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Abstract— Malaria is a severe global public health problem caused by the bite of infected mosquitoes. It can be cured, but only with 

early detection and effective, quick treatment. It can cause severe conditions if not properly diagnosed and treated at an early stage. In 

the worst scenario, it can cause death. This study aims at focusing on classifying malaria cell images. Malaria is classified as a dangerous 

disease caused by the bite of the female Anophles mosquito. As such, it leads to mortality when immediate action and treatment fails to 

be administered. In particular, this study aims to classify malaria cell images by utilizing the Inception-V3 architecture. In this study, 

training was conducted on 27,558 malaria cell image data through Inception-V3 architecture by proposing 3 scenarios. The proposed 

scenario 1 model applies the SGD optimizer to generate a loss value of 0.13 and an accuracy value of 0.95; scenario 2 model applies the 

Adam optimizer to generate a loss value of 0.09 and an accuracy value of 0.96; and lastly scenario 3 implements the RMSprop optimizer 

to generate a loss value of 0.08 and an accuracy value of 0.97. Applying the three scenarios, the results of the study apparently indicate 

that the Inception-V3 model using the RMSprop optimizer is capable of providing the best accuracy results with an accuracy of 97% 

with the lowest loss value, compared to scenario 1 and scenario 2. Further, the test results confirms that the proposed model in this 

study is capable of classifying malaria cells effectively. 
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I. INTRODUCTION

Malaria is a serious and potentially life-threatening disease 
caused by the Plasmodium parasite, and it is transmitted to 
humans through the bite of an infected Anopheles mosquito 
[1]. The disease affects millions of people worldwide, 
particularly in sub-Saharan Africa, where it is a leading cause 
of death among children under five years old [2]. The accurate 
and timely diagnosis of malaria is critical for the effective 
treatment and control of the disease [3]. However, traditional 
diagnostic methods, such as microscopy and rapid diagnostic 
tests (RDTs), have limitations and can be time-consuming and 
labor-intensive [4]. 

Deep learning, a branch of machine learning, has emerged 
as a powerful tool for classifying medical images [5]. In 
recent years, deep learning-based models have been applied 
to a wide range of medical imaging tasks, including the 
classification of skin lesions, brain tumors, and lung cancer 
[6]. With the availability of large datasets of microscopy 
images of malaria-infected blood cells, deep learning-based 
models have also been applied to classify malaria [7]. 

Deep learning models, such as convolutional neural 
networks (CNNs) and deep belief networks (DBNs), have 

been trained to classify malaria-infected blood cells with high 
accuracy[8]. These models have been trained on a large 
dataset of microscopy images of blood cells, and have been 
shown to be able to accurately classify the images as infected 
or not infected with the Plasmodium parasite [9], [10].  

One of the key advantages of deep learning-based models 
is their ability to learn features from the data, which can be 
used to classify the images. CNNs, in particular, have been 
shown to be effective in this task, as they are able to 
automatically extract features from the images, such as the 
shape and texture of the cells, which are important for the 
classification of malaria [11]. 

In addition to classification, deep learning-based models 
have also been applied to other tasks related to diagnosing 
malaria, such as the segmentation of infected cells in 
microscopy images and detecting the Plasmodium parasite in 
blood smears. These models have been trained on large 
datasets of images and have been shown to be able to 
accurately segment and detect the parasite, which can aid in 
the diagnosis of malaria [12]. 

A deep learning-based model is a powerful tool for 
classifying malaria-infected blood cells. This model has been 
trained on large datasets of microscopy images and shows 
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accuracy in classifying the images as infected or not infected 
with the Plasmodium parasite [13]. With the continuing 
advancement of deep learning-based models, it is expected 
that these models will play an increasingly important role in 
the future diagnosis and treatment of malaria [14].  

Malaria is classified as a disease generally experienced by 
humans due to the bite of a female Anophles mosquito 
carrying the plasmodium parasites, such as Plasmodium 

falciparum, Plasmodium vivax, Plasmodium malariae, and 
Plasmodium ovale. Malaria is considered a serious infection 
caused by peripheral blood parasites of the genus Plasmodium 

[15]. 
Malaria is commonly acknowledged as a disease that often 

occurs in coastal areas. Malaria sufferers typically experience 
flu-like symptoms, high fever, chills, and headaches, 
attacking all demographic features (regardless of age and 
gender). Symptoms of malaria typically appear after ten days 
to 4 weeks in the form of fever, headache, vomiting, chills, 
anemia, and enlarged spleen [16]. 

Hence, early detection of malaria-infected blood cells is 
deemed vital by monitoring blood cell counts annually by 
experts trained to detect malaria infection [17], [18]. Malaria 
detection involves manually counting parasites and infected 
red blood cells, which is highly dependent on the experience 
and skills of the microscope expert. As such, this expertise is 
highly prioritized; however, limited resources and systems 
could certainly affect the quality of diagnostics, leading to 
inappropriate diagnostic decisions [19]. 

Prior studies have been devoted to discussing malaria cells, 
especially in the case regarding the classification of blood 
cells infected with malaria as conducted by Reddy and Juliet 
[8] in 2019, aiming to obtain appropriate diagnostic results 
against microscopic malaria cells by employing the 
Convolutional Neural Network (CNN) method and the 
Resnet-50 architecture. In 2020, malaria-related research was 
also conducted by Sayyed et al. [20] by observing the 
comparison of the effectiveness between convolutional 
combinations and neural networks to detect malaria parasites. 

In particular, the CNN method has been considered a 
popular method in two-dimensional processing data, with a 
similar grid topology utilizing convolution as a substitute for 
matrix application, which applies at least one convolution in 
each layer [21]. CNN is considered a type of deep learning, a 
machine learning component to teach computers to conduct 
an activity such as the training process. Therefore, this 
method is effectively implemented for datasets that have a 
two-dimensional structure[22]. In addition, this study aims to 
improve the performance of the proposed model, which is the 
Inception-V3 model, to obtain better accuracy performance 
results than those in previous studies. 

II. MATERIAL AND METHOD 

This section discusses the implementation of the CNN 
method in classifying malaria cell images with the Inception-
V3 architecture. 

A. Dataset 

The applied dataset includes a malaria cell image dataset 
[8], [23], containing 27,558 image data, divided into two 
classifications: 13,775 image data for the parasitized class and 

13,813 image data for the uninfected class. The sample 
infected and uninfected images depict in Fig. 1 and Fig. 2. 

 

 
Fig. 1 Sample images infected cell of malaria 

 

 
Fig. 2  Sample image uninfected cell of malaria 

Parasitized class refers to image data of blood cells infected 
with malaria, while uninfected refers to image data that is not 
infected with malaria. The data is sourced from kaggle.com 
[24], and the original data is generated from the official NIH 
website [25], which is further uploaded on kaggle.com for 
open access. From all existing data, the dataset is later divided 
into 70, 15, and 15 (percent into train data, test data, and 
validation data, respectively). 

B. Pre-processing 

Image augmentation is a technique used to artificially 
increase the size of a dataset by applying various 
modifications to the existing images. These modifications 
include transformations such as rotation, flipping, and 
cropping, as well as changes in brightness, contrast, and color. 
The goal of image augmentation is to create new, diverse 
images from the original ones, which can be used to improve 
the performance and robustness of machine learning models 
that are trained on image data. 

One of the main benefits of image augmentation is that it 
can help reduce overfitting, a common problem in deep-
learning models. Overfitting occurs when a model is trained 
on a small dataset and becomes too specialized to the training 
data, leading to poor performance on new, unseen data. By 
augmenting the training dataset with diverse, modified 
versions of the original images, the model is exposed to a 
wider range of variations in the data, making it more robust to 
new, unseen data. 

Another benefit of image augmentation is that it can help 
to improve the generalization of models trained on image data. 
In other words, it can make the models more accurate in 
recognizing objects in images that were not part of the training 
dataset. This is especially important when the available 
dataset is small or has certain biases, and image augmentation 
can help to mitigate these issues. Data processing is 
performed by augmenting data, employing a hard library (the 
Image Data Generator), and augmentation is performed to 
overcome the problem of overfitting; thus, the model is 
capable of appropriately predicting the image of malaria cells 
[26]. Pre-processing in this study includes setting the image 
size by converting it to the intended size, and the image size 
will adjust user input in the CNN architecture [27]. 

Augmentation is conducted for train data and validation 
data during the model learning process because the validation 
data requested by the model to predict contains original data 
and data obtained from the augmentation process. Hence, it is 

274



apparent that the predicted object or image from the validation 
data and test data is likely similar, but if obtained from a 
different process, the model is further tasked to predict the 
results, which will be different from those in the validation 
test data.  

The following data augmentation parameters with the 
image data generator are illustrated in Table I. 

TABLE I 
IMAGE DATA GENERATOR PARAMETERS 

No Parameter Value 

1 Horizontal Flip True 
2 Vertical Flip True 
3 Rotation Range 90 
4 Height Shift Range 0.2 
5 Width Shift Range 0.2 
6 Zoom Range 0.2 
 

The Table mentions the data augmentation parameters with 
the Image data generator, which is implemented into the data 
train and validation data, including: rescale =1./255, 
horizontal_flip = True, vertical_flip = true, rotation_range = 
90, height_shift_range = 0.2, width_shift_range = 0.2, and 
zoom_range = 0.2. Furthermore, the image data generator that 
is implemented into the test data includes: rescale = 1./255. 
These parameters are implemented to obtain the expected 
results from the proposed model training process. 

C. Inception-V3 

A convolutional Neural Network is defined as a method to 
classify data in images [28], specializing in image recognition 
problems [8]. The advantage of the CNN model lies in the 
hierarchical structure of the learning layer that can be trained 
intensely after the model topology matches the input features, 
and the model can work efficiently by utilizing the spatial 
relationship of visual patterns to reduce the number of 
parameters which improves performance accuracy [29]. 

Inception V3 is a convolutional neural network (CNN) 
architecture that Google developed for image classification 
tasks. It is the third version of the Inception architecture and 
was introduced in 2015 by Szegedy et al. [30]. Inception V3 
is built upon the concepts of the previous Inception 
architectures, and it is designed to improve the performance 
and efficiency of image classification tasks. The architecture 
of Inception V3 is a deep and complex one, consisting of a 
stack of inception modules that are interconnected with each 
other. Each inception module combines different types of 
convolutional and pooling layers designed to extract different 
features from the input image. 

One of the key features of Inception V3 is its use of 
factorized convolutions, which reduce the number of 
parameters in the network while maintaining a high accuracy 
level. Factorized convolution is a technique that allows the 
network to learn both local and global features of an image, 
improving the model's accuracy. The Inception V3 network 
uses a combination of 1x1, 3x3, and 5x5 convolutional filters 
to extract features from the input image. The 1x1 
convolutional filters are used to reduce the dimensionality of 
the input, while the 3x3 and 5x5 filters are used to extract 
more complex features from the input image. 

Another important feature of Inception V3 is the use of 
batch normalization, which is a technique that is used to 

normalize the inputs to the network. Batch normalization 
helps to stabilize the training process and to reduce the 
internal covariate shift, which is the change in the distribution 
of the network's inputs during training. 

Inception V3 is pre-trained on a large dataset called 
ImageNet, which contains over 14 million images and 1000 
different classes. This allows the model to be used for transfer 
learning on other image classification tasks with a smaller 
dataset, where it can be fine-tuned for a specific task. Transfer 
learning is a technique that allows a pre-trained model to be 
reused on a different task by fine-tuning the model on a new 
dataset. This can greatly reduce the amount of data and 
computational resources required to train a new model from 
scratch. 

Inception V3 has been widely used for image classification 
tasks and has been shown to perform very well on a variety of 
benchmarks. It has been used in various applications such as 
object detection, image segmentation, and video classification. 
Its use of factorized convolutions and Inception modules 
makes it a highly efficient and accurate model for image 
classification tasks. Moreover, its pre-training on ImageNet 
dataset makes it a versatile model that can be used in a variety 
of applications with a good amount of accuracy. 

Inception V3 is a powerful CNN architecture that has been 
widely used for image classification tasks and has been shown 
to perform very well on a variety of benchmarks. Its use of 
factorized convolutions and Inception modules makes it a 
highly efficient and accurate model for image classification 
tasks. Its pre-training on the ImageNet dataset allows it to be 
used for transfer learning on other image classification tasks 
with a smaller dataset, where it can be fine-tuned for a specific 
task, thus reducing the amount of data and computational 
resources required to train a new model from scratch.  

The Inception-V3 architectural model has the advantage 
due to its more complex architecture and more efficient 
computation, containing approximately 4 million parameters, 
significantly smaller compared to VGG, more complex 
architecture, and this model does not apply a fully-connected 
layer replacing it with a pooling layer only. These fewer 
parameters result in a smaller model size, enabling faster 
model calculation [31]. 

The initial layer of Inception-V3 consists of 3 standard 
convolution layers, followed by a max-pooling layer, 2 
convolution layers, and a maxpooling layer. The next stage in 
the network includes inception convolution, which 
simultaneously convolutes the input by utilizing a different 
filter size for each convolution, further combining or stacking 
the results together and passing them across the network. 
Subsequent sections of the network re-start and rest a number 
of times, in which some sections repeat 10 or 20 times towards 
the end. The network implements the stop-learning layer to 
drop weights randomly (making the filter value equal to 0) to 
prevent overfitting. Furthermore, the second last layer is fully 
connected [32]. 

III. RESULTS AND DISCUSSION 

A. Data Sample Collection 

The initial stage of the data sample is performed by 
splitting the data and dividing each class into several parts, 
consisting of train data, validation data, and test data. Train 
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data is employed to train the model, from which the results of 
the learning are tested for validation data, and then test data is 
employed in the evaluation process to determine the model's 
performance.  

TABLE II 
SAMPLE DATA SHARING 

No Data Split 
Number of 

Parasitized data 

Number of 

Uninfected data 

1 Train Data 9,646 9,646 
2 Data Validation 4.134 4.134 
3 Test Data 4.134 4.134 
 

Validation data is additionally employed in test data, but 
for the purposes of model training, validation data is required, 
which is the test data itself. Each of these data is divided into 
70% for train data, 15% for validation data, and 15 % for test 
data after the data splitting process, illustrated in Table II. 

B. Result 

The first scenario is to employ similar optimizer as the 
reference journal, such as the SGD (Stochastic gradient 
descent) optimizer[8]. In this study, the SGD optimizer is 
implemented into the Inception-V3 model, with a learning 
rate of 0.001 and a data sharing of 70:15:15. In scenario 1, the 
set data training time is 3 hours, 18 minutes and 58 seconds. 
The evaluation of scenario 1 by utilizing the plot is described 
in Fig.3, covering Training and Validation of Accuracy, and 
Fig.4 describes the plot results from training and validation 
loss. The evaluation in the form of a classification report for 
the Inception-V3 model is illustrated in Table III which 
explains the results of the classification report values of 
scenario 1. 

 

 
Fig. 3  Plot Training and Validation Accuracy of Scenario 1 

 
Fig. 4  Plot Training and Validation Loss of Scenario 1  

TABLE III 
CLASSIFICATION REPORT OF SCENARIO 1 

Class Precision Recall F1-Score Support 

Parasitized 0.97 0.95 0.96 4134 
Uninfected 0.95 0.97 0.97 4134 
Macro Avg 0.96 096 0.96 8268 
Weight Avg 0.96 096 0.96 8268 

 

Scenario 2 shows the adam optimizer (Adaptive Moment 
Estimation) is implemented with the Inception-V3 model. 
The adam optimizer has individual learning rates for different 
parameters. Thus, the adam optimizer is expected to provide 
better accuracy. In addition, the adam optimizer does not 
require a lot of storage space, and this optimizer is also lighter 
during the epoch training process [23]. The results of accuracy 
and loss of scenario 2 are depicted in in Figs. 5 and 6. 

 

 
Fig. 5  Plot Training and Validation Accuracy of Scenario 2 

 
Fig. 6  Plot Training and Validation Loss of Scenario 2 

Following are the results of the evaluation of scenario 2, 
implementing the adam optimizer and data sharing of 
70:15:15. In this study, the adam optimizer is implemented 
into the Inception-V3 model by using a learning rate of 0.001 
iterations of 50 epochs, and the training process time is set at 
3 hours, 20 minutes and 18 seconds. The evaluation results of 
scenario 2 with the adam optimizer implemented into the 
Inception-V3 model are presented in Table IV.  

Scenario 3 compares the best optimizer to generate a higher 
accuracy value. In scenario 3, the optimizer RMSprop (Root-
Mean Square Propagation) is applied, indicating a good 
performance in classifying the model. Scenario 3 applies a 
learning rate of 0.0001, implemented into the Inception-V3 
model with 50 epoch iterations. Optimizer RMSprop in 
scenario 3 with 70:15:15 data sharing is applied. In scenario 
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3, the epoch training time is set at 3 hours, 8 minutes and 8 
seconds. The results of accuracy and loss of scenario 2 are 
depicted in Figs. 7 and 8. The evaluation employs a scenario 
3 classification report to straightforwardly determine the 
values of the implemented model results as depicted in Table 
V. 

 
Fig. 7  Plot Training and Validation Accuracy of Scenario 3 

 

Fig. 8  Plot Training and Validation Loss of Scenario 3  

TABLE IV 
CLASSIFICATION REPORT OF SCENARIO 2 

Class Precision Recall F1-Score Support 
Parasitized 0.98 0.96 0.97 4134 
Uninfected 0.96 0.98 0.97 4134 
Macro Avg 0.97 0.97 0.97 8268 
Weight Avg 0.97 0.97 0.97 8268 

TABLE V 
CLASSIFICATION REPORT OF SCENARIO 3 

Class Precision Recall F1-Score Support 
Parasitized 0.98 0.97 0.97 4134 
Uninfected 0.97 0.98 0.97 4134 
Macro Avg 0.97 0.97 0.97 8268 
Weight Avg 0.97 0.97 0.97 8268 

C. Comparison between Testing Scenarios 

A comparison of each test scenario is conducted with a 
training process that implements iterations of 50 epochs and 
193 steps per epoch in each scenario, which provides different 
performance results. The comparison table for each scenario 
is presented in Table VI. 

TABLE VI 
PERFORMANCE OF THE TRAINING PROCESS FOR EACH SCENARIO 

Scenario 
Training 

loss 

Training 

Ac 

Validation 

loss 

Validation 

acc 

Scenario 1 0.17 0.93 0.18 0.93 
Scenario 2 0.11 0.95 0.11 0.95 
Scenario 3 0.09 0.96 0.10 0.96 

TABLE VII 
PERFORMANCE RESULTS OF OVERALL PROPOSED SCENARIO 

Scenario Precision Recall F-1 Score Accuracy 

Scenario 1 0.95 0.97 0.96 0.96 
Scenario 2 0.96 0.98 0.97 0.97 
Scenario 3 0.97 0.98 0.97 0.97 

 
Referring from the performed tests, particularly as 

presented in Table VI and Table VII, it show the best model 
performance in scenario 3. The scenario employed the 
RMSprop optimizer with a learning rate of 0.0001, passing 
through a training process of 50 epochs iteration, resulting in 
better performance than other models. The Adam optimizer 
also indicates similar accuracy in scenario 2 but scenario 3 has 
a lower probability of prediction failure or value loss and has 
high accuracy training value among other scenarios. 

D. Comparison of Architectural models with Previous 

Studies 

The model that generates the best performance is further 
compared to the previous study models, including Resnet50 
model with the SGD optimizer[8] and the Convolutional 
Neural Network model [33], as depicted in Table VIII. 

TABLE VIII 
MODEL PERFORMANCE COMPARISON 

Model Pre-
processing 

Train 
Acc 

Train 
loss 

Val 
Acc 

Val 
Loss 

ResNet50[34] No aug 0.95 0.11 0.95 0.13 
CNN (3 
convolutional 
layers) [33] 

Aug 0.95 0.12 0.96 0.02 

Proposed Model Aug 0.96 0.09 0.96 0.10 

TABLE IX 
THE COMPARISON RESULT ANALYSIS OF THE ACCURACY FROM THE 

PROPOSED MODEL 

Model Optimizer Epoch Accuracy 

CNN (3 convolutional 
layers)[33] 

Adam 14 0.95 

Proposed Model RMSprop 50 0.97 
 
Table VIII presents that the proposed model generates a 

train accuracy of 96%, which is greater than 0.01 compared 
to the previous model using the ResNet50 model [8] and the 
CNN model with 3 convolutional layer architecture [33]. In 
sum, the comparison of performance based on the accuracy is 
depicted in Table IX, confirming that the proposed scenario 
has an accuracy of 0.02%, which is deemed superior to 
previous studies. 

IV. CONCLUSION 

Based on the test scenario, which has modeled the 
Inception-V3 architecture, the application of the RMSprop 
optimizer with a learning rate of 0.0001 is profound to 
generate superior performance than the test scenario, 
previously employing the Adam learning rate optimizer of 
0.001 and SGD learning rate of 0.001. The scenario proposed 
in this stud can improve the accuracy from the previous study 
reaching 97%, thereby providing better performance. 
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