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Abstract— The high mortality rate of malaria makes it a severe disease that spreads throughout all-region by infected female Anopheles 

mosquitoes, especially in tropical countries. Accurate early malaria detection is one of the ways to reduce the mortality rate. Microscopy-

based malaria examinations are still considered the gold standard. Due to numerous large malaria patients with limited parasitologists, 

an automated detection system is needed as a second opinion to assist parasitologists. This study proposed an optimization method for 

finding an optimal global threshold value for pre-processing parasite detection. There were three stages of the proposed method. The 

first is to pre-process digital microscopic images using color channel selection, contrast stretching, and morphological operation. The 

second is to find the global threshold value using multiple modified Otsu’s. The third is to determine the optimum global threshold 

value. In the last stage, predicted threshold values are generated using a pattern recognition approach to determine the optimum global 

threshold value. The proposed method evaluated 468 microscopic images captured from hundreds of thin smear blood slides. The slides 

are provided by the Department of Parasitology-UGM and the Eijkman Institute for Molecular Biology. The set image contains 691 

malaria parasites in all types and life stages of malaria parasites. The proposed method obtained a sensitivity of 99.6 % and the smallest 

FPs number compared to without the optimization.  It indicates that the proposed method has the potential to be implemented in the 

initial stages of the malaria detection system.  
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I. INTRODUCTION

The word “malaria” is derived from the Italian word 

mal’aria or “bad air” in English [1]. The World Health 

Organization (WHO) report shows that malaria is a severe 

public health problem. It spread to more than 90 countries in 

2017; the number of dead people was estimated at 435,000 [2]. 

Children aged less than five years are the most vulnerable 
infected by malaria. In 2017, they accounted for up to 61% 

(266,000) of all malaria deaths worldwide. In the same year, 

the WHO in Africa Region record showed that the region 

became home to the highest number of malaria deaths 

worldwide [2]. In 2012, the Ministry of Health of Indonesia 

reported that there were 417,819 cases of malaria. In 2016, 

malaria cases decreased by about 218,450 cases. This fact 

indicates that Indonesia has made progress in eradicating 

malaria. However, malaria cases are still relatively high [3]. 

The characteristics of each type and life stage of malaria 

parasites can be seen in Figure 1. 

Species 

Stages  

P. 

Falciparum 
P. Vivax P. Malariae P. Oval

Trophozoite 

Schizoat 

Gametocyte 

Fig. 1  Four different malaria parasite species and their three-stage life 

cycle [4].

An expert slide reader called parasitologist visually 

inspects blood slides for detecting the malaria parasites [5], 

[6]. This laborious and accurate laboratory diagnosis is 

essential for diagnosing and treating malaria properly. 
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However, since hundreds of millions of slides are examined 

every year around the world, error-prone processes or false-

negative potential occur, causing severe consequences [7]. 

There is no standard for conducting microscopic diagnosing 

for malaria. It depends mostly on the parasitologist's or 

microscopist's expertise and experience [8], [9]. Several 

studies show that manual microscopy checks are not reliable 

screening methods since they are administered by less-

experienced people, especially in rural areas where malaria is 

prevalent [9]–[12]. An automated system aims to carry out 
this task without human intervention and deliver an objective, 

reliable, and efficient system. 

Microscopic slides utilized in malaria detection can be 

prepared in two different slides: thick and thin blood smears. 

The advantages and disadvantages of each slide’s use are 

clearly explained [9], [13], [14]. However, using a thin blood 

smear allows malaria experts to recognize a parasite's species 

and life stages. Therefore, the data utilized in this study were 

thin smear. 

There is a multi-part problem of diagnosing malaria by 

computer vision. The parts are image acquisition, pre-

processing, segmentation (object localization), and 

classification. However, when the system is demanded to be 

fully automated, several functions such as positioning 
microscope slides, reliable focusing, and shooting must also 

be automated [9]. Hence, several possible steps exist in 

designing computer-aided malaria detection (CAD), as shown 

in Figure 2.  

 

 
Fig. 2  Block diagram of possible ways in parasite segmentation 

 

Pre-processing is the primary step of the general malaria 

CAD. The system for further analysis should detect all 

parasites. The overlooked parasites are impossible to recover 

in further steps. However, not many studies are focused on 

this step. In overcoming the limitation, the study's attention is 

on the pre-processing step. Therefore, this study aims to 
achieve higher sensitivity in detecting parasite candidates 

than the previously published studies. Several previous 

studies have been reviewed to support the achievement of the 

goals. The studies are listed below. 

There are many recognized staining methods supported by 

[15]. However, Giemsa is the most popular and effective cost 

stain for the staining method [16]. The method only highlights 

parasites, white blood cells (WBC), platelets, and artifacts. 

Different filter methods can be applied to reduce the 

illumination effect obtained from both camera and 

microscope light. Human factors, inappropriate blood slides 
preparation due to non-standard, and the non-homogeneous 

staining concentration may also evoke luminance noise. 

There are many developed techniques to overcome impulse 

noise, including mean filtering [17], [18], median filtering 

[19], Geometric mean filtering [20], [21], Gaussian low-pass 

filtering [22], Gamma transformation [23], and 

morphological techniques [24], [25]. The morphological 

technique is the most commonly used. However, defining the 

kernel size and the kernel type are the keys to obtaining a 

relevant result. Roopa [26] suggests a novel method to 

normalize and enhance a microscopic image of a thin blood 

smear. Normalization of green, green, and blue (GGB) is a 
proposed method to enhance parasites, WBC, platelets, and 

artifacts. 

Maysanjaya et al. [27] achieved a high accuracy of 93.33% 

in Plasmodium detection. The combination of the saturation 

(S) channel of HSV color space and the red (R) channel of 

RGB color space followed by Otsu for finding the optimum 

threshold value was applied to segment Plasmodium parasites. 

However, the data tested were too small in number and 

parasite species, with only 30 microscopy images and 

Plasmodium vivax, respectively. 

Daniel et al. [28] suggested a new simple method to 

segment parasites. A modified double Otsu was a proposed 

method for automatically finding the optimum threshold 
value of parasites, WBC, and artifacts. The proposed method 

was a simple and efficient method for determining the 

parasite’s global threshold value. The method was applied in 

the green component of RGB. However, there was no pre-

processing except only manual crop applied. Instead, there 

was no evaluation reported in the segmentation stage. 

Nugroho et al. [29] proposed a new scheme for 

Plasmodium detection in microscopic images of thin blood 

smears by combining morphology and Otsu. A median filter 

was applied in the pre-processing step to remove speckle 

noises from the image. The Otsu method was applied to find 
the optimum threshold value in the S-layer of HSV. The 

optimum threshold value was applied in thresholding the 

green layer of RGB color space. This study's advantage was 

that the tested data had noises, such as non-uniformity 

illumination due to microscopy light and containing artifacts. 

However, the data contained only 24 images. 

Recent studies have proposed methods for classifying red 

blood cells (RBCs) as either containing parasites or not [9], 

[30]. However, to apply these studies, we first need to obtain 

the location of individual RBCs or parasite candidates. One 

possible starting point for obtaining parasite candidate 

locations is the modified double Otsu method proposed by 
[28]. This method has the advantage of being computationally 

efficient. However, the threshold value obtained using this 

method may not be optimal due to various factors, such as the 

presence of white blood cells (WBCs), low-intensity 

Plasmodium, uneven luminance, and artifacts. As a result, 

several parasites may be eliminated, while many RBCs may 

be incorrectly selected. 
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The present study introduces an innovative optimization 

algorithm for the double Otsu algorithm suggested by [28], 

which enables us to determine parasite threshold values in 

microscopic images accurately. By applying the proposed 

method to the PlasmoID dataset [31], which is a challenging 

malaria parasite dataset from Indonesia, this study 

demonstrates its superior performance in extracting parasite 

candidate locations, compared to previous approaches.  

The dataset and proposed method are discussed in Section 

II. In Section III, the experiment results are presented. Finally, 
the conclusions are drawn in Section IV. 

II. MATERIALS AND METHODS 

A. Data Preparation 

The employed data were collected in both parasitic 

laboratories in the Faculty of Medicine, UGM, and Eijkman 

Institute which was extended version of [4]. Each image has 

been annotated and segmented by parasitologists known as 

ground truth (GT). Then, the GT was used as a reference to 

measure the performance of the proposed method. Data 

collection was carried out by capturing hundreds of thin blood 

smear films. The utilized data was a combination of all types 

in whole life stages. The image was captured by a USB digital 

camera (Optilab camera) with 1000x microscope 

magnification. The total amount of data was 468 images with 

1600x1200 pixels of resolution. 

The employed data presented noises, which was an 

advantage of this study compared to the other as 
aforementioned. The noises are shown in Figure 3. The 

frequently used data type is shown in 3(a). RBCs and parasites 

are easily counted and segmented. In other cases, in Figures 

3(b) and 3(c), RBCs overlap with a different background color. 

In Figure 3(d) and 3(e), the RBCs are possible to count; 

however, the background color and parasite intensity are quite 

a difference of 3(a), respectively. Moreover, the artifacts also 

appear in 3(f). 

 

   
a b c 

   
d e f 

Fig. 3  Example of dataset [4]containing noises: (a) clearly image, (b)-(c) images with stacked RBC, (d)-(e) image with significant contrast difference, and (f) 

image with artifacts [4] 

B. The Proposed Method 

Extracting the parasite-infected candidate patches in our 

data containing artefacts and noises needs an advanced 

method. A general scheme of our work is illustrated in Figure 

4.  

 

 
Fig. 4  Block diagram of the proposed scheme 
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Blue box indicates the novelty of our proposed method.  

The proposed method consists of three main stages. The 

stages were pre-processing, direct initializing the global 

threshold value, and finding the optimum global threshold 

value. The detailed process of each stage is explained as 

follows. 

1) Image pre-processing: The aim of this stage was to 

enhance the input images. This study did not use filter 

techniques for eliminating a small dark area or blurring a 

small dark object to be unseen clear. The small dark area 
included parasites, WBC, and artifacts. The use of 

inappropriate filtering of artifacts could be a risk of losing 

Plasmodium malaria because the intensity values of parasites, 

WBC and artifact overlap. There were four steps in pre-

processing, including selection of the green channel, image 

resizing, linear stretching, and grayscale dilation. These steps 

are listed in detail in Algorithm 1. 

The first step was to select the green channel (G) of the 

RGB image (original), as shown in Figure 5. The green 

channel was selected because the parasites would appear 

brighter in an inverse image with the least noisy RGB 

components [32]. The second was to resize the image in order 

to reduce the computational time for further stage. Here, half 

of the resolution was reduced. Reducing the size of the 

utilized image was not sufficient to eliminate small parasites. 

In general, in microscope images with a resolution of 

1600x1200 pixels, small parasites are still represented by tens 

of pixels. After resizing, the image resolution became 

800x600. 

The third was to conduct linear stretching. To unique of the 
scale of each image, linear stretching was applied to 

obtain  �� . The next step was to inverse the image to 

obtain �′� . The final step was to conduct the morphological 

closing. The morphological operation aimed to enhance the 
image quality by equalizing the histogram in the dark area 

which represented the parasite candidates. 

2) Early determination of the global threshold value: A 

simple initialization of global threshold value is intended to 

obtain the global threshold value of the background and 

objects possessing low intensity, including parasites and other 

artifacts. Otsu method was applied to automatically execute 

clustering-based image thresholding [33], or the binarization 

of a grayscale image. The method categorizes the pixels into 

two classes (foreground and background) or more classes for 

the modified method by calculating a threshold that 

minimizes intra-class intensity variance. In this malaria 
detection case, the parasites had a relatively different intensity 

from RBC and the background. However, the parasites had a 

much smaller size than them, as shown in Figure 6(a). It 

caused the Otsu method often to obtain the value threshold of 

RBC and background. Otsu’s method modified by [28] aimed 

to obtain the threshold value of parasites and artifacts. 

Because the modified method was efficient, the method was 

adopted in this study for identifying the initial threshold value. 

The detail list of processes is shown in Algorithm 2. 

 

   

a b c 

Fig. 5  An example of a microscopic image of a thin blood smear in the pre-processing stage. (a) Original image infected by Plasmodium malaria parasites with 

several artifacts [4], (b) green channel, and (c) the output of the pre-processing stage 
 

 

 

a b 

Fig. 6  Three parts are easily distinguished by the human eye including, background, RBC and Plasmodium, and several artifacts. (a) Group of intensity in a blood 

smear image. (b) Histogram of the image.  

Algorithm 1. Pre-processing step 

Input: RGB color image a microscopic image of a thin 

blood smear   

Output: Image with enhanced parasite cores 

1. Select the green channel (G) from RGB color space. 

2. Resize G into half of the original size. 

3. Contrast stretch G to obtain�� using linear stretching 

into the range of 0-255 

4. Invert  �� to obtain �′� using �′� = ���	��
 − �� 

5. Apply morphological dilation with kernel ‘disk’ in a 

radius of 5 pixels.  

6. Invert back in the same way on step 4 to obtain ��   
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ℎ� is the histogram of the output image �� obtained from 

the pre-processing stage. Otsu’s method was applied to obtain 

the global minimum point (��). Here,  �� was assumed as the 

global threshold between RBC and background. Only the first 

component of �� in ℎ� symbolized ℎ� was used for the next 

step. Otsu’s method was applied for a second time to obtain 

the second global minimum point ��  assumed as the global 
threshold value of parasites. Up to this point, the global 

threshold was still fragile in getting all parasites on the image 

containing the luminance noise produced by the microscope 

bulb or non-homogeneous staining. Therefore, an optimized 

global threshold was needed. 

3) Determination of the optimum global threshold 

value: This stage was the key to the novelty of this study. In 

the third stage, the global threshold value of parasites had 

been obtained. However, the optimum of the global threshold 

value was necessary to be extracted to detect all parasites. In 

Figure 6 (b), in the histogram, parasite intensity is located in 

the black area. Around the end of the black area is the 

optimum threshold value in detecting all parasites. 

 
Algorithm 3. Determination of predicted threshold value 

Input: Grayscale histogram ℎ�  
Output: Predicted optimum global threshold values (un) 
1. Calculate absolute mean and standard deviation in every three 

interpolations ordered of ℎ� to obtain m and std_h variables, 
respectively.   

2. Add both variables together to obtain� to get new histogram,  

� = � + ���_ℎ 

3. Calculate the max reference (�) by calculating the mean of the 

first element �� of the histogram (ℎ�) to get mean of dark 
intensity,  � = ����	 � �1: ���
 

4. Create zero variable (un) with the same size of � 

5. Put 1 in un at the location of  � elements which did not have 

more than � 

There were two steps to obtain the optimum global 

threshold value ��. The first is to find the predicted optimum 

global threshold values (un) and followed by finding the 

optimum global threshold value (��). Both steps are listed in 

Algorithm 3 and Algorithm 4, respectively. In Algorithm 3, 

mean (m) and standard deviation (std_h) were extracted of 

each three interpolations of ℎ�. Standard deviation could be 

represented the stability of the histogram  ℎ� . Adding 

between std_h and m intended to remove speckle noise and to 

enhance the histogram. Steps 3 to 5 were to calculate the 

reference of the maximum number of pixels suspected that 

there was no parasite had more numbers than the reference. 

The step intended to avoid over-segmentation on RBC areas. 

The output of this algorithm was the predictive threshold 

values that met this rule.  

Algorithm 4 intended to find the optimum threshold values. 

The predicted threshold value values by Algorithm 3. The 

created algorithm purposes to avoid over-segmentation 

because of the lowest position of both the histogram peaks in 

Figure 6 was lower than �. This condition allowed for a wide 

space in both two predicted threshold values. Algorithm 4 was 

proposed to solve this case. A derivative of un’ following 

wide detection was calculated for detecting the abnormal 

width. An abnormal width could be detected using the percent 

width of the histogram. 

Here, 20% was determined. The optimum threshold value 

was obtained from the last predicted threshold values before 

meeting the abnormal width. 

4) Evaluation: The focus of this study is on the 

extraction of parasite candidates as the initial step of a whole 

parasite detection method. To achieve this, we propose an 

optimization method for the double Otsu algorithm [28] that 

aims to find a general parasite threshold in microscopic 

images. To evaluate the performance of our proposed 

optimization method, we compare it with the original [28] and 

another previous method [29]. We assess important 

parameters such as the number of false positives, true 
positives, false negatives, sensitivity, and computational time 

[34]. 

III. RESULTS AND DISCUSSION 

The robust method for detecting malaria infection in 

microscopic images of thin blood smears is proposed in this 

study.  The proposed method was tested and evaluated in 468 

microscopic images captured from hundreds of thin blood 
smears. The dataset contains 691 malaria parasites with all 

variants and their life stages. The previous method, [29] and 

[28], were also compared to show the advantages and 

disadvantages of the proposed method. Some parameters in 

the confusion matrix were involved in measuring the 

performance. The parameters consisted of True Positive (TP), 

False negative (FN), False positive (FP), and computational 

time. TP was the number of detected parasites correctly. FN 

was the number of undetected parasites. Then, FP was the 

number of non-parasites detected as parasites. The definition 

of the accurately detected parasites was determined by 

containing more than 50% of the body’s parasite in 80 by 80 
patches. 

The comparison of [29] and [28] is listed in Table 1. The 

proposed method by [29] has the highest number of 

undetected parasites (FN) yet possessing the lowest FP. This 

effect occurs because the method is designed with many fixed 

parameters. Since the method was examined in the data that 

have artifacts and has different luminance type, the method 

[29] becomes not reliable. The main factor of the 

Algorithm 2. Determination of global threshold value. 

Input: Image with enhanced parasite cores 
Output: New histogram with the general threshold value  

1. Calculate the grayscale histogram (ℎ�) of the output image �� 
of the pre-processing stage.   

2. Apply Otsu’s method to define the global minimum point 

 (��) of the histogram (ℎ�). 

3. Put the first elements �� of the histogram (ℎ�) to obtain 

 (ℎ�),  ℎ� = ℎ�	1:��
 
4. Apply the second use of the Otsu method to determine a new 

global minimum point (��), for the histogram (ℎ�). 

Algorithm 4. Determination of optimum global threshold 

Input: The predicted optimum global threshold values � 

Output: Optimum global threshold value (��)   

1. Calculate un’ by using 1 ! derivative of un 
2. Find the position of a non-zeros element of un’ to obtain k 
3. Update un by using Algorithm 5 

4. Define �� by finding the last location of un which equals one 
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unsuccessfulness of this study is the application of many 

morphological operations with large kernel sizes. The effect 

of using many morphological operations with a fixed large 

size is shown in Figure 7. The blue contour is a suspected 

parasite area determined by the system. Red contour is the 

ground truth. Yellow and green boxes are artifacts and 

detected parasites by the system, respectively. 

The simple method with fast computation of 0.039s per 

image for finding the general threshold value was proposed 

by [28]. The method was designed by using the modified 
Otsu’s to determine the global threshold value for the parasite. 

However, because the data used were more varied, the 

method’s performance worsened. As reported in Table 1, [28] 

produces many false-positive rates with 43,678 objects and 

fails to detect all parasite objects, leaving 14 undetected 

parasite objects.  Based on these results, two conditions cause 

[28]’s performance to be worse.  

TABLE I 

THE COMPARISON OF SEVERAL METHODS 

Methods TP FN FP Time (s) 
Sensitivity 

(%) 

[29] 569 122 1,340 0.489 82.3 

Double Otsu [28] 677 14 43,678 0.039 98 

Optimized Double 

Otsu (Proposed) 
688 3 3,555 0.073 99.6 

First, when an image has black components, e.g., parasites, 

platelets, or white blood cells (WBC), as illustrated in Fig. 5, 

which has a small size indicated by a flat histogram in the low-

intensity area, the [28] determines the global threshold value 

��   in the range of red blood cell intensity, as shown in Fig. 7 

(b). This condition makes the number of FP significantly 

increase, as listed in Table 1. 

 

a b 

Fig. 7  Two instances of unsuccessful results of [28] 

Second, when an image contains very low-intensity white 

blood cells (WBCs) with some parasites having a relatively 

high intensity, [28]’s method will determine the global 

threshold ��  below the parasite intensity. Therefore, this 

method is difficult to detect parasites or increases the number 

of FN (leaving 14 parasites), as listed in Table 1. However, 

when an image is executed without these conditions, and the 

parasites size is relatively large, implementing [28] is still 

considered. Considering these two conditions, our method is 

proposed to decrease the number of false negative rate and 

false positive rate. 

There are two steps added in modifying [28] as novelties 

of this research to achieve better performance in malaria 

detection. First, to reduce FP, a pre-processing step is added. 

This scheme was designed by applying morphological 

dilation in greyscale for homogenizing the surface. Second, to 

reduce FN, an optimization of the original is introduced. 
Figure 8 shows some results in segmenting parasite using 

different methods to generate a global threshold value on a 

microscopic thin blood smear image. Figure 8(a) is an 

example of the previous method [28] in extracting the parasite 

patch candidates in our dataset. Because the image contains a 

heavy clumped RBC, the second global threshold value (��) 

aiming to segment the parasites lies on the RBC’s intensity 

rank, as shown in Figure 8(b). Consequently, many RBC parts 

are also segmented, as shown in Figure 8(a).     

After we add the pre-processing step, the second global 

threshold value (�� ) is successfully laid on the parasite’s 

intensity range, as shown in Figure 8(d). It can significantly 

compress the number of FPs. However, the laid �� is too 

backward, middle on the parasite’s intensity range. That 

position has a chance to miss a bright parasite. The missed 

parasite is shown in Figure 8(c).     

To overcome this issue, we proposed an optimized method 

to rest the global threshold value on the border parasite’s 

intensity range (��), as shown in Figure 8(e). Several points 

suspected as the optimal locations of ��  (�) were obtained by 

using the optimization method. The  �� laid on the last of �, 
which was the optimum border of the back area, as shown in 

Figure 6. Our method was successful in reducing both of the 

limitations, FN and FP.  The optimized [28] achieves better 

performance than the [28] with only three FNs are remained 

and more than half of the total FPs are successfully reduced, 

as listed on Table 1.  

The proposed method obtains better results than the 

original [28] by optimizing and adding a pre-processing into 
the [28]’s method. However, referring to Table 1, there are 

three undetected parasites by the proposed method or 99.6% 

for the sensitivity, as shown in Table 2. It is a disadvantage of 

using the pre-processing scheme. Figure 9 shows an example 

of a parasite that is not successfully detected. Figure 9(a) is 

the original image comprising three parasites. Two parasites 

have different high intensities; the last has a similar intensity 

with RBCs. The miss detection of a parasite is because the 

pre-processing scheme enhances the surface of the two 

parasite cores. However, the last parasite possessing similar 

intensity with RBC is harder to find the optimum threshold. 

Extracting the parasite-infected candidate patches was a 
study's scope, whereas image classification methods can 

reduce the number of FPs in further research. 
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g h 

Fig. 8  The comparison methods in detecting parasites using: (a) the original of [28] with (b) its corresponding histogram, (c) [28]’s modification by adding pre-

processing with (d) its corresponding histogram, (e) the proposed method with (f) its corresponding histogram and (g) the results in patch detection of the original 

[28] and (h) the proposed method, respectively 
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Fig. 9  Missing detection of a parasite in (a) an image from dataset [4] is treated by (b) [28]+prep with (c) its corresponding histogram and (d) the proposed method 

with (e) its corresponding histogram. 
 

IV. CONCLUSION 

This paper proposes a method for finding the optimum 

global threshold value for early malaria detection, extracting 

the parasite-infected candidate patches in microscopic thin 

blood smear images. This early step is very important since it 

was used as an initial step in the parasite candidate detection 
process. Our proposed method was performed on the data 

consisting of 468 thin blood smear images containing 691 

malaria parasites. The proposed method achieves the highest 

sensitivity of 99.6% and the lowest number of FN (false 

negative) in detecting the parasite-infected candidate patches 

among the compared methods. 
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