
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Software Defect Prediction Framework Using Hybrid Software Metric
Amirul Zaim a, Johanna Ahmad a,*, Noor Hidayah Zakaria a, Goh Eg Su a, Hidra Amnur b

a School of Computing, Universiti Teknologi Malaysia, Johor, Malaysia
b Department of Information Technology, Politeknik Negeri Padang, Limau Manis, Padang, 25164, Indonesia

Corresponding author: *johanna@utm.my

Abstract—Software fault prediction is widely used in the software development industry. Moreover, software development has

accelerated significantly during this epidemic. However, the main problem is that most fault prediction models disregard object-

oriented metrics, and even academician researcher concentrate on predicting software problems early in the development process. This

research highlights a procedure that includes an object-oriented metric to predict the software fault at the class level and feature

selection techniques to assess the effectiveness of the machine learning algorithm to predict the software fault. This research aims to

assess the effectiveness of software fault prediction using feature selection techniques. In the present work, software metric has been

used in defect prediction. Feature selection techniques were included for selecting the best feature from the dataset. The results show

that process metric had slightly better accuracy than the code metric.

Keywords— Software fault prediction; machine learning; object-oriented metric.

Manuscript received 7 Jan. 2022; revised 28 Aug. 2022; accepted 19 Nov. 2022. Date of publication 31 Dec. 2022.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Software development has accelerated significantly during
this epidemic. Due to the COVID-19's significance, several
software packages have been presented globally at various
levels to upgrade the guide's format. The complexity and size
of the software program influence the amount of time spent
testing and introducing novel insects or unforeseen flaws.
This significantly burdens the software industry to increase
disease-free software, particularly for mission-critical
software. However, software program failures are frequent,
and the security segment of software program tasks should
emerge as unquestionably painful for customers and luxurious
for businesses. Occasionally, the exact insects mentioned are
in motion during the protection section. Consequently, a
software fault prediction model is desired to anticipate
malfunctioning modules in software to avoid an increase in
the rate of basic task completion [1].

The error prediction feature enables the development team
to perform additional checks on modules with a high
probability of failure [2]. Numerous error prediction methods,
such as Bayesian networks [3] and K Means clustering [4],
have been developed to improve the efficiency of application
error prediction. However, selecting software metrics is the
most difficult component of designing an error prediction
model [5]. Selection measures evolved into a critical

component that aided in constructing the default prediction
model [6]. To assess product quality, software metrics are
required, and a variety of aspects will be considered,
including architectural design, computational complexity,
software validity, and efficiency.

Generally, metric software property has method-level,
class-level, components-level, file-level, process-level, and
quantitative-level categories. Method-level metrics are
widely used for software fault prediction problems [7]. Many
past researchers use numerous software metrics such as CK
metrics [8], Briand Metrics [9], and design metrics [10]. This
metric was categorized into method and class level metric, an
object-oriented design.

Metrics for software are divided into two main categories:
process metrics and code metrics [5]. Process metric can be
defined as a change of information in software or code [11],
while code metric or product metric can be defined as an
indicative measurement of faults that provides a quantitative
description of certain characteristics of software products and
processes [11]. Object-oriented metrics are a subset of code
metrics and are critical in the defect prediction process.
However, the main problem is that most fault prediction
models disregard object-oriented metrics. In addition to
object-oriented metrics, the usage percentage of component
levels and process level metrics are very low [10].

921

JOIV : Int. J. Inform. Visualization, 6(4) - December 2022 921-930

Different evaluations were performed, including metric-
type process metric and code metric comparisons, category-
wise comparisons, and individual metric comparisons [11].
The selected performance metric which is Mean Square Error
(MSE), Root Relative Square Error (RRSE), and Average
Absolute Error (AAE). The result shows that the selected
hybrid set obtained using wrapper subset selection performed
very well compared to all metric sets for predicting the
number of faults, and the process metric performed better than
the code metric [11]. There were limitations in this research,
such as the imbalance class distribution within the dataset.

Furthermore, the imbalance class distribution within the
dataset resulted from the huge dataset used in the feature
selection process [12]. If the number of specimens in one class
is greater than that in another class, then a dataset is said to be
highly divergent. The major class is used to detect unbalanced
datasets with a greater number of samples, whereas the minor
class expresses the samples as positive. [14]. By class ratios
of 100 to 1 and 1,000 to the quantity of majority class
specimens outnumbers minority class specimens. Both binary
and multi-class datasets contain imbalanced data [15].
Unbalanced data is particularly common in machine learning
and data mining applications, as it occurs in several actual
prediction jobs. However, the approaches and notion of data
balancing prior to model development are relatively new to
many academics in information systems [16]. In several
fields, such as medical diagnosis [17], classifiers for database
marketing, property refinancing prediction [18], and
classification of weld faults, numerous balancing strategies
have been used to data sets.

Even though object-oriented paradigm is extensively
employed in the business world, the utilisation rate of class
level metrics is still beyond acceptable limits [6]. Important is
the prediction model that uses class-level measurements to
predict errors during the design process; this sort of prediction
is known as early prediction. Due to realizing the importance

of software defect prediction and the importance of object-
oriented concepts in the software development phase, this
research aims to propose a software defect prediction model
using the object-oriented metric that focuses on the early stage
of software development. Fault prediction in an early stage is
important because it can reduce the cost of maintenance of the
software product and reduce any fatal error that can cause the
software product to be disabled [19]. This research will
examine software metrics linked to dependability that are
relevant throughout the early phases of software
development. Additionally, the impact of the fault prediction
model with different feature selection methods and machine
learning techniques will be examined thoroughly.

A. Software Fault Prediction

Predicting software failures is critical for software quality
assurance [20]. Because current software development is so
sophisticated, errors are unavoidable. Error-prone software
projects will have unanticipated repercussions throughout the
implementation phase, causing significant harm to enterprises
and even jeopardizing the safety of people's lives [20]. More
than 80% of software development and maintenance
expenditures are currently spent on bug fixes [20]. Expenses
may be significantly reduced if these errors can be caught
early in the software development cycle. As a result, several
research has attempted to construct predictive models for
defect prediction to assist developers in detecting potential
faults in advance.

Unfortunately, current error prediction models continue to
have issues [20], such as insufficient classifier performance.
To address these issues, numerous machine learning
approaches such as Naive Bayes (NB), Logistic Regression
(LR), Random Forest (RF), and Support Vector Machine have
been suggested to forecast software failures [20]. (SVM).
These models, however, are far from acceptable.

Fig. 1 The Process of Software Fault Prediction [20]

Predicting software failures is a significant area of study in

software engineering [20]. The method of software failure
prediction is shown in Fig.1, which consists of four phases.
The initial stage is extracting the program
modules/files/classes via exploration of historical software
repositories and then categorizing the modules/files/program
classes as error-prone or not. The second stage is extracting
software problems' characteristics via an analysis of the
program's source code or development process. Then, certain
features, such as the Halstead trait [20], the McCabe trait, and
the CK trait [9], were utilized to assess illness propensity. The

grey colour represents the non-faulty bias module (NFP) in
Fig.1, while the red represents the defective bias module (FP).

Training cases can create an error prediction model with
relevant features [20]. Several machine learning algorithms
are employed in this stage, including Naive Bayes, Support
Vector Machine [21], Random Forest [23], and Logistic
Regression [24]. The Naives Bayes algorithm has been
developed to forecast the quantity of residual faults that may
be discovered during independent inspection or operational
usage. The suggested support vector machine optimizes the
SVM model's prediction performance. Centroid approach.

922

These techniques use an error prediction model to forecast
and categorize untagged software modules/files/classes.

B. Software Fault Prediction

Several evaluation metrics for machine learning classifiers
include precision, recall, f-measurement, and Area under the
receiver operating characteristic curve. AUC [20]. Among
these measures, AUC is often used in software engineering
research [20]. AUC refers to the region beneath the receiver
operating characteristic. The x coordinate represents the false
positive scale, whereas the y coordinate represents the
genuine positive (recall) scale. The Receiver Operator
Characteristic (ROC) curve is an assessment measure for
binary classification issues. It is a probability curve that shows
the TPR vs FPR at various threshold levels and, in essence,
separates the "signal" from the "noise." As a summary of the
ROC curve, the Area Under the Curve (AUC) shown in Fig.
2 quantifies the ability of a classifier to discriminate between
classes. The greater the AUC, the greater the model's ability
to differentiate between positive and negative classifications.
A higher X-axis value in a ROC curve suggests a greater
frequency of False positives than True negatives. A greater Y-
axis value implies a greater proportion of True positives than
False negatives. Therefore, the threshold selection is
contingent on the capacity to strike a balance between False
positives and False negatives. The AUC has been chosen as
the performance statistic for three reasons. Unlike other
indices, which need a value greater than the predicted
likelihood of default susceptibility, the AUC is a threshold-
independent measure [20]. The word 'threshold' refers to the
probability threshold used to classify a situation as positive or
negative. Other performance indicators (such as accuracy,
recall, precision, and f-index) are calculated relative to the
threshold specified and are commonly set to 0.5.

Fig. 2 Area Under Curve (AUC)

C. Machine Learning and Software Fault Prediction

With the fast advancement of software and computer
technology, software has become ubiquitous in practically
every facet of social life [25]. Due to the widespread use of
invisible software that simplifies and expedites our lives.
Meanwhile, technology is confronting a significant dilemma
as the expense of software testing and maintenance and
multifunctional and highly sophisticated software systems
become more crucial. Software failure occurs when software
is unable to execute its intended purpose owing to its own
defect.

However, failures may be anticipated using software
models that use past data from the organization and software
features to predict problems [26]. Software failure prediction
models are advantageous for decision-making in module

verification and validation, such as resource allocation. We
need to locate the fault and verify and repair the programme
using more precise approaches. Thus, anybody may create a
state where software is highly reliable, maintainable, and
performant, with a short development cycle and cheap
development and maintenance expenses [24].

The application of software failure prediction methods is
extremely advantageous to the software development process
because it results in a highly reliable software system with
fewer error-prone modules, resource allocation based on
prediction results, and maximizing the use of limited
resources to enhance the quality of software products [27]. In
recent years, several methodologies and models for
forecasting software failures have been published. Examples
of these techniques include statistical approaches, machine
learning techniques, parametric modelling, and mixed
algorithms [28]. The most prevalent software fault prediction
models are Markov models, classification and regression tree
models, artificial neural network models, linear discriminant
analysis models, LSTSA, and classification tree models.
However, these techniques pose problems that cannot be
adequately overcome. For example, the Markov model must
assume the classification tree and regression models have
limited generalization capacity; and the artificial neural
network model does not yet have a coherent guiding theory
for network structure selection. Logistic regression (LR)
further strengthens the difficulties of resolving a potentially
incorrect value outside of the range of 0 and 1. In this case,
LR performed a logarithmic modification to unconstraint the
value. restricted to the range 0 to 1, which may be any value
between positive and negative infinity. LR developed a
quadratic discriminant that increased computing speed and
recognition rate, resulting in its extensive application in
modelling software defect prediction. Although it is often
employed in big samples, the results are less than optimal for
tiny samples [24].

D. Deep Forest

Recently, a deep forest model termed gcForest [24] was
introduced as an alternative to deep neural networks. Similar
to deep neural networks, gcForest features a multi-layered
structure with many forests on each layer. Fig. 3 depicts the
basic structure of a forest. The input is a feature vector X, and
the output is a rank vector for X based on the forest's decision
tree. The red line in Fig. 3 depicts the decision-making
process of the decision tree. The functioning of deep neural
networks prompted the design of gcForest, a complete
component. The first is multi-grain analysis, which uses a
sliding window structure to evaluate the immediate
environment from a one-dimensional perspective in order to
develop random forest representations of input data. The
second is a cascading multi-layer population of random
forests that, under the supervision of an input representation
supervisor for each class, learns more discriminating
representations, resulting in more accurate predictions.
Constructed upon a set of randomly generated forests. Unlike
conventional deep neural networks, which need a substantial
amount of computer resources to train, deep forests use far
fewer resources. Moreover, Deep Forest can perform several
tasks with its default settings [24].

923

Fig. 3 The Basic Structure of Deep Forest [24]

E. Support Vector Machine Learning (SVM)

When applied to binary classification, SVM's central
notion is to find the hyperplane in a high-dimensional space
that serves as the plane of separation for the two aspects,
ensuring the lowest possible error rate. SVM turns the
classification issue to a constraint-based quadratic
programming problem [29]. If the sample sets are linear and
separable, it is assumed that (x1; y1) Rn; y+1; 1 indicates the
number of samples and the category, such as a hyperplane
separating these two sample kinds fully. This strategy is
denoted by equation (1) below:

 ��� � � � 0 (1)

The symbol denotes the intersection of two vectors. The
parameters w and b denote the hyperplane's normal and
deviation vectors, respectively. The above issue may be stated
in the following broad terms:

 �	�
 � ��� � � (2)

If f(x) is greater than 0, the category label is +1; otherwise,
it is -1. We hope that the training data will be accurately
dissected during vector classification and that the gap
between the nearest and hyperplane data will be as great as
feasible. This is a quadratic programming issue, similar to
equation (3).

 min 	�

�
∥ � ∥�
 (3)

The optimum function has a quadratic shape, and the
constraints suggest that the issue described above is a classic
quadratic programming problem. It is possible to resolve it by
first introducing the Lagrange operator and then converting it
to its double version.

 ��� �

�
∑ ∑ �������������� � ∑ ��

�
���

�
���

�
��� (4)

F. K-Means Algorithm

In 1967, James MacQueen used the k-means time period
for the first time [4]. The k-means algorithm may be thought
of as a reduced basic set of rules for resolving well-known
clustering situations. The set of rules is implemented via the
usage of exact records. Clustering operations are carried out
using predefined clustering centroids. Centroids must be
chosen as far apart as possible in order to establish a legal
clustering. On the other hand, each factor associated with a
record set is connected with the nearest centroid. The
preceding stages are repeated until stable centroids are

obtained. The k-means set of rules consists of the following:
Select the okay records factor as the preliminary centroid and
then assign all factors to the centroid that is closest to it.
Assign centroids in accordance with the newly formed
clusters. Rep the second and third steps until the centroids are
steady.

Due to its simplicity, the k-means set of rules is quite
favourable [4]. The recommend clustering randomly
produced centroids and factors. Hexagons are used to
symbolise centroids. The computed bounds of the clusters are
displayed using a set of k-means rules applied to factors.
Establishes the first centroids. Arrows depict the gadget's
dynamic form, in which centroids shift in response to external
variables, causing boundaries to shift. Later, new centroids
and cluster boundaries are established.

G. Process Metric

The selection of software metrics for use in constructing
prediction models of software quality is a software
engineering activity based on search [20]. Due to limited
project resources, a thorough search for such metrics is
sometimes impractical, especially when the number of
available metrics is vast. Abreu MOOD metric suite, Bieman
and Kang, Briand, Halstead, Henderson-sellers, Li and Henry,
McCabe, Lorenz and Kidd, and CK metric suite are the most
often employed metric suites that indicate the quality of the
programme. PROMISE repository source code metrics were
evaluated for developing a defect class prediction model in
this work.

This study focuses on applying software metrics, such as
code metrics, process metrics, and a mix of the two. Using a
hybrid metric dataset, the software metrics were categorised
by performing feature selection during the data pre-
processing step. Process metric may be defined as a change in
software or code [10] whereas Code metric or product metric
can be defined as an indicative measurement of errors that
gives a quantitative description of specific aspects of software
products and process [12]. As a result of the accessibility of
code metric-based datasets, code metrics were predominantly
employed for fault prediction research [11].

H. Code or Product Metric

Code metrics were mostly used for fault prediction studies
because of easy availability of code metrics-based datasets.
Most common datasets used in related studies belong to
PROMISE repository which can be accessed publicly
worldwide. Following are some papers that experimented

924

using code metrics and are related to our study. Following are
some papers using code metric. Li and Henry examined CK
metric suite for fault prediction for the first time. Except for
LCOM, all measures properly predicted fault proneness, it
was discovered. However, the correlation between the
evaluated measures and error propensity was not studied.

Ohlsson assessed the fault prediction capabilities of several
design metrics. All used measures have a substantial link with
fault proneness. Nonetheless, this review was conducted on a
single software project. Insufficient evaluation of fault
prediction models. Shanthi and Duraisamy assessed the set
of MOOD measures for fault prediction. We discovered a
substantial link between each parameter and mistake
propensity. However, it lacked a thorough review of fault
prediction models and did not analyse the connection between
the metrics utilised for fault prediction. Shatnawi and Li
analysed the severity of software error prediction metrics. It
was determined that CTA, CTM, and NOA measures
accurately predicted class-error probability across all mistake
severity categories. The gathering of defect datasets was
performed using commercial software, resulting in
questionable precision.

Code metrics were mostly used for fault prediction studies
because of easy availability of code metrics-based datasets.
Most common datasets used in related studies belong to
PROMISE repository which can be accessed publicly
worldwide. Following are some papers that experimented
using code metrics and are related to our study. Following are
some papers using code metric. Li and Henry]examined CK
metric suite for fault prediction for the first time. Except for
LCOM, all measures properly predicted fault proneness, it
was discovered. However, the correlation between the
evaluated measures and error propensity was not studied.

Ohlsson assessed the fault prediction capabilities of several
design metrics. All used measures have a substantial link with
fault proneness. Nonetheless, this review was conducted on a
single software project. Insufficient evaluation of fault
prediction models. Shanthi and Duraisamy assessed the set of
MOOD measures for fault prediction. We discovered a
substantial link between each parameter and mistake
propensity. However, it lacked a thorough review of fault
prediction models and did not analyse the connection between
the metrics utilised for fault prediction. Shatnawi and Li
analysed the severity of software error prediction metrics. It
was determined that CTA, CTM, and NOA measures
accurately predicted class-error probability across all mistake
severity categories. The gathering of defect datasets was
performed using commercial software, resulting in
questionable precision.

I. Object Oriented Metric

One cost-effective approach to resolving software faults is
to use fault prediction models relying on object-oriented (OO)
design metrics to identify software defects in created systems'
classes prior to delivery. Such models may be used to assist
software development managers in generating quality
software on time and within budget , and certainly, during the
past three decades, several software fault prediction models
have been suggested. However, software errors vary
significantly in severity, including some potentially
devastating effects and others being just cosmetic. Most of it

were related to find the effectiveness and analysing the defect
prediction model using object oriented metric source code
only. Most of the source code metric were taken from
PROMISE repositories which is widely used in research
studies.

Previous research on object-oriented design metrics has
demonstrated that some of them are effective in predicting the
fault-proneness of classes but has also demonstrated that their
usefulness is contingent on their being valid regardless of the
severity of the fault. However, these investigations did not
differentiate between problems based on their severity.

TABLE I
REVIEW ON IMPLEMENTATION OF PROCESS METRIC AND CODE METRIC

Process Metric Code Metric

Code Delta:
Delta of LOC, Delta of
Changes

Code Churn:
Total LOC Churned, LOC
Deleted LOC, File Count,
weeks churn, churn cost and
files churn etc.
Change Metric:
Revisions, Refactoring, Bug
fixes , ashes, etc.

Developer Based:
Personal commit Sequence,
No. of corrections etc

Requirement of Metric:
Action, Conditional,
Continuance, Imperative etc.

CK Metric Suits:
CBO, LCOM, DIT,
NOC, RFC and WMC

Yacoub Metric Suit:
Export Object Coupling
(EOC), Import Object
Coupling
(IOC)

Airdelm Metric suit:
IC_OD, IC_OM,
IC_OC, IC_CD,
IC_CM,
IC_CC,EC_OD,EC_OM,
EC_OC, EC_CD,
EC_CM, EC_CC,

Michel Metric Suits:
Dynamic
CBO for a class,
Degree of Dynamic
Coupling between two classes
at runtime,
Degree of
Dynamic Coupling within a
given set of classes,
R1,R2,RD1,RD2

Moods metric suit:
MHF,AHF, MIF,AF,PF,CF

Table I show the explanation of implementation of process

metric and code metric. Code metric utilise various
capabilities of the finalised software, product metrics are
calculated. These metrics verify compliance with certain
standardisation requirements, such as ISO-9126. There are
three broad categories of product metric: traditional metric,
object-oriented metric, and dynamic metric. Traditional
metrics consist of software metrics that were developed
during the discipline of software engineering's infancy and
gradual emergence. Chidamber and Kemerer [9] presented
the CK metric package as a software metrics suite for OO
applications. Dynamic metrics are metrics that depend on the
characteristics acquired from a running application. Their
significance stems from the fact that they are real-time and
based on how the gathered software components react at the
time of actual programme execution. They evaluate particular
runtime properties of programmes, system components, and

925

system. Process metrics are derived from the features
gathered across the whole software development life cycle.
They aid in the formulation of improved strategies for future
software development processes. They are particularly
helpful in facilitating the standardisation of a collection of
process metrics, which leads to the long-term enhancement of
the software development process.

J. The Combination of Metric

Numerous academics have utilised various metrics to
analyse and enhance fault prediction. Some academics have
also conducted a comparison of the various measures
employed for software defect prediction. In order to evaluate
the efficacy of a defect prediction model, several studies
incorporated process and code metrics. Following is a
summary and analysis of the research publications that
addressed the integration of process and code metrics.

Rahman and Devanbu evaluated the combined capacity of
process and code metrics for failure prediction and found that
the process measure nearly always exceeded the code metre.
Due to the usage of commercial tools to compute code, the
correctness cannot be determined with certainty. The results
are not the product of extensive analysis.

Ma employed requirement metrics for the first time to
assess failure prediction. When the requirement metric was
paired with the design metre, the fault prediction skills
improved significantly, according to the findings. Considers
software metrics evaluation studies utilised a restricted
number of datasets, such as two or three. No study of data
distribution for statistical testing was performed.

Wu analyse the impact of developer quality on software
failure prediction. The integration of developer, process, and
product data improves the outcomes of fault prediction. To
validate the process, more datasets from various areas must
be utilised for evaluation.

Selection strategy for useful software metrics for fault
prediction was proposed by Xia. CM, MMSLCM, and HM
metrics demonstrated a considerable effect on fault
prediction, relative to the amount of code and process metrics
evaluated. With only a number of fault datasets utilised to
validate the results, the suggested selection method is
insufficiently validated to show its applicability.

As a conclusion, the previous works by previous
researchers related to the combination metric were discussed
above. Rahman and Devanbu stated that process metric has
better accuracy compared to the code metric although the
accuracy is not well ascertained. There are several potential
factors that affect the accuracy of fault prediction such as the
type of machine learning (supervised or unsupervised
learning), data pre-processing, number of features and feature
selection technique. Although previous researchers were not
highlighted the object-oriented metric as their main purpose,
it can be concluding the usage of object-oriented metric in
software fault prediction are capable to predict the defect at
the class level of the system.

K. Feature Selection

For feature selection process, there were many techniques
used in previous research such as Filtering Features selection
methods proposed by . This technique had better performance
prediction compared to the old previous studies. The best

feature selection method will be selected in data pre-
processing process to select the best metric for training the
machine learning model.

II. MATERIAL AND METHOD

A. Proposed Experiment Procedure

This study's experimental methodology will consist of four
phases and will be conducted using a Python-based
experiment workbench. The first phase is data preparation,
which involves applying a variety of data pre-processing
procedures to the study dataset. Test/train segmentation, data
cleaning, feature engineering, and feature selection are the
data preparation procedures. In the second stage, several
Random Forest models are trained on the pre-processed
dataset. Random Forest Classifiers have demonstrated
significant efficacy in predicting software problems in the
past and are thus great candidates for comparison analysis
utilising a number of software metrics [10]. Model evaluation
is the third phase, which involves determining the accuracy
and f1 score values for each model. The fourth and last phase,
Result Analysis, will evaluate the relative importance of each
character in the pre-processed dataset for software failure
prediction by analysing the results. In this research, each
machine learning model will undergo a sensitivity analysis.
The subsequent sections will examine the execution of the
four steps of the experimental technique on the experimental
workbench.

B. Dataset

This research used a single dataset including a count of
faults/bugs in our research. The datasets are open to the
public, and the derived class is fault count. These datasets are
part of the PROMISE open-source initiatives. These datasets
are referred to as CM1/software defect prediction by NASA.
Process and code metrics are included as features in the
datasets. Each dataset has fifteen process metrics and
seventeen code metrics. In the features section, all of these
measures are explained in great detail. These datasets are
class-level datasets, with the target class having a specific
number of faults/bugs. The total number of dataset instances
is 484.

Fig. 4 PROMISE CM1 Dataset

C. Experiment Setup

This study uses a two-stage design. The external "View
layer" presents the experimental design's input, processing,
and output, as well as the method for loading the investigated
datasets into the experimentation, in a black-box manner. The
"Application layer" of the experimental workbench analyses
the research dataset to calculate each model's accuracy and F1
scores. Python workbench obtains research dataset from
"View Layer." The workbench hosts experiments. The
experiment workbench in the "Application Layer" prepares

926

the dataset before using it. The dataset is split 70-30 between
testing and training. The workbench removes unnecessary
characteristics from the training dataset. Feature
engineering—data binning, missing value imputation,
categorical value encoding, and numeric data
standardization—follows on the training set. "Feature
engineering" is this.

The workbench then allows data set selection. Wrappers
subset selection chooses the data set's procedure and code
metrics' greatest attributes. Our hybrid measurements
predicted defect numbers. All metrics subgroups were
studied. The workbench pre-processes the testing set after
pre-processing the training set. Workbench-cleaned training
sets are used to train Random Forest Classification models.
The workbench evaluates models after training using process
and code metrics. The workbench categorises metrics and
evaluates models for each category and single metrics from
process and code subsets.

The experiment workbench begins by creating a Python
virtual environment and installing the essential Python
libraries and packages. Anaconda does this. Free and open-
source Anaconda lets you construct and manage Python
virtual environments. This utility can install different Python
packages and their dependencies in various Python virtual
environments. This inquiry uses Python 3.8.3 and Anaconda.
With Anaconda and the terminal, a python virtual
environment named "software fault_ prediction" is created.
The "software fault prediction" virtual environment instals the
"numpy," "pandas," "seaborn," "matplotlib," and "scikit-
learn" python libraries and their dependencies.

Installed libraries have different capabilities. Only Python's
"numpy" library handles arrays. Pandas is essential for data
analysis. Data visualisation requires Matplotlib. The
"Seaborn" package, built on "Matplotlib," helps visualise and
comprehend data. The machine learning pipeline requires
Scikit-learn for data preparation, ML model training, and
performance assessment. Scikit-learn (previously
scikits.learn and sklearn) is a free Python machine learning
package. It supports support-vector machines, random forests,
gradient boosting, k-means, DBSCAN, and NumPy and
SciPy numerical and scientific libraries. S. Hassan [10]
describe scikit-machine learn's learning toolset.

The experiment workbench is programmed in Jupyter
Notebook. Jupyter notebook, an open-source online
programme, supports numerical simulation, statistical
modelling, data visualisation, and machine learning. Data
scientists prefer it. Jupyter Notebook can link to multiple
kernels for multi-language programming. Jupyter kernels
respond to code execution, completion, and inspection
requests. Kernels communicate with other Jupyter
components using ZeroMQ. Jupyter kernels may connect to
several clients and are unaware that they are associated to a
document, unlike many Notebook-like interfaces. Kernels
usually support one language.

D. Data Pre-processing

Data pre-processing is necessary to turn the NASA
PROMISE repository's PROMISE dataset into a machine
learning (ML)-ready format and to maximise the dataset's
productive potential. Python is used for data pre-processing,
and the different data pre-processing processes, including

data cleaning, feature engineering, and feature selection, are
programmed into the experiment workbench to automate
them. The first PROMISE dataset had 2998 occurrences and
22 date-time, ordinal, and numeric properties. After pre-
processing, 11 characteristics and 484 cases remain in the
dataset. Table II provides a summary of the final pre-
processed dataset.

E. Test/Train Split

A random 70-30 split is used to divide the dataset into a
training set and a testing set before any preparatory processes
are carried out. This is done to prevent the model from being
overfit by evaluating it with the same data it was trained on.
It will not be an accurate depiction of the actual situation, as
the data will be utterly novel and unheard of in the real world.
Consequently, it is likely that the generated model will
perform badly in real-world circumstances.

TABLE II
SUMMARY OF THE FINAL PRE-PROCESSED DATASET

No. Feature Selected

1 Line of Count code
2 Cyclomatic complexity
3 Essential complexity
4 Design complexity
5 Total operators and operand
6 Volume
7 intelligence
8 effort
9 Count of line of comments
10 Unique operators
11 Total Operands

The training set is pre-processed first, followed by the

application of the pipeline used to pre-process the training set
to the testing set. Separately preparing the testing and training
sets guarantees that no data is lost, i.e., the pre-processing in
the training set is not impacted by information from outside
the training set, in this case the testing set. This prevents any
bias by keeping the data in the testing set fresh and unknown
during model assessment.

F. Data Cleaning

In this phase of preparation, the PROMISE NASA dataset
is cleaned with the use of "pandas" library functions. Pandas
has been one of the most popular and favoured data science
tools for data manipulation and analysis in the Python
programming language. In addition to Pandas, numpy is
frequently utilised by data scientists for scientific computing
in Python. Pandas is highly effective with tiny datasets
(typically 100MB to 1GB) and speed is rarely an issue. The
Pandas DataFrame is a structure containing two-dimensional
data and its associated labels. Pandas DataFrames are utilised
extensively in data science, machine learning, and other data-
intensive domains. Initially, unnecessary characteristics are
removed from the original dataset. For instance, the original
dataset included information on the job title, date of
employment, and date of separation; however, this
information is unrelated to the current study and has been
removed. Second, certain recurring characteristics are
eliminated. The dataset has separate columns of test results
for each of the domain-specific topics, despite the inclusion

927

of a "Domain" column indicating each candidate's domain-
specific subject test results.

G. Feature Engineering

This phase involves altering the dataset so that it is more
suitable for machine learning. Initially, missing values in
columns are determined. Second, the "Defect" column, which
denoted the module that reported the defect, was modified
using data binning to represent two classification values to
conduct a first inquiry for software fault prediction using the
PROMISE NASA dataset. The values within the Defect
column are converted into a new column titled "Defect" that
has two categories: "1" and "0."

Since ML algorithms in Scikit-learn cannot work on
categorical values, the fourth step is to convert all category
values in the dataset to numeric values. According to Scikit-
learn documentation, the "OneHotEncoder" function from
Scikit-learn preprocessing is used to convert the categorical
values for the independent variable "Defect" to numerical
values, while the "LabelEncoder" function does the same
operation for the dependent variable (predicted class). The
"LabelEncoder" assigns number labels to each of the column's
category values. This meets the criteria for the intended class.
ML algorithms view a higher number as more significant or
significant than a smaller number.

Several numerically based features have been standardised.
It is necessary to rescale the data so that the mean is 0 and the
standard deviation is 1. This is owing to the broad range of
values for a variety of numerical attributes. As an illustration
of this, the "Line of Count" column, which shows line counts,
has figures ranging from 0.008155 to 0.99991. This is a
concern since some machine learning algorithms that employ
gradient descent as an optimization strategy are sensitive to
feature range differences because each feature has a specific
step size and features with bigger magnitudes may be given
more weight. Since this study will employ AutoML, which
applies many machine learning techniques to a dataset, the
numeric features must be normalised. MinMaxScaler, a
Scikit-learn preprocessing function, is used to normalise the
values in the numeric columns.

H. Feature Selection

This phase will summarise the investigated qualities. In this
study, two distinct types of software metrics were employed:
code metrics and process measurements. Each of these
domains is evaluated using a variety of criteria. Code metrics
are a type of software statistic that are calculated based on the
code structure of a programme. They offer information about
the code's characteristics, size, and structure. In addition,
process metrics based on software revisions, upgrades, and
tweaks were evaluated.

I. Model Training

The subsequent part of the experiment is to train machine
learning models. The workbench is designed to train models
for several types of measures, such as selected metrics and
hybrid metrics, using a single ML method. Various machine
learning methods were utilised to forecast software bugs.
These models comprised decision trees, naive bayes, logistic
regression, as well as several more. Due to Hassan's[10]
experiment on predicting software failure using many

software metrics and Random Forest regression, Random
forest classifiers were used in this study. Random forest is a
technique for machine learning that was initially described in
1995 and updated in 2001.

It may be used for both classification and regression
learning. The structure-wise random forest methodology is an
ensemble method that use many decision trees to represent
distinct classes. The result of categorization learning is the
mode of all trees, whereas the mean of all trees is calculated.
Random Forest Classifier is a Scikit-learn tool used to train
models using Decision trees. Utilizing a Randomized Search
approach, the ideal hyperparameter values for the Decision
Tree are determined. This is accomplished by providing a list
of possible Decision Tree hyperparameter values to the
Randomized Search algorithm, which then executes several
times to determine the optimal hyperparameter values for the
current training set. In regard to the conclusion of the
Randomized search, the maximum depth of the decision tree
is set to 100. The "criterion" hyperparameter is set to
"entropy," which sets the measurement method used to
evaluate the quality of the decision tree split. The "class
weight" hyperparameter is afterwards changed to "balanced"
to address the dataset's imbalance. Lastly, the Decision Tree
with the best hyperparameter value is trained using the
training data using the "fit()" function of scikit-learn.

J. Model Testing/Evaluation

The "metrics" tools included in the Scikit-learn package
facilitate model testing during the experiment. Each model is
tested using a sklearn-imported "metric" library. The import
library from sklearn uses the "metrics" methods
"metrics.accuracy score()" and "metrics.f1 score()" to
automatically generate prediction accuracy and f1 score
values. This technique requires two arguments: a training
model and testing sets. The trained models, random forest
classifiers, are compared to the testing set in order to
determine the expected outcomes. Performance evaluation
The metrics TP, TN, FP, and FN are used to evaluate
specificity, sensitivity, and accuracy. True Positive, or TP, is
the number of event values that were precisely anticipated.
True Negatives, or TN, is the number of non-event values that
were correctly anticipated. False Positive or FP is the number
of event values that were mistakenly anticipated. False
Negative, or FN, refers to the number of erroneously
anticipated non-event values. The number of TF (true
positive), FP (false positive), TN (true negative), and FN
(false negative) instances for each model is calculated by
comparing predicted and actual outcomes from the testing set.
Finally, the accuracy and F1 score value of each model's
prediction value are computed using the TP, TN, FP, and FN
values.

K. Result Analysis and Discussion

In addition to the experiment conducted in the initial study,
this investigation provides data and analysis to determine
which input features have the most impact on forecasting
software inaccuracy. In the experiment, the pre-processed
dataset is altered such that it seems to lack a certain property.
This is performed individually for each feature in the pre-
processed dataset by converting the feature that makes all the
values in each row constant, while keeping the other features

928

unchanged. When evaluating a numerical feature, the mean
value of the feature is substituted for each number in each
row, while all other qualities remain untouched. When a
categorical characteristic is present, the category with the
highest occurrence frequency is chosen to replace all rows. To
analysing the outcome of performance software fault
prediction, object-oriented metric features were compared
with hybrid metric features.

When each feature is analysed, a new dataset including the
modified feature and other intact features is generated. The
experiment employs sensitivity datasets for each feature in
order to train and assess the Random Forest algorithms, and
the f1 scores for each scenario are recorded. Then, these
values would be compared with the f1 scores generated during
model evaluation of the two distinct software metrics. The
outcome of each characteristic will be indicated by the size of
the difference.

III. RESULT

When each feature is evaluated, a new dataset is
constructed that contains the updated feature and other intact
features. The experiment uses sensitivity datasets for each
feature to train and evaluate the Random Forest algorithms,
and the f1 scores values for each scenario are recorded. These
values would then be compared to the f1 scores obtained
during model assessment of the two separate software
metrics. The result of each attribute will be represented in the
magnitude of the difference.

A. Results Analysis and Discussion

The initial test result for this experiment is in Table III.
Nevertheless, for the experiment at process metric shown that
it was slightly higher than code metric.

TABLE III
THE RESULT OBTAIN FROM THE INITIAL EXPERIMENT

Iteration Process Metric Code Metric
 Accuracy (%) F1 Score Accuracy F1 Score
1 89.33 0.1866 88 0.104

The accuracy and F1 score of the process metric are

superior to those of the code metric, as shown in the table III
above. The procedure of feature selection influences the
accuracy and f1 score ratings. In this preliminary work, we
employ only one machine learning technique, the random
forest classifier, because it outperforms other classifiers [10].
As a means of enhancing the accuracy of the prediction
model, we may employ a bigger data set to improve the
accuracy of the findings.

To differentiate between the types of metrics, the process
and code metric were selected based on feature selection
method and were train and test in the deep learning model.
The result can be shown in Table III using the accuracy and
F1 score formula to evaluate the prediction model.

 �1 � 2 × "#$%�&&�'(∗*$%+,,

"#$%�&&�'(-*$%+,,
 (5)

 .//01�/� �
2#3$ 4'&�5�6$-2#3$ 7$8+5�6$

9:;< =>?@A@B<-9:;< C<DEA@B<-FEG?< C<DEA@B<-FEG?< =>?@A@B<
 (6)

IV. CONCLUSION

The experimental data of software fault prediction is
presented here. Further works that can be proposed based on
the work and results presented in this study are Include
additional large (higher number of instances) and varied
(connected to other software) datasets into the testing and
experimenting process in the future and compare the
performance of the new neural network algorithm to our
findings. Furthermore, we will explore the impact of class
balancing on the prediction of software defects in the future.
Lastly, we assess the influence of various issue severity
classes and the impact of certain issue severity classes in fault
prediction.

ACKNOWLEDGEMENTS

The authors humbly acknowledge the UTM
Encouragement grant, Q.J130000.3851.19J69, funded by
Universiti Teknologi Malaysia, Malaysia.

REFERENCES

[1] S. S. Rathore and S. Kumar, "A study on software fault prediction
techniques," Artif Intell Rev, vol. 51, no. 2, pp. 255–327, Feb. 2019,
doi: 10.1007/s10462-017-9563-5.

[2] S. S. Rathore and S. Kumar, "Towards an ensemble-based system for
predicting the number of software faults," Expert Syst Appl, vol. 82,
pp. 357–382, Oct. 2017, doi: 10.1016/j.eswa.2017.04.014.

[3] N. Fenton, M. Neil, W. Marsh, P. Hearty, Ł. Radliński, and P. Krause,
"On the effectiveness of early life cycle defect prediction with
Bayesian nets," Empir Softw Eng, vol. 13, no. 5, pp. 499–537, Oct.
2008, doi: 10.1007/s10664-008-9072-x.

[4] M. Öztürk, U. Cavusoglu, and A. Zengin, "A novel defect prediction
method for web pages using k-means++," Expert Syst Appl, vol. 42,
no. 19, pp. 6496–6506, May 2015, doi:
10.1016/j.eswa.2015.03.013.Kumar Pandey and M. Gupta, "Software
Metrics Selection for Fault Prediction: A Review."

[5] Okutan and O. T. Yıldız, "Software defect prediction using Bayesian
networks," Empir Softw Eng, vol. 19, no. 1, pp. 154–181, 2014, doi:
10.1007/s10664-012-9218-8.

[6] Catal and B. Diri, "A systematic review of software fault prediction
studies," Expert Systems with Applications, vol. 36, no. 4. pp. 7346–
7354, May 2009. doi: 10.1016/j.eswa.2008.10.027.

[7] Alshayeb and W. Li, "An Empirical Validation of Object-Oriented
Metrics in Two Different Iterative Software Processes," IEEE
Transactions on Software Engineering, vol. 29, no. 11, pp. 1043–1049,
2003, doi: 10.1109/TSE.2003.1245305.

[8] S. R. Chidamber and C. F. Kemerer, "A Metrics Suite for Object
Oriented Design," IEEE Transactions on Software Engineering, vol.
20, no. 6, pp. 476–493, 1994, doi: 10.1109/32.295895.

[9] R. Shatnawi, "The application of ROC analysis in threshold
identification, data imbalance and metrics selection for software fault
prediction," Innov Syst Softw Eng, vol. 13, no. 2–3, pp. 201–217, Sep.
2017, doi: 10.1007/s11334-017-0295-0.

[10] S. Hassan, "Predicting the Number of Software Faults Using
Significant Process and Code Metrics," 2020.

[11] P. Musilek, A. Mahaweerawat, P. Sophatsathit, and C. Lursinsap,
"Fault Prediction in Object-Oriented Software Using Neural Network
Techniques." [Online]. Available:
https://www.researchgate.net/publication/228824925

[12] Catal and B. Diri, "LNCS 4589 - Software Fault Prediction with
Object-Oriented Metrics Based Artificial Immune Recognition
System."

[13] T. M. Khoshgoftaar and K. Gao, "Feature selection with imbalanced
data for software defect prediction," in 8th International Conference
on Machine Learning and Applications, ICMLA 2009, 2009, pp. 235–
240. doi: 10.1109/ICMLA.2009.18.

[14] Van Hulse, T. M. Khoshgoftaar, and A. Napolitano, "Experimental
Perspectives on Learning from Imbalanced Data."

[15] Thammasiri, D. Delen, P. Meesad, and N. Kasap, "A critical
assessment of imbalanced class distribution problem: The case of

929

predicting freshmen student attrition," Expert Syst Appl, vol. 41, no.
2, pp. 321–330, 2014, doi: 10.1016/j.eswa.2013.07.046.

[16] Y. Yang et al., "Effort-aware just-in-time defect prediction: simple
unsupervised models could be better than supervised models," Nov.
2016, pp. 157–168. doi: 10.1145/2950290.2950353.

[17] W. Li, W. Zhang, X. Jia, and Z. Huang, "Effort-Aware semi-
Supervised just-in-Time defect prediction," Inf Softw Technol, vol.
126, Oct. 2020, doi: 10.1016/j.infsof.2020.106364.

[18] Catal, "Software fault prediction: A literature review and current
trends," Expert Systems with Applications, vol. 38, no. 4. pp. 4626–
4636, Apr. 2011. doi: 10.1016/j.eswa.2010.10.024.

[19] T. Zhou, X. Sun, X. Xia, B. Li, and X. Chen, "Improving defect
prediction with deep forest," Inf Softw Technol, vol. 114, pp. 204–
216, Oct. 2019, doi: 10.1016/j.infsof.2019.07.003.

[20] Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya, "Choosing
software metrics for defect prediction: An investigation on feature
selection techniques," Softw Pract Exp, vol. 41, no. 5, pp. 579–606,
Apr. 2011, doi: 10.1002/spe.1043.

[21] Kaur and R. Malhotra, "Application of random forest in predicting
fault-prone classes," in Proceedings - 2008 International Conference
on Advanced Computer Theory and Engineering, ICACTE 2008,
2008, pp. 37–43. doi: 10.1109/ICACTE.2008.204.

[22] Sharma and P. Chandra, "Identification of latent variables using, factor
analysis and multiple linear regression for software fault prediction,"
International Journal of System Assurance Engineering and
Management, vol. 10, no. 6, pp. 1453–1473, Dec. 2019, doi:
10.1007/s13198-019-00896-5.

[23] H. Xiao, M. Cao, and R. Peng, "Artificial neural network based
software fault detection and correction prediction models considering
testing effort," Applied Soft Computing Journal, vol. 94, Sep. 2020,
doi: 10.1016/j.asoc.2020.106491.

[24] Kumar Pandey and M. Gupta, "Software Metrics Selection for Fault
Prediction: A Review."

[25] L. Kumar, S. Misra, and S. K. Rath, "An empirical analysis of the
effectiveness of software metrics and fault prediction model for
identifying faulty classes," Comput Stand Interfaces, vol. 53, pp. 1–
32, Aug. 2017, doi: 10.1016/j.csi.2017.02.003.

[26] Y. Zhou and H. Leung, "Empirical analysis of object-oriented design
metrics for predicting high and low severity faults," IEEE Transactions
on Software Engineering, vol. 32, no. 10, pp. 771–789, Oct. 2006, doi:
10.1109/TSE.2006.102.

[27] T. Zhou, X. Sun, X. Xia, B. Li, and X. Chen, "Improving defect
prediction with deep forest," Inf Softw Technol, vol. 114, pp. 204–
216, Oct. 2019, doi: 10.1016/j.infsof.2019.07.003.

[28] Isa and R. Rajkumar, "Pipeline defect prediction using support vector
machines," Applied Artificial Intelligence, vol. 23, no. 8, pp. 758–771,
2009, doi: 10.1080/08839510903210589.

[29] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya, "Choosing
software metrics for defect prediction: An investigation on feature
selection techniques," Softw Pract Exp, vol. 41, no. 5, pp. 579–606,
Apr. 2011, doi: 10.1002/spe.1043.

930

