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Abstract— There has been an increased reliance on interconnected Cyber-Physical Systems (CPS) applications. This reliance has caused 

tremendous growth in high assurance challenges. Due to the functional interdependence between the internal systems of CPS 

applications, the utilities' ability to reliably provide services could be disrupted if security threats are not addressed. To address this 

challenge, we propose a multi-level, multi-agent detection and response architecture built on the formalisms of Hidden Markov Models 

(HMM) and Markov Decision Processes (MDP). We have evaluated the performance of the proposed architecture on one of the critical 

smart grid applications, Advanced Metering Infrastructure (AMI). This paper utilizes a simulation tool called SecAMI for performance 

evaluation. A Stealthy attack scenario contains multiple distinct multi-stage attacks deployed concurrently in a network to compromise 

the system and stop several critical services in a CPS. The results show that the proposed architecture effectively detects and responds 

to stealthy attack scenarios against Cyber-Physical Systems. In particular, the simulation results show that the proposed system can 

preserve the availability of more than 93% of the AMI network under stealthy attacks. A future study may evaluate the effectiveness 

of various stealthy attack strategies and detection and response systems. The high availability of any AMI should be protected against 

new attack techniques. The proposed system will also determine a distributed IDS's efficient placement for intrusion detection sensors 

and response nodes within an AMI. 
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I. INTRODUCTION

A Cyber-Physical System (CPS) is a physically based 

system in which computer networks and algorithms monitor, 

manage, and control connected components. A well-known 

example of an application for CPS is the Smart Grid (SG), 

which can analyze data on power demands simultaneously to 

decide where to produce electricity, how to generate and 
distribute it, and also how to deal with a utility customer; for 

instance, who requires minimum power in the peak hours. 

Advanced Metering Infrastructures (AMIs), sometimes 

known as Smart Meters (SMs), are critical elements of the 

smart grid that greatly impact people’s lives. 

In Saudi Arabia, the Smart Metering Project (SMP) is a 

significant AMI initiative carried out to fulfill Vision 2030 

objectives of energy conservation and emission reduction [1]. 

Regarding initial deployment, it is one of the largest smart 

meter initiatives ever, with approximately 10 million smart 

meters deployed in one year. This project offers a variety of 

capabilities that enhance and enrich customers’ experiences 

with electricity services. There are many benefits, such as: 

 The meter readings can be obtained remotely or on

demand from power companies.

 Customers can look at specific consumption data and

change their consumption habits as necessary (e.g., the

ability to change the thermostat or turn off certain

appliances during periods of high demand).

 When a consumer is behind on payments, for example,

smart meters can be utilized to disconnect a residence

from the utility network centrally.
These smart meters use a Neighborhood Area Network 

(NAN), a smart meter network that typically covers a full 

neighborhood. Based on parameters like distance, and other 

variables, each node in these mesh networks may link with a 

certain subset of other nodes. Each smart meter acts as a router, 

tying together all the nodes it talks with [2]. Each NAN 

contains a Data Concentrator Unit (DCU), a node that collects 

information from the NAN's SMs and sends it to the energy 

supplier.  
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Fig. 1  An example of an AMI and its main components [3] 

 

Any smart meter may also request instructions to disengage 

from the utility remotely from the DCU. An example of an 

AMI and its essential elements is shown in Figure 1. Despite 

the potential smart meters and NANs have of becoming the 
primary inputs for crucial decisions on energy efficiency, 

optimization, and operational dependability, these 

technologies are limited by the utility network's 

vulnerabilities. For instance, by altering the data delivered to 

the utility through processes like False Data Injection (FDI), 

a malicious person who gets access to the DCU and controls 

it might be able to control power loads and cause blackouts 

[4]. If an attacker or multiple attackers gain access to the DCU, 

they can completely disconnect the NAN. According to a 

2013 evaluation from NESCOR [5], a malicious person might 

trigger a mass disconnect. A smart meter from a specific 
vendor can be reverse engineered in the scenario described in 

AMI.27, disclosing a remotely exploitable vulnerability that 

might be used to control a specific meter. 

AMI breaches often fall into one of two categories: control 

flow attacks or data flow attacks. When the attack is from the 

control flow category, the intruder moves across the network, 

getting control of each node she comes across until she 

approaches the DCU and is able to issue a mass disconnect 

order. A data flow attack involves the attacker injecting false 

data about the load at each meter into the network, ultimately 

resulting in system failure [4]. Among the biggest and most 

destructive attacks on the data integrity of energy 
management systems are those utilizing FDI [6]. The control 

and data flow attacks become stealthier in multiple 

interleaved networks where an assailant can exploit different 

vulnerabilities and entry points.  

A reliable detection and response mechanism for general 

and AMI attacks on CPS is crucial. This paper proposes an 

integrated cyber-physical intrusion detection and response 

architecture to detect and respond to stealthy attacks. This 

generic architecture can utilize and evaluate multiple AMI 

data sources to detect stealthy attacks while reducing false 

positives. The proposed system, similar to McLaughlin et al. 
[7], can combine evidence gathered from various types of 

AMI-specific information sources, including 1) host- and 

network-based intrusion detectors on the cyber part; and 2) 

through non-intrusive load monitoring (NILM), power 

measurement-based abnormal consumption detectors are 

identified [7]. 

The remainder of the paper is structured as follows. The 
author introduces some of the related works. We present the 

system model and the proposed architecture in Section II and 

the performance evaluation and results in Section III. In 

Section IV, the author concludes the paper and presents future 

work. 

A. Related Work 

In [4], R. Andersen expresses worry about the potential for 

a malicious attempt to misuse the smart meters’ remote 
connect/disconnect feature, leading to a widespread blackout. 

The authors of [8] suggest a plan for integrating IDS 

sensors into AMI smart meters. This system's traffic 

monitoring coverage is extensive compared to the 

conventional centralized solution, which employs the utility 

server as an IDS. Attacks on meters that pass via these nodes 

on their route to the DCU will thus be detected early. In [9], 

Berthier et al. introduced Amilyzer, a NESCOR failure 

scenario-based AMI centralized specification-based intrusion 

detection system. 

A connection is made between the rate of an attack's spread, 

the potential for its detection, and the effects on the total 
number of meters connected to the NAN introduced by 

Shawly et al. [5]. They also suggest SecAMI, an AMI open-

source modeling and simulation tool [10]. Percentage 

describes how rapidly an attack may spread throughout NAN. 

In order to address the issue of how soon an IDS must react 

to an attack, they put forth an approach based on the features 

of NAN networks. In order to understand how the attack and 

response phases interact at a high level, they determine how 

much of the network can still be accessed from the DCU after 

an attack. 

Many related works have recently used machine learning 
techniques to detect and respond to attacks on Cyber-Physical 

systems [11]-[23]. From a detection point of view, Hidden 

Markov Model (HMM) is a pioneering strategy in Machine 

Learning (ML) approaches for multi-stage attack detection 

and prediction. This method models the many phases of an 

attack, as HMM states [24]. For many reasons, Ourston et al. 
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[25] claim that HMM is the best detection method for these 

types of attacks. In order to analyze input and output 

interactions and create transition probability matrices based 

on training data, HMM first uses a manageable mathematical 

formalism. Then, it monitors the development of a multi-stage 

attack since it is tailored to cope with sequential data by 

utilizing transition probabilities between states. Unfortunately, 

current HMM-based detection systems mostly concentrate on 

single multi-stage attacks. None of the research tackles the 

issue of interleaving multi-stage attacks in CPS and how this 
interleaving affects detection and response performance.  

Utilizing Markov Decision Process (MDP)-based intrusion 

response systems has grown in popularity in the last decade 

for network security. A game-theoretic definition of defense 

mechanisms for network intrusion detection has been 

presented [26]. However, the work does not present an 

automatic response mechanism based on damage containment. 

A probabilistic IRS based on the MDP paradigm has been 

proposed [27]. Intending to ensure long-term system security, 

the model can plan the best set of response actions. An 

intrusion response method for cyber networks is suggested for 
utilizing the Partially Observable Markov Decision Process 

(POMDP) [28]. The suggested paradigm slows down an 

attacker's advancement while reducing the harm to system 

availability. One may track an attacker's development by 

embedding a state space on the condition dependency graph, 

an attack graph that represents dependencies between an 

attacker's skills and exploits. The defender's response is to 

prevent the attacker from using some of the exploits by 

blocking them. The attacker's hidden strategy, which relies on 

the defender's actions, directs how it moves through the 

network. The fundamental issue with all MDP-based models 
is the production of a vast state space, which makes the 

optimal response actions computationally exhaustive. 

Additionally, the aforementioned MDP-based intrusion 

response models do not address the threat containment issue 

for stealthy cyberattacks.  

II. MATERIALS AND METHOD 

This research presents an architecture for effective multi-

level, multi-agent detection and response to stealthy attack 

scenarios on CPS. The suggested architecture, which is based 
on the HMM [24] and MDP [29] formalisms, can detect at 

any given time the presence of multiple organized attacks and 

provide insights into their dynamics, determining which ones 

are active and which attacks are inactive, the speed of each 

attack progressing, and the security state of each attack at any 

time. Knowing these results can help create suitable response 

mechanisms that lower the security risk of the network. 

Before the HMM processing subsystem, the proposed 

detection architecture de-interleaves mixed warnings from 

several assaults. It modifies the HMM model's parameters to 

detect multi-stage assaults when mixed alerts are based on the 
targeted network services.  

By creating a database of K HMM templates [30], [31], it 

is possible to generalize the current single-attack architecture, 

such as the one in Ourston et al. [25], to be able to detect 

multiple multi-stage attacks, K attacks, and respond to them 

efficiently. Each of the HMM templates is connected with one 

of the L MDP templates, K ≤ L. In Fig. 2, we introduce the 

architecture for the threat detection and response processes 

that use such components. Each HMM-based template used 

here is intended to identify a certain kind of multi-stage attack 

that begins at an entry point (a node with an exploitable 

vulnerability) and ends with a specified critical node. Each L 

MDP template is created offline and from all possible attack 
states and response actions within a service-based 

dependency graph.  

 
Fig. 2  Detection and Response Architecture 

 

The response level of this architecture uses a partly offline 

computation of MDP and the estimated current states from the 

HMM to determine network isolation boundaries or, from a 

different point of view, safe zones for critical components in 

the CPS (i.e., a set of vulnerabilities to be disabled). Fig. 3 

illustrates the problem of the high dimensionality of safe-

zones response, which prevents us from providing an online 

precise solution. 
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The design also contains an Intrusion Detection System 

(IDS), which uses network traffic under predetermined 

criteria to identify anomalous activity and provide real-time 

attack-related alerts. The IDS is a crucial component of the 

suggested design (e.g., Snort software [32] and Amilyzer [9]). 

Typically, an IDS generates a stream of alerts chronologically 

ordered by their timestamps. The set of IDS rules assists in 

lowering both the high volume of alerts and the number of 

false positive detections. The IDS can provide interleaved 

alerts for a single attack or several multi-stage attacks. These 
alerts can be pre-processed to generate observations that can 

be transmitted to the HMM database.  

 
Fig. 3  Offline Computation of Safe Zone (SZ) Response vs. Online 

In order to improve predictions, the alerts are correlated 

and grouped by the alert’s clustering and pre-processing 

module, which also assigns different levels to the incoming 

alerts based on their severity, i.e., the severity of the alert 

increases with level, indicating that a continuous multi-stage 

attack is moving closer to an advanced stage. The detecting 

system groups the incoming alerts into a sequence of 

observations of length T. 

Cyber Physical-Based System (CPBS) models generate 

Service Dependency Graphs (SDG) for a whole system and 

its missions. A Vulnerability Dependency Graph (VDG) 

component generates VDG templates for all SDGs and 

contains all known and possible multi-stage attacks. A VDG 

is created by integrating the SDG generated from a Cyber-

Based System model with its vulnerabilities, as generated 

from the output of vulnerability scanners such as the Nessus 

vulnerability scanner. VDG templates can be generated from 

Nessus vulnerability scanner output and service dependency 

graphs. For each potential attack scenario, a Hidden Markov 

model (HMM)- based template is produced from each VDG 
template. Based on the previous set of triggered IDS alerts, 

these templates are utilized to predict the attacker’s most 

likely attack path at each time instant. 

A. Threat Model 

The author considers K distinct multi-stage attacks 

deployed concurrently in a network to compromise the system 

and stop k services. The idea of potential vulnerabilities is 

captured by an edge coming out of previously exploited 
vulnerabilities in a VDG template.  

Each attack begins at an entry point in the network (i.e., 

exploiting an initial exploit in a VDG template) and attempts 

to advance through the network by exploiting these 

vulnerabilities. 

IDS-generated alerts about attacks are sent as an 

interleaved stream of alerts to the HMM database. These 

alerts may emerge from the intentional blending of numerous 

multi-stage attacks launched by a single attacker or may be 

produced at random by various attackers. The author assumes 

the HMM system processes N alerts for each observation 

length (T). In particular, these N alerts could, at any given time, 
come from a single attack or, at most, a combination of K 

attacks.  

 
Fig. 4  An Example of a CPBS Model 
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III. RESULTS AND DISCUSSION 

The author uses SecAMI [3], an open-source simulator to 

assess cyber-attack's impact on AMI, to model stealthy 

attacks. SecAMI can be used to carry out two tasks: first, it 

can provide an undirected graph representing the topology of 

an AMI with data concentrators and smart meters; second, it 
can simulate an attack on the topology that compromises each 

node (smart meter) one at a time using three simulation 

parameters, namely hop time (ht), compromise time (ct), and 

detection time (dt) of a compromised meter (cm). In the 

simulation, these settings control how quickly an attack 

spreads, concerning how quickly it is detected. The author 

presents detection experimental findings based on a stream of 

alerts produced by the SecAMI simulator based on Amilyzer 

IDS alerts [3], [9]. 

This paper expanded SecAMI to include a new module to 

construct the safe-zone-based response. The isolation module 
built on top of SecAMI creates multiple safe zones for a 

certain AMI topology using a parameter k, which represents 

the number of required safe zones, and a topology graph as 

inputs. The isolation module maintains both member 

information and the safe-zone components. The proposed 

response method uses the safe-zone information to pinpoint 

the safe zones with vulnerable components. The 

communication between the components of the attack safe 

zones and the rest of the AMI topology is immediately 

terminated. 

A. Simulation 

The attack and response models may be applied in one of 

two ways using the SecAMI simulator. SecAMI is used to 

determine whether there is a relationship between network 

availability, attack time, and detection time. In order to do this, 

a set of specified attack, detection, and reaction periods is 

input. The response actions in simulations start from the DCU 

since the author believes its security and resiliency are more 

than other meters. Some sample SecAMI attack and defense 

strategies are shown in Table 1.  

TABLE I 

SAMPLE SECAMI ATTACK AND RESPONSE STRATEGIES 

Sample Attack Strategies Sample Response Strategies 

 Distributing malware. 

 Getting root access on a 
meter. 

 Compromising the DCU. 

 Sending a command from 
the DCU to remotely 
disconnect a smart meter. 

 Disconnect a suspect 
meter(s) from the network. 

 Sending a remote re-
keying command. 

 Rebooting a suspect 
meter(s). 

 

There are two levels in the simulation. The first level 

repeatedly cycles over the graphs, attackers’ entry points, and 

attack-to-detect-time ratios. The simulation is run using these 

settings in the second level to produce a dataset. It keeps track 

of upcoming activities, like when a specific meter is reached 

or compromised or when the simulation will learn that a node 

has been compromised (implemented as a priority queue). 

The first thing that should happen is for the attack's entrance 

point to be breached. A spread event is scheduled for the node 

after it happens, and a detection event is prepared for the node 

where it occurs. There are no further occurrences after this 

point since either the attack has been stopped or the DCU has 

been hacked. 

Below are the guidelines for the attack scenario and our 

reaction to an ongoing attack. Once attackers have gained 

access to a node, they can visit its neighbors and choose at 

random or specifically which neighbor to attack next. The 

attacker successfully compromises a new node after a specific 

number of hops. Note that the author modified SecAMI by 

calculating the likelihood that a susceptible node would be 

successfully compromised. Be aware that the severity of the 
vulnerability is also determined by the chance of 

compromising a node via the VDG. The attackers can choose 

a different node to compromise while still at the original one. 

The attacker can attack any node in range once a node has 

been compromised. An attack is identified after several hop 

times, the quickest path to the DCU, and a continuous 

detection duration. When a node is found to have been hacked, 

the NAN removes it from the service. Aside from that, any 

attack currently in the process from that node is halted, 

defending its intended target. The DCU must first 

acknowledge that one node has been hacked to stop the attack 
before it may corrupt further nodes. This is more likely to 

happen as the attack approaches the DCU. In this paper, the 

author looked into one SecAMI response to stealthy attacks in 

which a set of nodes is disconnected from the network using 

MDP to create a safe zone. 

B. Results 

SecAMI evaluation’s major objective is to answer issues 

such as whether a specific attack scenario is under control 

from a mitigation point of view. These answers are given in 
terms of detection and reaction times. In order to reduce 

dependence on a specific topology and obtain a more general 

conclusion on the class of graphs concerned, the author 

simulated many network topologies and averaged the findings 

across all graphs. In addition, the author averages the findings 

for a specific topology after simulating the attacker starting at 

every conceivable meter in the NAN. 

With 100, 200, and 300 nodes, the author makes graphs. 

The author made 10 graphs with a maximum of 3.5, or 10 

additional connections for each node level. The author 

particularly focused on the influence of the ratio between the 
time it takes to compromise a node and the time it takes to 

notice and react to a node compromise. The author launched 

1, 3, and 5 attacks from 1, 3, and 5 random nodes in the graph 

simultaneously. For each of the degree combinations, the 

author produced results. 

First, the author demonstrated the effects of the 1, 3, and 5 

attacker(s) starting close to or far from the DCU. Removing a 

set node from the graph protects against these attacks. There 

are two factors at work here: the DCU can respond to attacks 

more quickly the closer they are to it because of the shorter 

transmission distance. However, if the attack starting point is 
near the DCU, it could do greater damage as more of the graph 

becomes disconnected. With a ratio of 1:1 related to attack to 

detection, the network availability is, on average, 24.3 percent 

greater for attacks starting near the DCU (Fig. 5). The author 

discovers that the benefit of mitigation time outweighs the 

increased risk. It is challenging for any node, especially one 

close to the DCU, to disconnect significant segments of the 
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graph in the case of removal because of the network's ability 

to self-reconfigure (basically change connection). 

After determining the threat's location, the author considers 

the stealthy attacks starting at every meter for each multi-

stage attack, and then the results are averaged (Fig. 6). On a 

single graph, the author combines the data for three of the nine 

scenarios. For example, 100 nodes and three connections, 200 

nodes and five connections, and 300 nodes and ten 

connections. These were picked in order to display results that 

are typical of each node and connection category. No matter 
how big or linked the network is, the graph below 

demonstrates that for a significant amount (over 93%) of the 

network to be preserved, the attack time to detection time ratio 

must be at least 3:1. In other words, it must take no more than 

one-third of the time to detect and react as it takes an attacker 

to compromise a node. If the detection and response are 

quicker than this, a huge portion of the network is available 

without a strong spike occurring at this ratio. 

 
Fig. 5  Results when the attacks start near the DCU vs. far from the DCU. 

 
Fig. 6  Results for graphs with 100, 200, and 300 nodes 

IV. CONCLUSION 

This paper proposes a multi-level, multi-agent detection 

and response architecture for stealthy attacks on CPS. The 

main goal of the architecture is to detect stealthy attacks at an 

early stage and to stop the spread of damage efficiently. The 

proposed architecture is based on the formalizations of 

Hidden Markov Models (HMM) and Markov Decision 

Processes (MDP). The author evaluated the architecture's 

performance using Advanced Metering Infrastructure, a 

critical CPS application (AMI). The simulation program, 

SecAMI, is used in this paper’s performance evaluation. The 

simulation results show how well the proposed architecture 

works to detect stealthy attacks on CPS and respond to them. 

In particular, the results show that the proposed system can 

preserve the availability of a high amount (more than 93%) of 

the CPS network in stealthy attacks. 

Many obstacles must be overcome to create a strong 
security solution for CPSs. One challenge is to deal with IDS 

performance in real-time in order to modify, train, and 

compute online the HMM and MDP templates. Assessing the 

proposed detection and response mechanism for more 

sophisticated and stealthy attacks is another challenge the 

author plans to address. 
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