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Abstract—Software fault prediction is widely used in the software development industry. Moreover, software development has 

accelerated significantly during this epidemic. However, the main problem is that most fault prediction models disregard object-

oriented metrics, and even academician researcher concentrate on predicting software problems early in the development process. This 

research highlights a procedure that includes an object-oriented metric to predict the software fault at the class level and feature 

selection techniques to assess the effectiveness of the machine learning algorithm to predict the software fault. This research aims to 

assess the effectiveness of software fault prediction using feature selection techniques. In the present work, software metric has been 

used in defect prediction. Feature selection techniques were included for selecting the best feature from the dataset. The results show 

that process metric had slightly better accuracy than the code metric.  
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I. INTRODUCTION 

Software development has accelerated significantly during 
this epidemic. Due to the COVID-19's significance, several 
software packages have been presented globally at various 
levels to upgrade the guide's format. The complexity and size 
of the software program influence the amount of time spent 
testing and introducing novel insects or unforeseen flaws. 
This significantly burdens the software industry to increase 
disease-free software, particularly for mission-critical 
software. However, software program failures are frequent, 
and the security segment of software program tasks should 
emerge as unquestionably painful for customers and luxurious 
for businesses. Occasionally, the exact insects mentioned are 
in motion during the protection section. Consequently, a 
software fault prediction model is desired to anticipate 
malfunctioning modules in software to avoid an increase in 
the rate of basic task completion [1]. 

The error prediction feature enables the development team 
to perform additional checks on modules with a high 
probability of failure [2]. Numerous error prediction methods, 
such as Bayesian networks [3] and K Means clustering [4], 
have been developed to improve the efficiency of application 
error prediction. However, selecting software metrics is the 
most difficult component of designing an error prediction 
model [5]. Selection measures evolved into a critical 

component that aided in constructing the default prediction 
model [6]. To assess product quality, software metrics are 
required, and a variety of aspects will be considered, 
including architectural design, computational complexity, 
software validity, and efficiency. 

Generally, metric software property has method-level, 
class-level, components-level, file-level, process-level, and 
quantitative-level categories. Method-level metrics are 
widely used for software fault prediction problems [7]. Many 
past researchers use numerous software metrics such as CK 
metrics [8], Briand Metrics [9], and design metrics [10]. This 
metric was categorized into method and class level metric, an 
object-oriented design. 

Metrics for software are divided into two main categories: 
process metrics and code metrics [5]. Process metric can be 
defined as a change of information in software or code [11], 
while code metric or product metric can be defined as an 
indicative measurement of faults that provides a quantitative 
description of certain characteristics of software products and 
processes [11]. Object-oriented metrics are a subset of code 
metrics and are critical in the defect prediction process. 
However, the main problem is that most fault prediction 
models disregard object-oriented metrics. In addition to 
object-oriented metrics, the usage percentage of component 
levels and process level metrics are very low [10]. 
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Different evaluations were performed, including metric-
type process metric and code metric comparisons, category-
wise comparisons, and individual metric comparisons [11]. 
The selected performance metric which is Mean Square Error 
(MSE), Root Relative Square Error (RRSE), and Average 
Absolute Error (AAE). The result shows that the selected 
hybrid set obtained using wrapper subset selection performed 
very well compared to all metric sets for predicting the 
number of faults, and the process metric performed better than 
the code metric [11]. There were limitations in this research, 
such as the imbalance class distribution within the dataset.  

Furthermore, the imbalance class distribution within the 
dataset resulted from the huge dataset used in the feature 
selection process [12]. If the number of specimens in one class 
is greater than that in another class, then a dataset is said to be 
highly divergent. The major class is used to detect unbalanced 
datasets with a greater number of samples, whereas the minor 
class expresses the samples as positive. [14]. By class ratios 
of 100 to 1 and 1,000 to the quantity of majority class 
specimens outnumbers minority class specimens. Both binary 
and multi-class datasets contain imbalanced data [15]. 
Unbalanced data is particularly common in machine learning 
and data mining applications, as it occurs in several actual 
prediction jobs. However, the approaches and notion of data 
balancing prior to model development are relatively new to 
many academics in information systems [16]. In several 
fields, such as medical diagnosis [17], classifiers for database 
marketing, property refinancing prediction [18], and 
classification of weld faults, numerous balancing strategies 
have been used to data sets. 

Even though object-oriented paradigm is extensively 
employed in the business world, the utilisation rate of class 
level metrics is still beyond acceptable limits [6]. Important is 
the prediction model that uses class-level measurements to 
predict errors during the design process; this sort of prediction 
is known as early prediction. Due to realizing the importance 

of software defect prediction and the importance of object-
oriented concepts in the software development phase, this 
research aims to propose a software defect prediction model 
using the object-oriented metric that focuses on the early stage 
of software development. Fault prediction in an early stage is 
important because it can reduce the cost of maintenance of the 
software product and reduce any fatal error that can cause the 
software product to be disabled [19]. This research will 
examine software metrics linked to dependability that are 
relevant throughout the early phases of software 
development. Additionally, the impact of the fault prediction 
model with different feature selection methods and machine 
learning techniques will be examined thoroughly. 

A. Software Fault Prediction 

Predicting software failures is critical for software quality 
assurance [20]. Because current software development is so 
sophisticated, errors are unavoidable. Error-prone software 
projects will have unanticipated repercussions throughout the 
implementation phase, causing significant harm to enterprises 
and even jeopardizing the safety of people's lives [20]. More 
than 80% of software development and maintenance 
expenditures are currently spent on bug fixes [20]. Expenses 
may be significantly reduced if these errors can be caught 
early in the software development cycle. As a result, several 
research has attempted to construct predictive models for 
defect prediction to assist developers in detecting potential 
faults in advance. 

Unfortunately, current error prediction models continue to 
have issues [20], such as insufficient classifier performance. 
To address these issues, numerous machine learning 
approaches such as Naive Bayes (NB), Logistic Regression 
(LR), Random Forest (RF), and Support Vector Machine have 
been suggested to forecast software failures [20]. (SVM). 
These models, however, are far from acceptable. 

  
Fig. 1  The Process of Software Fault Prediction [20] 

 
Predicting software failures is a significant area of study in 

software engineering [20]. The method of software failure 
prediction is shown in Fig.1, which consists of four phases. 
The initial stage is extracting the program 
modules/files/classes via exploration of historical software 
repositories and then categorizing the modules/files/program 
classes as error-prone or not. The second stage is extracting 
software problems' characteristics via an analysis of the 
program's source code or development process. Then, certain 
features, such as the Halstead trait [20], the McCabe trait, and 
the CK trait [9], were utilized to assess illness propensity. The 

grey colour represents the non-faulty bias module (NFP) in 
Fig.1, while the red represents the defective bias module (FP).  

Training cases can create an error prediction model with 
relevant features [20]. Several machine learning algorithms 
are employed in this stage, including Naive Bayes, Support 
Vector Machine [21], Random Forest [23], and Logistic 
Regression [24]. The Naives Bayes algorithm has been 
developed to forecast the quantity of residual faults that may 
be discovered during independent inspection or operational 
usage. The suggested support vector machine optimizes the 
SVM model's prediction performance. Centroid approach. 
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These techniques use an error prediction model to forecast 
and categorize untagged software modules/files/classes. 

B. Software Fault Prediction 

Several evaluation metrics for machine learning classifiers 
include precision, recall, f-measurement, and Area under the 
receiver operating characteristic curve. AUC [20]. Among 
these measures, AUC is often used in software engineering 
research [20]. AUC refers to the region beneath the receiver 
operating characteristic. The x coordinate represents the false 
positive scale, whereas the y coordinate represents the 
genuine positive (recall) scale. The Receiver Operator 
Characteristic (ROC) curve is an assessment measure for 
binary classification issues. It is a probability curve that shows 
the TPR vs FPR at various threshold levels and, in essence, 
separates the "signal" from the "noise." As a summary of the 
ROC curve, the Area Under the Curve (AUC) shown in Fig. 
2 quantifies the ability of a classifier to discriminate between 
classes. The greater the AUC, the greater the model's ability 
to differentiate between positive and negative classifications. 
A higher X-axis value in a ROC curve suggests a greater 
frequency of False positives than True negatives. A greater Y-
axis value implies a greater proportion of True positives than 
False negatives. Therefore, the threshold selection is 
contingent on the capacity to strike a balance between False 
positives and False negatives. The AUC has been chosen as 
the performance statistic for three reasons. Unlike other 
indices, which need a value greater than the predicted 
likelihood of default susceptibility, the AUC is a threshold-
independent measure [20]. The word 'threshold' refers to the 
probability threshold used to classify a situation as positive or 
negative. Other performance indicators (such as accuracy, 
recall, precision, and f-index) are calculated relative to the 
threshold specified and are commonly set to 0.5. 

 
Fig. 2  Area Under Curve (AUC)  

C. Machine Learning and Software Fault Prediction 

With the fast advancement of software and computer 
technology, software has become ubiquitous in practically 
every facet of social life [25]. Due to the widespread use of 
invisible software that simplifies and expedites our lives. 
Meanwhile, technology is confronting a significant dilemma 
as the expense of software testing and maintenance and 
multifunctional and highly sophisticated software systems 
become more crucial. Software failure occurs when software 
is unable to execute its intended purpose owing to its own 
defect. 

However, failures may be anticipated using software 
models that use past data from the organization and software 
features to predict problems [26]. Software failure prediction 
models are advantageous for decision-making in module 

verification and validation, such as resource allocation. We 
need to locate the fault and verify and repair the programme 
using more precise approaches. Thus, anybody may create a 
state where software is highly reliable, maintainable, and 
performant, with a short development cycle and cheap 
development and maintenance expenses [24]. 

The application of software failure prediction methods is 
extremely advantageous to the software development process 
because it results in a highly reliable software system with 
fewer error-prone modules, resource allocation based on 
prediction results, and maximizing the use of limited 
resources to enhance the quality of software products [27]. In 
recent years, several methodologies and models for 
forecasting software failures have been published. Examples 
of these techniques include statistical approaches, machine 
learning techniques, parametric modelling, and mixed 
algorithms [28]. The most prevalent software fault prediction 
models are Markov models, classification and regression tree 
models, artificial neural network models, linear discriminant 
analysis models, LSTSA, and classification tree models. 
However, these techniques pose problems that cannot be 
adequately overcome. For example, the Markov model must 
assume the classification tree and regression models have 
limited generalization capacity; and the artificial neural 
network model does not yet have a coherent guiding theory 
for network structure selection. Logistic regression (LR) 
further strengthens the difficulties of resolving a potentially 
incorrect value outside of the range of 0 and 1. In this case, 
LR performed a logarithmic modification to unconstraint the 
value. restricted to the range 0 to 1, which may be any value 
between positive and negative infinity. LR developed a 
quadratic discriminant that increased computing speed and 
recognition rate, resulting in its extensive application in 
modelling software defect prediction. Although it is often 
employed in big samples, the results are less than optimal for 
tiny samples [24]. 

D. Deep Forest 

Recently, a deep forest model termed gcForest [24] was 
introduced as an alternative to deep neural networks. Similar 
to deep neural networks, gcForest features a multi-layered 
structure with many forests on each layer. Fig. 3 depicts the 
basic structure of a forest. The input is a feature vector X, and 
the output is a rank vector for X based on the forest's decision 
tree. The red line in Fig. 3 depicts the decision-making 
process of the decision tree. The functioning of deep neural 
networks prompted the design of gcForest, a complete 
component. The first is multi-grain analysis, which uses a 
sliding window structure to evaluate the immediate 
environment from a one-dimensional perspective in order to 
develop random forest representations of input data. The 
second is a cascading multi-layer population of random 
forests that, under the supervision of an input representation 
supervisor for each class, learns more discriminating 
representations, resulting in more accurate predictions. 
Constructed upon a set of randomly generated forests. Unlike 
conventional deep neural networks, which need a substantial 
amount of computer resources to train, deep forests use far 
fewer resources. Moreover, Deep Forest can perform several 
tasks with its default settings [24]. 

923



 
Fig. 3  The Basic Structure of Deep Forest [24] 

 

E. Support Vector Machine Learning (SVM) 

When applied to binary classification, SVM's central 
notion is to find the hyperplane in a high-dimensional space 
that serves as the plane of separation for the two aspects, 
ensuring the lowest possible error rate. SVM turns the 
classification issue to a constraint-based quadratic 
programming problem [29]. If the sample sets are linear and 
separable, it is assumed that (x1; y1) Rn; y+1; 1 indicates the 
number of samples and the category, such as a hyperplane 
separating these two sample kinds fully. This strategy is 
denoted by equation (1) below: 

 ��� � � � 0 (1) 

The symbol denotes the intersection of two vectors. The 
parameters w and b denote the hyperplane's normal and 
deviation vectors, respectively. The above issue may be stated 
in the following broad terms: 

 �	�
 � ��� � � (2) 

If f(x) is greater than 0, the category label is +1; otherwise, 
it is -1. We hope that the training data will be accurately 
dissected during vector classification and that the gap 
between the nearest and hyperplane data will be as great as 
feasible. This is a quadratic programming issue, similar to 
equation (3). 

 min 	�

�
∥ � ∥�
 (3) 

The optimum function has a quadratic shape, and the 
constraints suggest that the issue described above is a classic 
quadratic programming problem. It is possible to resolve it by 
first introducing the Lagrange operator and then converting it 
to its double version. 
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F. K-Means Algorithm 

In 1967, James MacQueen used the k-means time period 
for the first time [4]. The k-means algorithm may be thought 
of as a reduced basic set of rules for resolving well-known 
clustering situations. The set of rules is implemented via the 
usage of exact records. Clustering operations are carried out 
using predefined clustering centroids. Centroids must be 
chosen as far apart as possible in order to establish a legal 
clustering. On the other hand, each factor associated with a 
record set is connected with the nearest centroid. The 
preceding stages are repeated until stable centroids are 

obtained. The k-means set of rules consists of the following: 
Select the okay records factor as the preliminary centroid and 
then assign all factors to the centroid that is closest to it. 
Assign centroids in accordance with the newly formed 
clusters. Rep the second and third steps until the centroids are 
steady. 

Due to its simplicity, the k-means set of rules is quite 
favourable [4]. The recommend clustering randomly 
produced centroids and factors. Hexagons are used to 
symbolise centroids. The computed bounds of the clusters are 
displayed using a set of k-means rules applied to factors. 
Establishes the first centroids. Arrows depict the gadget's 
dynamic form, in which centroids shift in response to external 
variables, causing boundaries to shift. Later, new centroids 
and cluster boundaries are established. 

G. Process Metric 

The selection of software metrics for use in constructing 
prediction models of software quality is a software 
engineering activity based on search [20]. Due to limited 
project resources, a thorough search for such metrics is 
sometimes impractical, especially when the number of 
available metrics is vast. Abreu MOOD metric suite, Bieman 
and Kang, Briand, Halstead, Henderson-sellers, Li and Henry, 
McCabe, Lorenz and Kidd, and CK metric suite are the most 
often employed metric suites that indicate the quality of the 
programme. PROMISE repository source code metrics were 
evaluated for developing a defect class prediction model in 
this work. 

This study focuses on applying software metrics, such as 
code metrics, process metrics, and a mix of the two. Using a 
hybrid metric dataset, the software metrics were categorised 
by performing feature selection during the data pre-
processing step. Process metric may be defined as a change in 
software or code [10] whereas Code metric or product metric 
can be defined as an indicative measurement of errors that 
gives a quantitative description of specific aspects of software 
products and process [12]. As a result of the accessibility of 
code metric-based datasets, code metrics were predominantly 
employed for fault prediction research [11]. 

H. Code or Product Metric 

Code metrics were mostly used for fault prediction studies 
because of easy availability of code metrics-based datasets. 
Most common datasets used in related studies belong to 
PROMISE repository which can be accessed publicly 
worldwide. Following are some papers that experimented 
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using code metrics and are related to our study. Following are 
some papers using code metric. Li and Henry examined CK 
metric suite for fault prediction for the first time. Except for 
LCOM, all measures properly predicted fault proneness, it 
was discovered. However, the correlation between the 
evaluated measures and error propensity was not studied. 

Ohlsson assessed the fault prediction capabilities of several 
design metrics. All used measures have a substantial link with 
fault proneness. Nonetheless, this review was conducted on a 
single software project. Insufficient evaluation of fault 
prediction models. Shanthi and Duraisamy  assessed the set 
of MOOD measures for fault prediction. We discovered a 
substantial link between each parameter and mistake 
propensity. However, it lacked a thorough review of fault 
prediction models and did not analyse the connection between 
the metrics utilised for fault prediction. Shatnawi and Li 
analysed the severity of software error prediction metrics. It 
was determined that CTA, CTM, and NOA measures 
accurately predicted class-error probability across all mistake 
severity categories. The gathering of defect datasets was 
performed using commercial software, resulting in 
questionable precision. 

Code metrics were mostly used for fault prediction studies 
because of easy availability of code metrics-based datasets. 
Most common datasets used in related studies belong to 
PROMISE repository which can be accessed publicly 
worldwide. Following are some papers that experimented 
using code metrics and are related to our study. Following are 
some papers using code metric. Li and Henry]examined CK 
metric suite for fault prediction for the first time. Except for 
LCOM, all measures properly predicted fault proneness, it 
was discovered. However, the correlation between the 
evaluated measures and error propensity was not studied. 

Ohlsson assessed the fault prediction capabilities of several 
design metrics. All used measures have a substantial link with 
fault proneness. Nonetheless, this review was conducted on a 
single software project. Insufficient evaluation of fault 
prediction models. Shanthi and Duraisamy assessed the set of 
MOOD measures for fault prediction. We discovered a 
substantial link between each parameter and mistake 
propensity. However, it lacked a thorough review of fault 
prediction models and did not analyse the connection between 
the metrics utilised for fault prediction. Shatnawi and Li 
analysed the severity of software error prediction metrics. It 
was determined that CTA, CTM, and NOA measures 
accurately predicted class-error probability across all mistake 
severity categories. The gathering of defect datasets was 
performed using commercial software, resulting in 
questionable precision. 

I. Object Oriented Metric 

One cost-effective approach to resolving software faults is 
to use fault prediction models relying on object-oriented (OO) 
design metrics to identify software defects in created systems' 
classes prior to delivery. Such models may be used to assist 
software development managers in generating quality 
software on time and within budget , and certainly, during the 
past three decades, several software fault prediction models 
have been suggested. However, software errors vary 
significantly in severity, including some potentially 
devastating effects and others being just cosmetic. Most of it 

were related to find the effectiveness and analysing the defect 
prediction model using object oriented metric source code 
only. Most of the source code metric were taken from 
PROMISE repositories which is widely used in research 
studies. 

Previous research on object-oriented design metrics has 
demonstrated that some of them are effective in predicting the 
fault-proneness of classes but has also demonstrated that their 
usefulness is contingent on their being valid regardless of the 
severity of the fault. However, these investigations did not 
differentiate between problems based on their severity.  

TABLE I 
REVIEW ON IMPLEMENTATION OF PROCESS METRIC AND CODE METRIC 

Process Metric Code Metric 

Code Delta: 
Delta of LOC, Delta of 
Changes 
 
Code Churn: 
Total LOC Churned, LOC 
Deleted LOC, File Count, 
weeks churn, churn cost and 
files churn etc. 
Change Metric: 
Revisions, Refactoring, Bug 
fixes , ashes, etc. 
 
Developer Based:  
Personal commit Sequence, 
No. of corrections etc 
 
Requirement of Metric: 
Action, Conditional, 
Continuance, Imperative etc. 
 

CK Metric Suits: 
CBO, LCOM, DIT, 
NOC, RFC and WMC 
 
Yacoub Metric Suit: 
Export Object Coupling 
(EOC), Import Object 
Coupling 
(IOC) 
 
Airdelm Metric suit: 
IC_OD, IC_OM, 
IC_OC, IC_CD, 
IC_CM, 
IC_CC,EC_OD,EC_OM, 
EC_OC, EC_CD, 
EC_CM, EC_CC, 
 
Michel Metric Suits: 
Dynamic 
CBO for a class, 
Degree of Dynamic 
Coupling between two classes 
at runtime,  
Degree of 
Dynamic Coupling within a 
given set of classes, 
R1,R2,RD1,RD2 
 
Moods metric suit: 
MHF,AHF, MIF,AF,PF,CF 
 

 
Table I show the explanation of implementation of process 

metric and code metric. Code metric utilise various 
capabilities of the finalised software, product metrics are 
calculated. These metrics verify compliance with certain 
standardisation requirements, such as ISO-9126. There are 
three broad categories of product metric: traditional metric, 
object-oriented metric, and dynamic metric. Traditional 
metrics consist of software metrics that were developed 
during the discipline of software engineering's infancy and 
gradual emergence. Chidamber and Kemerer [9] presented 
the CK metric package as a software metrics suite for OO 
applications. Dynamic metrics are metrics that depend on the 
characteristics acquired from a running application. Their 
significance stems from the fact that they are real-time and 
based on how the gathered software components react at the 
time of actual programme execution. They evaluate particular 
runtime properties of programmes, system components, and 
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system. Process metrics are derived from the features 
gathered across the whole software development life cycle. 
They aid in the formulation of improved strategies for future 
software development processes. They are particularly 
helpful in facilitating the standardisation of a collection of 
process metrics, which leads to the long-term enhancement of 
the software development process. 

J. The Combination of Metric 

Numerous academics have utilised various metrics to 
analyse and enhance fault prediction. Some academics have 
also conducted a comparison of the various measures 
employed for software defect prediction. In order to evaluate 
the efficacy of a defect prediction model, several studies 
incorporated process and code metrics. Following is a 
summary and analysis of the research publications that 
addressed the integration of process and code metrics. 

Rahman and Devanbu evaluated the combined capacity of 
process and code metrics for failure prediction and found that 
the process measure nearly always exceeded the code metre. 
Due to the usage of commercial tools to compute code, the 
correctness cannot be determined with certainty. The results 
are not the product of extensive analysis. 

Ma  employed requirement metrics for the first time to 
assess failure prediction. When the requirement metric was 
paired with the design metre, the fault prediction skills 
improved significantly, according to the findings. Considers 
software metrics evaluation studies utilised a restricted 
number of datasets, such as two or three. No study of data 
distribution for statistical testing was performed. 

Wu  analyse the impact of developer quality on software 
failure prediction. The integration of developer, process, and 
product data improves the outcomes of fault prediction. To 
validate the process, more datasets from various areas must 
be utilised for evaluation. 

Selection strategy for useful software metrics for fault 
prediction was proposed by Xia. CM, MMSLCM, and HM 
metrics demonstrated a considerable effect on fault 
prediction, relative to the amount of code and process metrics 
evaluated. With only a number of fault datasets utilised to 
validate the results, the suggested selection method is 
insufficiently validated to show its applicability. 

As a conclusion, the previous works by previous 
researchers related to the combination metric were discussed 
above. Rahman and Devanbu  stated that process metric has 
better accuracy compared to the code metric although the 
accuracy is not well ascertained. There are several potential 
factors that affect the accuracy of fault prediction such as the 
type of machine learning (supervised or unsupervised 
learning), data pre-processing, number of features and feature 
selection technique. Although previous researchers were not 
highlighted the object-oriented metric as their main purpose, 
it can be concluding the usage of object-oriented metric in 
software fault prediction are capable to predict the defect at 
the class level of the system. 

K. Feature Selection 

For feature selection process, there were many techniques 
used in previous research such as Filtering Features selection 
methods proposed by . This technique had better performance 
prediction compared to the old previous studies. The best 

feature selection method will be selected in data pre-
processing process to select the best metric for training the 
machine learning model. 

II. MATERIAL AND METHOD 

A. Proposed Experiment Procedure 

This study's experimental methodology will consist of four 
phases and will be conducted using a Python-based 
experiment workbench. The first phase is data preparation, 
which involves applying a variety of data pre-processing 
procedures to the study dataset. Test/train segmentation, data 
cleaning, feature engineering, and feature selection are the 
data preparation procedures. In the second stage, several 
Random Forest models are trained on the pre-processed 
dataset. Random Forest Classifiers have demonstrated 
significant efficacy in predicting software problems in the 
past and are thus great candidates for comparison analysis 
utilising a number of software metrics [10]. Model evaluation 
is the third phase, which involves determining the accuracy 
and f1 score values for each model. The fourth and last phase, 
Result Analysis, will evaluate the relative importance of each 
character in the pre-processed dataset for software failure 
prediction by analysing the results. In this research, each 
machine learning model will undergo a sensitivity analysis. 
The subsequent sections will examine the execution of the 
four steps of the experimental technique on the experimental 
workbench. 

B. Dataset 

This research used a single dataset including a count of 
faults/bugs in our research. The datasets are open to the 
public, and the derived class is fault count. These datasets are 
part of the PROMISE open-source initiatives. These datasets 
are referred to as CM1/software defect prediction by NASA. 
Process and code metrics are included as features in the 
datasets. Each dataset has fifteen process metrics and 
seventeen code metrics. In the features section, all of these 
measures are explained in great detail. These datasets are 
class-level datasets, with the target class having a specific 
number of faults/bugs. The total number of dataset instances 
is 484. 

 

 
Fig. 4  PROMISE CM1 Dataset 

C. Experiment Setup 

This study uses a two-stage design. The external "View 
layer" presents the experimental design's input, processing, 
and output, as well as the method for loading the investigated 
datasets into the experimentation, in a black-box manner. The 
"Application layer" of the experimental workbench analyses 
the research dataset to calculate each model's accuracy and F1 
scores. Python workbench obtains research dataset from 
"View Layer." The workbench hosts experiments. The 
experiment workbench in the "Application Layer" prepares 
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the dataset before using it. The dataset is split 70-30 between 
testing and training. The workbench removes unnecessary 
characteristics from the training dataset. Feature 
engineering—data binning, missing value imputation, 
categorical value encoding, and numeric data 
standardization—follows on the training set. "Feature 
engineering" is this.  

The workbench then allows data set selection. Wrappers 
subset selection chooses the data set's procedure and code 
metrics' greatest attributes. Our hybrid measurements 
predicted defect numbers. All metrics subgroups were 
studied. The workbench pre-processes the testing set after 
pre-processing the training set. Workbench-cleaned training 
sets are used to train Random Forest Classification models. 
The workbench evaluates models after training using process 
and code metrics. The workbench categorises metrics and 
evaluates models for each category and single metrics from 
process and code subsets. 

The experiment workbench begins by creating a Python 
virtual environment and installing the essential Python 
libraries and packages. Anaconda does this. Free and open-
source Anaconda lets you construct and manage Python 
virtual environments. This utility can install different Python 
packages and their dependencies in various Python virtual 
environments. This inquiry uses Python 3.8.3 and Anaconda. 
With Anaconda and the terminal, a python virtual 
environment named "software fault_ prediction" is created. 
The "software fault prediction" virtual environment instals the 
"numpy," "pandas," "seaborn," "matplotlib," and "scikit-
learn" python libraries and their dependencies. 

Installed libraries have different capabilities. Only Python's 
"numpy" library handles arrays. Pandas is essential for data 
analysis. Data visualisation requires Matplotlib. The 
"Seaborn" package, built on "Matplotlib," helps visualise and 
comprehend data. The machine learning pipeline requires 
Scikit-learn for data preparation, ML model training, and 
performance assessment. Scikit-learn (previously 
scikits.learn and sklearn) is a free Python machine learning 
package. It supports support-vector machines, random forests, 
gradient boosting, k-means, DBSCAN, and NumPy and 
SciPy numerical and scientific libraries. S. Hassan [10] 
describe scikit-machine learn's learning toolset. 

The experiment workbench is programmed in Jupyter 
Notebook. Jupyter notebook, an open-source online 
programme, supports numerical simulation, statistical 
modelling, data visualisation, and machine learning. Data 
scientists prefer it. Jupyter Notebook can link to multiple 
kernels for multi-language programming. Jupyter kernels 
respond to code execution, completion, and inspection 
requests. Kernels communicate with other Jupyter 
components using ZeroMQ. Jupyter kernels may connect to 
several clients and are unaware that they are associated to a 
document, unlike many Notebook-like interfaces. Kernels 
usually support one language. 

D. Data Pre-processing 

Data pre-processing is necessary to turn the NASA 
PROMISE repository's PROMISE dataset into a machine 
learning (ML)-ready format and to maximise the dataset's 
productive potential. Python is used for data pre-processing, 
and the different data pre-processing processes, including 

data cleaning, feature engineering, and feature selection, are 
programmed into the experiment workbench to automate 
them. The first PROMISE dataset had 2998 occurrences and 
22 date-time, ordinal, and numeric properties. After pre-
processing, 11 characteristics and 484 cases remain in the 
dataset. Table II provides a summary of the final pre-
processed dataset. 

E. Test/Train Split 

A random 70-30 split is used to divide the dataset into a 
training set and a testing set before any preparatory processes 
are carried out. This is done to prevent the model from being 
overfit by evaluating it with the same data it was trained on. 
It will not be an accurate depiction of the actual situation, as 
the data will be utterly novel and unheard of in the real world. 
Consequently, it is likely that the generated model will 
perform badly in real-world circumstances. 

TABLE II 
SUMMARY OF THE FINAL PRE-PROCESSED DATASET 

No. Feature Selected 

1 Line of Count code 
2 Cyclomatic complexity 
3 Essential complexity 
4 Design complexity 
5 Total operators and operand 
6 Volume 
7 intelligence 
8 effort 
9 Count of line of comments 
10 Unique operators 
11 Total Operands 

 
The training set is pre-processed first, followed by the 

application of the pipeline used to pre-process the training set 
to the testing set. Separately preparing the testing and training 
sets guarantees that no data is lost, i.e., the pre-processing in 
the training set is not impacted by information from outside 
the training set, in this case the testing set. This prevents any 
bias by keeping the data in the testing set fresh and unknown 
during model assessment. 

F. Data Cleaning 

In this phase of preparation, the PROMISE NASA dataset 
is cleaned with the use of "pandas" library functions. Pandas 
has been one of the most popular and favoured data science 
tools for data manipulation and analysis in the Python 
programming language. In addition to Pandas, numpy is 
frequently utilised by data scientists for scientific computing 
in Python. Pandas is highly effective with tiny datasets 
(typically 100MB to 1GB) and speed is rarely an issue. The 
Pandas DataFrame is a structure containing two-dimensional 
data and its associated labels. Pandas DataFrames are utilised 
extensively in data science, machine learning, and other data-
intensive domains. Initially, unnecessary characteristics are 
removed from the original dataset. For instance, the original 
dataset included information on the job title, date of 
employment, and date of separation; however, this 
information is unrelated to the current study and has been 
removed. Second, certain recurring characteristics are 
eliminated. The dataset has separate columns of test results 
for each of the domain-specific topics, despite the inclusion 
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of a "Domain" column indicating each candidate's domain-
specific subject test results. 

G. Feature Engineering 

This phase involves altering the dataset so that it is more 
suitable for machine learning. Initially, missing values in 
columns are determined. Second, the "Defect" column, which 
denoted the module that reported the defect, was modified 
using data binning to represent two classification values to 
conduct a first inquiry for software fault prediction using the 
PROMISE NASA dataset. The values within the Defect 
column are converted into a new column titled "Defect" that 
has two categories: "1" and "0." 

Since ML algorithms in Scikit-learn cannot work on 
categorical values, the fourth step is to convert all category 
values in the dataset to numeric values. According to Scikit-
learn documentation, the "OneHotEncoder" function from 
Scikit-learn preprocessing is used to convert the categorical 
values for the independent variable "Defect" to numerical 
values, while the "LabelEncoder" function does the same 
operation for the dependent variable (predicted class). The 
"LabelEncoder" assigns number labels to each of the column's 
category values. This meets the criteria for the intended class. 
ML algorithms view a higher number as more significant or 
significant than a smaller number. 

Several numerically based features have been standardised. 
It is necessary to rescale the data so that the mean is 0 and the 
standard deviation is 1. This is owing to the broad range of 
values for a variety of numerical attributes. As an illustration 
of this, the "Line of Count" column, which shows line counts, 
has figures ranging from 0.008155 to 0.99991. This is a 
concern since some machine learning algorithms that employ 
gradient descent as an optimization strategy are sensitive to 
feature range differences because each feature has a specific 
step size and features with bigger magnitudes may be given 
more weight. Since this study will employ AutoML, which 
applies many machine learning techniques to a dataset, the 
numeric features must be normalised. MinMaxScaler, a 
Scikit-learn preprocessing function, is used to normalise the 
values in the numeric columns. 

H. Feature Selection 

This phase will summarise the investigated qualities. In this 
study, two distinct types of software metrics were employed: 
code metrics and process measurements. Each of these 
domains is evaluated using a variety of criteria. Code metrics 
are a type of software statistic that are calculated based on the 
code structure of a programme. They offer information about 
the code's characteristics, size, and structure. In addition, 
process metrics based on software revisions, upgrades, and 
tweaks were evaluated. 

I. Model Training 

The subsequent part of the experiment is to train machine 
learning models. The workbench is designed to train models 
for several types of measures, such as selected metrics and 
hybrid metrics, using a single ML method. Various machine 
learning methods were utilised to forecast software bugs. 
These models comprised decision trees, naive bayes, logistic 
regression, as well as several more. Due to Hassan's[10] 
experiment on predicting software failure using many 

software metrics and Random Forest regression, Random 
forest classifiers were used in this study. Random forest is a 
technique for machine learning that was initially described in 
1995 and updated in 2001.  

It may be used for both classification and regression 
learning. The structure-wise random forest methodology is an 
ensemble method that use many decision trees to represent 
distinct classes. The result of categorization learning is the 
mode of all trees, whereas the mean of all trees is calculated. 
Random Forest Classifier is a Scikit-learn tool used to train 
models using Decision trees. Utilizing a Randomized Search 
approach, the ideal hyperparameter values for the Decision 
Tree are determined. This is accomplished by providing a list 
of possible Decision Tree hyperparameter values to the 
Randomized Search algorithm, which then executes several 
times to determine the optimal hyperparameter values for the 
current training set. In regard to the conclusion of the 
Randomized search, the maximum depth of the decision tree 
is set to 100. The "criterion" hyperparameter is set to 
"entropy," which sets the measurement method used to 
evaluate the quality of the decision tree split. The "class 
weight" hyperparameter is afterwards changed to "balanced" 
to address the dataset's imbalance. Lastly, the Decision Tree 
with the best hyperparameter value is trained using the 
training data using the "fit()" function of scikit-learn. 

J. Model Testing/Evaluation 

The "metrics" tools included in the Scikit-learn package 
facilitate model testing during the experiment. Each model is 
tested using a sklearn-imported "metric" library. The import 
library from sklearn uses the "metrics" methods 
"metrics.accuracy score()" and "metrics.f1 score()" to 
automatically generate prediction accuracy and f1 score 
values. This technique requires two arguments: a training 
model and testing sets. The trained models, random forest 
classifiers, are compared to the testing set in order to 
determine the expected outcomes. Performance evaluation 
The metrics TP, TN, FP, and FN are used to evaluate 
specificity, sensitivity, and accuracy. True Positive, or TP, is 
the number of event values that were precisely anticipated. 
True Negatives, or TN, is the number of non-event values that 
were correctly anticipated. False Positive or FP is the number 
of event values that were mistakenly anticipated. False 
Negative, or FN, refers to the number of erroneously 
anticipated non-event values. The number of TF (true 
positive), FP (false positive), TN (true negative), and FN 
(false negative) instances for each model is calculated by 
comparing predicted and actual outcomes from the testing set. 
Finally, the accuracy and F1 score value of each model's 
prediction value are computed using the TP, TN, FP, and FN 
values. 

K. Result Analysis and Discussion  

In addition to the experiment conducted in the initial study, 
this investigation provides data and analysis to determine 
which input features have the most impact on forecasting 
software inaccuracy. In the experiment, the pre-processed 
dataset is altered such that it seems to lack a certain property. 
This is performed individually for each feature in the pre-
processed dataset by converting the feature that makes all the 
values in each row constant, while keeping the other features 
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unchanged. When evaluating a numerical feature, the mean 
value of the feature is substituted for each number in each 
row, while all other qualities remain untouched. When a 
categorical characteristic is present, the category with the 
highest occurrence frequency is chosen to replace all rows. To 
analysing the outcome of performance software fault 
prediction, object-oriented metric features were compared 
with hybrid metric features. 

When each feature is analysed, a new dataset including the 
modified feature and other intact features is generated. The 
experiment employs sensitivity datasets for each feature in 
order to train and assess the Random Forest algorithms, and 
the f1 scores for each scenario are recorded. Then, these 
values would be compared with the f1 scores generated during 
model evaluation of the two distinct software metrics. The 
outcome of each characteristic will be indicated by the size of 
the difference. 

III. RESULT 

When each feature is evaluated, a new dataset is 
constructed that contains the updated feature and other intact 
features. The experiment uses sensitivity datasets for each 
feature to train and evaluate the Random Forest algorithms, 
and the f1 scores values for each scenario are recorded. These 
values would then be compared to the f1 scores obtained 
during model assessment of the two separate software 
metrics. The result of each attribute will be represented in the 
magnitude of the difference. 

A. Results Analysis and Discussion  

The initial test result for this experiment is in Table III. 
Nevertheless, for the experiment at process metric shown that 
it was slightly higher than code metric. 

TABLE III 
THE RESULT OBTAIN FROM THE INITIAL EXPERIMENT 

Iteration Process Metric Code Metric 
 Accuracy (%) F1 Score Accuracy F1 Score 
1 89.33 0.1866 88 0.104 

 
The accuracy and F1 score of the process metric are 

superior to those of the code metric, as shown in the table III 
above. The procedure of feature selection influences the 
accuracy and f1 score ratings. In this preliminary work, we 
employ only one machine learning technique, the random 
forest classifier, because it outperforms other classifiers [10]. 
As a means of enhancing the accuracy of the prediction 
model, we may employ a bigger data set to improve the 
accuracy of the findings. 

To differentiate between the types of metrics, the process 
and code metric were selected based on feature selection 
method and were train and test in the deep learning model. 
The result can be shown in Table III using the accuracy and 
F1 score formula to evaluate the prediction model. 

 �1 � 2 × "#$%�&&�'(∗*$%+,,

"#$%�&&�'(-*$%+,,
 (5) 

 .//01�/� �
2#3$ 4'&�5�6$-2#3$ 7$8+5�6$

9:;< =>?@A@B<-9:;< C<DEA@B<-FEG?< C<DEA@B<-FEG?< =>?@A@B<
  (6) 

 

IV. CONCLUSION 

The experimental data of software fault prediction is 
presented here. Further works that can be proposed based on 
the work and results presented in this study are Include 
additional large (higher number of instances) and varied 
(connected to other software) datasets into the testing and 
experimenting process in the future and compare the 
performance of the new neural network algorithm to our 
findings. Furthermore, we will explore the impact of class 
balancing on the prediction of software defects in the future. 
Lastly, we assess the influence of various issue severity 
classes and the impact of certain issue severity classes in fault 
prediction. 
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