 subset. Therefore, each 
sample in the training set is tested once. As a result, the 
cross-validation accuracy will be the percentage of data 
tested correctly. The estimated k-fold cross-validation of all 

model accuracy is calculated by the average of each k-model 
accuracy measurement (Equation 1), where A  is the 
accuracy of the model and k is the number of subsets or 
groups used. 

 Cross Validation Accuracy (CVA) = 
1

k
∑ Ai

k
i=1  (1) 

The flowchart of the Grid Search algorithm with k-fold 
cross-validation proposed in this study is shown in Fig. 1, and 
the complete parameters and criteria used in the Grid Search 
algorithm are shown in Table II.  

 
Fig. 1   Flowchart of the grid search algorithm with k-fold cross-validation 
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TABLE II 
PARAMETERS AND CRITERIA USED IN THE GRID SEARCH ALGORITHM 

Parameters/criteria Range 

Learning rate 0.0000001 … 0.01 

Data split 50% for training and validation, and 50% for 
testing 
60% for training and validation and 40% for testing 
70% for training and validation, and 30% for 
testing 
80% for training and validation, and 20% for 
testing 
90% for training and validation, and 10% for 
testing 

Optimizer Adaptive Moment Estimation (Adam), Stochastic 
Gradient Descent (SGD), and Root Mean Square 
Propagation (RMSProp) 

Data augmentation Photometric distortion: brightness, contrast, 
saturation, dan noise; Geometric distortion: flipping 
(horizontal dan vertical), rotating (30°, 60°, 90°), 
random scaling (X scale, Y scale); Cutout; and 
Combination of all data augmentation methods 

Pre-training dataset General pre-training dataset: COCO, VOC, 
Cityscapes, DSRS, Mapillary Vistas, combined 
general dataset (balanced), combined general 
dataset (unbalanced); and Aerial imagery pre-
training dataset: USS, Semantic Drone, combined 
aerial imagery dataset 

 

2) Implementation of Semantic Segmentation:  This 
section explains how to implement DCN for aerial imagery 
semantic segmentation of natural disaster-affected areas. The 
Keras framework was used to build the model and implement 
the segmentation network with the TensorFlow backend. All 
semantic segmentation experiments were run using a personal 
computer (PC) with a 12th Gen Intel® Core™ i7 processor, 
with turbo frequency up to 4.90 GHz 12-core, 32 GB of RAM, 
and a 10 GB NVIDIA GeForce RTX 3080 GPU. 
This study uses a categorical cross-entropy loss function 
(Equation 2), where y

i
 is the true label (the ground truth label 

for each image labeled), y�
i
 is the predicted label (the predicted 

result of an image classified), N represents the total number 
of samples used for each epoch, and Loss is the average cross-
entropy between the desired distribution y�

i
 and the ground 

truth y
i
. 

All models were trained for 50 epochs for a fair comparison 
between different models. During the training and validation 
process, we resized all original images to 473 × 473 pixels, 
the batch size was equal to 2, and the number of steps 
(no_of_step) was equal to the number of datasets used divided 
by the number of batches. We also use a checkpoint callback 
operation to save the best model for the duration of the epoch. 
In addition, we apply the early stopping method to prevent 
overfitting by stopping the training process when the loss train 
does not decrease. 

To assess the performance of the DCN model for semantic 
segmentation, this study presents a performance evaluation 
consisting of accuracy, precision, recall, F1-score, and 
Intersection over Union (IoU), which is used based on a 
confusion matrix with four main factors, such as false 
negative (FN), false positive (FP), true negative (TN), and 
true positive (TP). 

TP is a pixel correctly predicted according to its class, 
which includes 9 object classes: building-flooded, building-

non-flooded, road-flooded, road-non-flooded, water, tree, 
vehicle, pool, and grass. FP is a pixel incorrectly identified 
as belonging to a class but actually does not belong to that 
class. FP represents the number of false positives that occur 
when a pixel is not of class, incorrectly identified as a certain 
object class. FN is a pixel incorrectly identified as not 
belonging to a class when in fact, it does. FN represents the 
number of false negatives that occur when the actual class 
of an object is incorrectly identified as a pixel instead of its 
class. TN is a correctly predicted pixel that does not belong 
to all classes. 

Accuracy is the ratio between the number of correctly 
predicted pixels and the total number of pixels. Accuracy is 
calculated as the number of TP and TN pixels for each class 
divided by the total number of pixels (Equation 3). Precision 
counts how many positive predictions belong to the positive 
class (Equation 4). Recall represents the number of positive 
predictions from all positive samples (Equation 5). The F1-
score provides a numerical value to balance precision and 
recall problems (Equation 6). For each class, the IoU pixels 
are calculated by dividing all the TP pixels corresponding to 
that class by the number of TP, FP, and FN cases (Equation 
7). The average pixel IoU (mIoU) across all classes reflects 
the overall performance of the DCN model. 

 Loss = -
1

N
∑ yi.logy�i+�1-yi�.log�1-y�i�

N
i=1  (2) 

 Accuracy = 
TP + TN

TP + TN + FP + FN
 (3) 

 Precision = 
TP

TP + FP
 (4) 

 Recall = 
TP

TP + FN
 (5) 

 F1-score = 
2 × Precision × Recall

Precision + Recall
 (6) 

 IoU = 
TP

TP + FP + FN
 (7) 

The proposed overall framework or methodology for 
improving the performance of deep convolutional networks 
for aerial imagery segmentation of natural disaster-affected 
areas is shown in Fig. 2. Segmentation results display 
performance evaluation, segmented objects, object class 
labels, object class probability, and the number of each object. 

III. RESULTS AND DISCUSSION 

A. Parameters and Criteria Testing Results 

This section presents the test results of comprehensively 
tuning the parameters and criteria using the Grid Search 
algorithms and DCN for aerial imagery semantic 
segmentation of natural disaster-affected areas. The detailed 
settings for tuning parameters and criteria according to the 
parameters and criteria are shown in Table II. The test results 
for tuning parameters on DCN using the Grid Search 
algorithm are shown in Fig. 3, which produces 90 
combinations of parameters. The best parameters of the DCN 
model for aerial imagery semantic segmentation of natural 
disaster-affected areas with the highest accuracy of 98.48% 
on a combination of parameters, namely: learning rate of 
0.0001, data split with 90% for training and validation (70% 
training and 20% validation), and 10% for testing, and the 
optimizer used is RMSProp.
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Fig. 2  Overview of the proposed framework for improving the performance of deep convolutional networks for aerial imagery semantic segmentation of natural 
disaster-affected areas 

 

  

 

 

Fig. 3  The test results of tuning parameters on deep convolutional networks using a grid search algorithm for aerial imagery semantic segmentation of natural 
disaster-affected areas 
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Fig. 4 shows the test results of tuning the data 
augmentation criteria. We confirm that the appropriate data 
augmentation method is used to improve DCN performance 
and help prevent overfitting with the highest accuracy of 
91.10% by using a geometric distortion data augmentation 
method consisting of flipping (horizontal and vertical), 
rotating (30°, 60°, 90°), and random scaling (X scale, Y 
scale). 

 
Fig. 4  The test results of tuning data augmentation criteria using a grid search 
algorithm for aerial imagery semantic segmentation of natural disaster-
affected areas 

What kind of dataset is suitable for transfer learning in 
aerial imagery segmentation of natural disaster-affected areas 
is shown in the test results of tuning dataset criteria for pre-
training using a Grid Search algorithm, which leads to the 
highest accuracy to produce the most optimal performance of 
the DCN model. We compared several datasets in line with 
transfer learning. To confirm the effect of pre-training in a 
dataset, we performed transfer learning using a general 
dataset (real-world images, urban images, or road images) and 
a special dataset of aerial imagery derived from UAVs against 
an evaluation dataset (FloodNet). We used five general 
datasets, two special datasets of aerial imagery, and three 
combined datasets, which are in line with transfer learning 
and according to the object classes used in aerial imagery 
segmentation to improve DCN performance. Fig. 5 shows the 
effect of pre-training with all datasets. 

As shown in Fig. 5, the Cityscapes pre-training model 
achieved the best level of performance for transfer learning 
with a single pre-training dataset, which had an accuracy of 
92.396%. This is because the Cityscapes dataset is a general 
dataset that contains images of urban landscapes and multiple 
labels and has a fairly high image resolution, so it is still 
suitable for transfer learning, specifically for a single dataset, 
to aerial imagery of natural disaster-affected areas datasets 
which contain images of more complex urban and natural 
landscapes. 

We want to improve accuracy by using combined datasets; 
we are trying to organize larger datasets. As shown in Fig. 5, 
the combined general dataset (unbalanced) pre-training model 
achieved the best performance level for transfer learning with 
the combined pre-training dataset, which had an accuracy of 
92.4%. The combined dataset combines all general pre-
training datasets (COCO + VOC + Cityscapes + DSRS + 
Mapillary Vistas), multiple labels, good segmentation 

annotations, and complex images (real-world images + urban 
images + road images). 

 
Fig. 5  Transfer learning on the evaluation dataset (FloodNet) with all pre-
training datasets 

Overall, the combined general dataset (unbalanced) pre-
training model achieved the best performance across all 
transferred tasks, the second best was the combined aerial 
imagery dataset pre-training model, and the third best was 
the Cityscapes pre-training model. The difference between 
the combined general dataset (unbalanced) and the second 
best dataset, the combined aerial imagery dataset, is 0.002% 
(92.4% − 92.398%), and 0.004% (92.4% − 92.396%) in the 
third best dataset, Cityscapes. It can be seen that the 
difference in the results of the combined general dataset 
(unbalanced) and combined aerial imagery dataset is very 
small (0.002%), even though the difference in the number of 
images owned is very large; namely, the combined general 
dataset (unbalanced) has 20,888 images, while the combined 
aerial imagery dataset only has 670 images. We gained 
knowledge that the combined aerial imagery pre-training 
dataset derived from the UAV, which has high image 
resolution, good segmentation annotations, and multiple 
labels, is very precise and has a great opportunity for transfer 
learning to the aerial imagery of natural disaster-affected 
areas dataset, provided that it has a large enough number of 
images. The combined aerial imagery dataset as a pre-
training dataset has similar characteristics to the evaluation 
dataset (FloodNet), namely the similarity of aerial imagery 
from UAVs, which contains images of more complex urban 
and natural landscapes. However, this cannot be done 
because the special dataset of aerial imagery from UAVs for 
pre-training has not been available with a large enough size 
to date. 

Another piece of knowledge we gained was to practically 
increase the amount of data simply by combining multiple 
datasets and proving that the combined datasets increase the 
level of performance compared to a pre-training of only one 
dataset. Combining multiple datasets containing complex 
images (real-world images + urban images + road images) and 
multiple labels can improve accuracy. We also reveal that the 
carefully annotated composite of pre-training datasets 
effectively trains aerial imagery datasets for semantic 
segmentation tasks. 

B. Results of Deep Convolutional Networks (DCN) 

Performance Testing 

After testing the parameter tuning on the DCN, testing the 
data augmentation criteria tuning, and testing the dataset 
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criteria tuning for pre-training comprehensively using the 
Grid Search algorithm for aerial imagery semantic 
segmentation of natural disaster-affected areas, which 
produces the best parameters and criteria with the highest 
accuracy results, we apply it to two semantic segmentation 
network models, namely: U-Net and PSPNet, to produce the 
most optimal DCN performance. We also carried out 
comprehensive testing of the PSPNet model with multiple 
layers to verify the relationship between the number of layers 
and performance improvements. We used PSPNet-(18, 34, 50, 
101, 152). 

Tests were carried out with several scenarios, and 
performance comparisons were made with models using 
default parameters and criteria (baselines). Each PSPNet 
model in all layers and the U-Net model were tested with 
several scenarios: using the default parameters and criteria, 
the best parameters, and the best parameters and criteria. The 
default parameters and criteria for the U-Net model were 
obtained from the study [44], and the default parameters and 
criteria for the PSPNet model were obtained from the study 

[45]. To distinguish all these scenarios, we added a letter 
abbreviation behind the model that uses the best parameters 
and criteria. The abbreviation with the letter "bp" means that 
the model uses the best parameters, while the abbreviation 
with the letter "bpc" means that the model uses the best 
parameters and criteria. A model that does not have an 
additional letter abbreviation behind it is a model that uses 
default parameters and criteria (baselines). The model, which 
uses additional abbreviations for the letters “bp” and “bpc,” is 
the result of our proposed framework (this study). 

The comparison of the results of the overall performance 
testing of the U-Net and PSPNet models is presented in Table 
III, and the results of the network model testing with 
intersection over union values for each object class are shown 
in Table IV. 

Based on the test results shown in Table III and Table IV, 
the most optimal DCN performance is achieved by the 
PSPNet(152) (bpc) model that uses the ResNet-152 
architecture as the backbone. The network model fully uses 
the best parameters and criteria. 

TABLE III 
PERFORMANCE TESTING RESULTS OF DEEP CONVOLUTIONAL NETWORKS MODELS FOR AERIAL IMAGERY SEMANTIC SEGMENTATION OF NATURAL DISASTER-

AFFECTED AREAS 

Model Parameters and criteria Accuracy (%) Precision (%) Recall (%) F1-score (%) 

U-Net Default 95.44 71.20 61.83 64.37 
U-Net (bp) Best parameters 96.71 76.28 63.01 64.69 
U-Net (bpc) Best parameters and criteria 96.51 76.73 67.29 69.41 
PSPNet(18) Default 95.57 76.98 48.97 54.30 
PSPNet(18) (bp) Best parameters 94.62 71.47 57.07 60.44 
PSPNet(18) (bpc) Best parameters and criteria 96.65 81.93 60.68 65.74 
PSPNet(34) Default 94.27 65.83 55.02 56.66 
PSPNet(34) (bp) Best parameters 96.89 84.12 60.94 67.21 
PSPNet(34) (bpc) Best parameters and criteria 96.60 80.97 63.34 70.17 
PSPNet(50) Default 96.16 75.65 52.92 57.69 
PSPNet(50) (bp) Best parameters 96.75 75.35 72.02 73.44 
PSPNet(50) (bpc) Best parameters and criteria 97.23 77.47 73.97 75.44 
PSPNet(101) Default 93.46 53.81 43.13 44.40 
PSPNet(101) (bp) Best parameters 97.44 89.44 71.58 77.52 
PSPNet(101) (bpc) Best parameters and criteria 98.88 90.39 89.07 89.64 
PSPNet(152) Default 95.02 71.12 50.33 54.17 
PSPNet(152) (bp) Best parameters 97.79 82.34 81.39 81.73 
PSPNet(152) (bpc) Best parameters and criteria 98.99 90.84 90.47 90.65 

TABLE IV 
PERFORMANCE TESTING RESULTS OF DEEP CONVOLUTIONAL NETWORKS MODELS WITH INTERSECTION OVER UNION VALUE (IN %) FOR EACH OBJECT CLASS 

Model 
Building-

flooded 

Building-

non-flooded 

Road-

flooded 

Road-non-

flooded 
Water Tree Vehicle Pool Grass mIoU 

U-Net 49.28 54.45 30.28 52.67 53.25 64.79 22.44 39.80 74.81 49.09 
U-Net (bp) 0.10 51.40 28.12 71.86 62.43 75.54 41.53 58.53 83.68 52.58 
U-Net (bpc) 65.93 60.99 30.39 62.73 59.42 69.92 30.57 35.26 81.73 55.22 
PSPNet(18) 0.77 61.10 6.79 67.70 49.51 72.82 18.96 34.04 73.44 42.79 
PSPNet(18) (bp) 57.65 49.88 27.04 55.07 50.25 46.04 9.32 43.23 71.38 45.54 
PSPNet(18) (bpc) 70.27 52.91 35.34 69.15 57.70 72.54 27.23 8.47 82.17 52.86 
PSPNet(34) 55.63 50.55 28.81 46.26 52.25 35.10 2.19 38.37 70.93 42.23 
PSPNet(34) (bp) 67.83 53.73 32.70 68.53 66.05 73.80 9.19 34.87 82.74 54.38 
PSPNet(34) (bpc) 49.01 66.97 29.93 66.65 59.75 73.80 28.64 49.00 80.91 56.07 
PSPNet(50) 45.57 51.56 35.74 53.53 59.04 68.47 8.83 2.80 80.13 45.07 
PSPNet(50) (bp) 66.05 67.77 49.03 60.11 63.67 72.18 26.82 49.02 81.87 59.61 
PSPNet(50) (bpc) 67.24 66.36 53.70 66.48 67.09 73.44 32.04 47.04 84.33 61.97 
PSPNet(101) 4.70 38.11 26.62 28.13 47.32 48.73 11.79 11.62 63.72 31.19 
PSPNet(101) (bp) 74.54 76.13 61.68 76.19 78.46 67.78 20.64 52.65 83.64 65.75 
PSPNet(101) (bpc) 81.96 87.57 71.22 88.75 83.42 90.88 64.21 74.66 92.73 81.71 
PSPNet(152) 12.81 53.19 30.45 43.01 48.90 65.48 11.44 24.21 72.75 40.25 
PSPNet(152) (bp) 79.25 76.29 68.85 72.55 74.52 77.36 39.27 57.67 86.56 70.26 
PSPNet(152) (bpc) 84.55 88.83 75.56 88.77 86.07 90.89 63.94 77.69 93.77 83.34 
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Based on the test results, it is also proven that the 
PSPNet(152) (bpc) model can detect and identify various 
objects with irregular shapes and sizes, can detect and identify 
various important objects affected by natural disasters, such 
as buildings and roads that are flooded, and can detect and 
identify objects with small shapes such as vehicles and pools, 
which is the most challenging task for semantic segmentation 
network models. This ability can be seen from the fairly high 
value of IoU for each object class and mIoU. The test results 
in this study prove that there is an increase in DCN's 
performance in producing aerial imagery semantic 
segmentation of natural disaster-affected areas accurately. 

Based on the test results, we learned that using the best 
parameters, appropriate data augmentation criteria, and suitable 
pre-training dataset criteria can significantly improve DCN 
performance in aerial imagery semantic segmentation of 
natural disaster-affected areas, compared to using only default 
parameters and criteria (baselines). In addition, in scenarios that 
use the best parameters and scenarios that use the best 
parameters and criteria, the effect of increasing the number of 
layers in the PSPNet-(18, 34, 50, 101, 152) model results in an 
increase in the performance of the network model, which can 
be seen from the rise in mIoU value. 

Our test results have advantages compared to the results of 
tests carried out by several studies in the literature review, 
which also use FloodNet as an evaluation dataset for training, 
validation, and testing in recognizing aerial images of natural 
disasters with semantic segmentation. In the study [32], it 
produced a mIoU value of 80.35%, which is the highest mIoU 
value in the study for the PSPNet(101) model, while in our 
study, it produced a higher mIoU value of 81.71% for the 
same model PSPNet(101). In the study [35], the mIoU value 
for the U-Net model was 23.9%, and the PSPNet(101) model 

was 46.65%, while in our study, the higher mIoU value was 
55.22% for the U-Net model and 81.71% for the PSPNet(101) 
model. In the study [36], the highest mIoU value for the 
PSPNet(152) model was 56%, while in our study, the highest 
mIoU value for the PSPNet(152) model was 83.34%. 

The results of the most optimal DCN model using the best 
parameters and criteria, namely the PSPNet(152) (bpc) model, 
were validated using the k-fold cross-validation method to 
evaluate the performance and validate the accuracy of the 
model. The validation results are shown in Table V. To 
visually see the accuracy of the DCN model in displaying the 
results of the aerial imagery semantic segmentation of natural 
disaster-affected areas. We present a visual comparison of the 
DCN model using the best parameters and criteria in Fig. 6. 

TABLE V 
RESULTS OF K-FOLD CROSS-VALIDATION ON DEEP CONVOLUTIONAL 

NETWORKS OPTIMAL MODEL 

K-fold 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

mIoU 

(%) 

1 99.09 89.49 91.40 90.37 82.93 

2 98.99 89.70 90.37 90.00 82.35 

3 99.03 90.64 90.88 90.74 83.47 

4 99.08 91.14 91.46 91.28 84.32 

5 99.08 91.24 91.34 91.28 84.36 

6 99.05 91.26 90.80 91.02 83.94 

7 99.05 91.11 91.02 91.06 83.99 

8 99.02 91.13 90.80 90.96 83.84 

9 99.03 91.18 90.69 90.93 83.79 

10 98.99 90.84 90.47 90.65 83.34 

Average 99.04 90.77 90.92 90.83 83.63 

 

 

 

        

        

        

        
(a) 

Aerial imagery of 
natural disasters-

affected areas 

(b)  
Ground truth 

(c)  
U-Net (bpc) 

(d)  
PSPNet(18)  

(bpc) 

(e)  
PSPNet(34)  

(bpc) 

(f)  
PSPNet(50)  

(bpc) 

(g)  
PSPNet(101) 

(bpc) 

(h)  
PSPNet(152) 

(bpc) 

Fig. 6  Visual comparison of deep convolutional networks model for aerial imagery semantic segmentation of natural disaster-affected areas using the best 
parameters and criteria 
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IV. CONCLUSION 

This study revealed an effective way of improving the 
performance of Deep Convolutional Networks (DCN) for 
aerial imagery semantic segmentation of natural disaster-
affected areas. An experimental study was conducted using 
the parameters in DCN, the appropriate data augmentation 
criteria, and the suitable dataset criteria in pre-training to 
produce the most optimal performance. In this study, we have 
integrated the Grid Search algorithm and DCN, and validated 
the results with the k-fold cross-validation method. The Grid 
Search algorithm performs parameter tuning on DCN, data 
augmentation criteria tuning, and dataset criteria tuning for 
pre-training. 

This study uses U-Net and PSPNet as DCN models for 
semantic segmentation. The results of this study indicate that 
the Grid Search algorithm obtained the best parameters and 
criteria and improved the performance of the two models used. 
The most optimal DCN performance is achieved by the 
PSPNet(152) (bpc) model, which fully uses the best 
parameters and criteria, with an accuracy value of 98.99%, 
precision of 90.84%, recall of 90.47%, f1-score of 90.65%, 
and mean intersection over union (mIoU) of 83.34%. The 
validation results using the k-fold cross-validation method on 
the most optimal DCN model, namely PSPNet(152) (bpc), 
resulting in an average accuracy of 99.04%, precision of 
90.77%, recall of 90.92%, f1-score of 90.83%, and mIoU of 
83.63%. Significantly mIoU increased by 43.09% (83.34% − 
40.25%) in the PSPNet(152) (bpc) model compared to only 
using default parameters and criteria (baselines). Likewise for 
other models, namely U-Net (bpc), PSPNet(18) (bpc), 
PSPNet(34) (bpc), PSPNet(50) (bpc), and PSPNet(101) (bpc), 
results in increased mIoU compared to only using default 
parameters and criteria (baselines). 

The PSPNet(152) (bpc) model is able to detect and identify 
various objects with irregular shapes and sizes, is able to 
detect and identify various important objects affected by 
natural disasters such as flooded buildings and roads, and is 
able to detect and identify objects with small shapes such as 
vehicles and pools, which is the most challenging task for 
semantic segmentation network models. This capability can 
be seen from the results of a fairly high value in IoU for each 
object class, the mIoU value, and the visual display results. 
This study also proves that the effect of increasing the number 
of layers in the PSPNet-(18, 34, 50, 101, 152) model results 
in an increase in the model’s performance. The results of this 
study prove that the proposed framework contributes to 
improving DCN performance to accurately produce aerial 
imagery semantic segmentation of natural disaster-affected 
areas. 

We obtained several knowledge findings in this study, 
namely: 1) the combined aerial imagery pre-training dataset 
originating from the UAV, which has high image resolution, 
good segmentation annotations, and multiple labels, is very 
precise and has great opportunities for transfer learning of the 
dataset aerial imagery of areas affected by natural disasters, 
provided that the number of images is large enough. So for 
future research, we suggest the need to utilize a special dataset 
from aerial imagery originating from UAVs at the pre-training 
stage for transfer learning in improving DCN performance; 2) 
increase the amount of data practically by simply combining 

multiple datasets and proving the combined datasets increase 
the level of performance compared to pre-training only one 
dataset. We suggest that for future research, it is necessary to 
combine multiple datasets containing complex images (real-
world images + urban images + road images) and multiple 
labels to improve accuracy; 3) carefully annotated combined 
pre-training datasets, effectively training aerial imagery 
datasets for semantic segmentation tasks; and 4) using the best 
parameters, appropriate data augmentation criteria, and 
suitable pre-training dataset criteria can significantly improve 
DCN's performance in aerial imagery semantic segmentation 
of natural disaster-affected areas, compared to only using 
default parameters and criteria (baselines). 

We also see opportunities for further research. With the 
advent of Transformers, it can also be explored for aerial 
imagery semantic segmentation of natural disaster-affected 
areas and compare the results with DCN to obtain the most 
optimal performance. 
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