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Abstract— This study was conducted to identify several types of vehicles taken using drone technology or Unmanned Aerial Vehicles 

(UAV). The introduction of vehicles from above an altitude of more than 300-400 meters that pass the highway above ground level 

becomes a problem that needs optimum investigation so that there are no errors in determining the type of vehicle. This study was 

conducted at mining sites to identify the class of vehicles that pass through the highway and how many types of vehicles pass through 

the road for vehicle recognition using a deep learning algorithm using several CNN models such as Yolo V4, Yolo V3, Densenet 201, 

CsResNext –Panet 50 and supported by the Darknet algorithm to support the training process. In this study, several experiments were 

carried out with other CNN models, but with peripherals and hardware devices, only 4 CNN models resulted in optimal accuracy. Based 

on the experimental results, the CSResNext-Panet 50 model has the highest accuracy and can detect 100% of the captured UAV video 

data, including the number of detected vehicle volumes, then Densenet and Yolo V4, which can detect up to 98% - 99%. This research 

needs to continue to be developed by knowing all classes affordable by UAV technology but must be supported by hardware and 

peripheral technology to support the training process. 

Keywords—UAV; vehicle; CNN model; CsresNext-Panet50; Densenet201; Yolo V3; Yolo V4. 

Manuscript received 31 Aug. 2022; revised 30 Oct. 2022; accepted 15 Nov. 2022. Date of publication 30 Jun. 2023. 

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License. 

I. INTRODUCTION

Drones or Unmanned Aircraft are developing rapidly as a 

technology for data acquisition of objects on the earth’s 
surface through the air. Drone technology was initially used 

in the military and then widely applied in the civilian field [1]. 

In recent years researchers have become interested in 

conducting image processing research on datasets generated 

from drones using deep learning. The application of drones in 

various fields, such as agriculture, aerial surveys, mapping, 

photography, surveillance, and others, impacts the data 

explosion and the abundance of drone datasets [2]. 

Consequently, processing datasets to extract information 

automatically becomes necessary, and computer vision 

becomes one of the relevant information technologies to do 

the job [3]. Drones can acquire thousands of high-resolution 
images during a single flight, which the operator must analyze. 

For example, in the case of an object search operation, it is 

necessary to find small objects (e.g., cars) in the image. The 

size of such an object will not exceed 50 × 50 pixels in an 

image size of 5000 × 3000 pixels. This task cannot be 

completed for one person without automation due to the 

accumulation of additional and more complex image data [4]. 

Therefore, we need a computational engine capable of 

automatically, accurately, and quickly performing object 

detection analysis. 

At first, drones were only used in the coastal and marine 

fields, but now they have grown in plantations and mining 

areas. In addition, the use of drones is also increasingly 
widespread. If its use was only used for documentary 

activities at the beginning, now it can be more analytical [5]. 

This becomes very easy thanks to follow-up information in 

the form of metadata recorded on each photo produced by the 

drone. This metadata stores valuable information in the form 

of x and y coordinates and relative elevation points. This 

metadata can be processed through a photogrammetric 

scheme to produce informative aerial photo images. At first, 

the drone’s flying height at the preparation stage for flying 

will affect the quality. As an initial stage of setting, the flight 

height can be adjusted to vary from 300 meters to 400 meters 
above ground level. Conversely, if the drone flies higher, it 

can cover a wider area, but the spatial resolution will decrease 

so that the map scale detail and the resulting accuracy are also 

lower [6].  
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UAV-captured images and their post-analysis are two 

major categories that fall in commercial applications of aerial 

vehicles. Applications in aerial images include landslide 

mapping, search, and rescue, wildlife monitoring, the creation 

of digital elevation maps, and the utilization of mounted 

cameras for many purposes. The technology behind 

innovation in aerial applications is responsible for digital 

video stabilization, autonomous navigation, and terrain 

analysis [5]. One of the attractions is that many researchers 

apply and use deep learning to handle and process drone data 
acquisition results and analyze and detect vehicle object class 

systems. Several researchers state that deep learning 

technology is one of the state-of-the-art in the field of artificial 

intelligence and computer vision for the domains of image 

classification, object detection, and natural language 

processing (NLP). The data obtained from drone acquisitions 

are mostly in the form of images and videos, where drones are 

flown at various altitudes ranging from low altitudes (10–99m) 

and medium altitudes (100–400m) [7]. 

Object detection in low-altitude UAV datasets has been 

performed using deep learning with some CNN models and 
examples of detections in Fig. 2. Object detection is a 

technique of identifying variable objects in a given image and 

inserting a boundary around them to provide localization 

coordinates. Object detection in aerial images has gained the 

attention of researchers working in this field, as aerial vehicles 

provide stereo views from a camera mounted on them. Deep 

learning-based object detection approaches rapidly 

revolutionize autonomous navigation vehicles’ capabilities 

[8]. The work presented in the paper is intended to offer 

detection accuracy in a wide-ranging indication of the use of 

deep learning-based object detection approaches, specifically 
on low-altitude aerial datasets. It will serve as a repository of 

all current growth in deep learning-based object detection in 

low-altitude datasets and also help young researchers consult 

research issues for further perusal in this field. 

 
Fig. 1  Examples of object detection in UAV datasets [9], [10] 

Our research focuses on the need to find several methods 

based on the convolution network model for object detection 

in low-altitude UAV datasets and group them into three 
classes. This research is expected to determine the exact 

accuracy based on the height and low of the object depicted 

on the drone/UAV dataset. So that when determining the class 

for each object, it becomes optimal and reduces errors due to 

objects that are not too clearly depicted on the UAV Dataset. 

In addition, from the deepening of several experiments in 

detecting objects, the role of the deep learning method 

becomes very dominant in increasing the recognition of 

objects in the UAV Dataset. Such as how much the average 

accuracy is to recognize the detected object, although in 

general, the visible object ranges between 500 - 600 meters 
above the ground surface. 

The main objectives of this research are as follows: 

 To review the taxonomy of deep learning object 

detection algorithms using multiple CNN models. 

 Can find out the type of vehicle class seen from an 

altitude of 500-600 meters above ground level more 

optimally based on drone data. 

 Can find out the optimal MAP of each CNN model used 

so that it can be a guideline for other researchers in 

detecting objects from Drone/UAV data. 

 This research can be one of the raw models for 
detecting objects visible from the UAV Dataset. 

In addition, the motivation in object detection research on 

UAV Datasets using deep learning is to achieve the best deep 

learning algorithm model concerning two main factors: object 

detection accuracy and data processing speed. One of the 

state-of-the-art deep learning algorithms in object detection 

models is Yolo V4, Yolo V3, Densenet 201, and CsResNext-

Panet 50. The performance test of the accuracy of object 

detection results on UAV Datasets has been carried out as 

presented in the table above, using a performance metric 

called mean average precision (mAP) or sometimes called 
simply AP (Average Precision) [11], with a formula such as 

under. 

  (1) 

 

Where Q is the number of queries in the dataset and AveP(q) 

is the average precision (AP) for a particular query, q. For a 

given query, q, the corresponding AP is computed, and then 
the average of all these AP scores will give a single number 

called MAP, which measures how well our model is querying. 

Average precision (AP) is calculated for each class from those 

under the area precision curve, where AP calculates the 

average precision value for values between 0 and 1. The 

display of the detection results using one of the CNN models 

from the Deep learning algorithm can be seen in Figs 2 and 3. 

Figs 2 and 3 illustrate the MAP results from processing 

UAV Datasets in determining the class of the object that 

passes through public highways. The training process carried 

out by the Darknet algorithm will characterize the object class 

detected in an object in the bounding box. The object class 
detection concept from UAV Datasets in the videos forms a 

new approach that can continue to be developed for MAP. 

The difference in 2 (the two) Figures occurs at the initial time 

detection of objects of each class for the CsResNext-Panet 50 

model; the percentage of accuracy starts at more than 80% - 

85%, while in the CNN model, the average accuracy 

percentage starts from 60-65%, after that, it only reaches 
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100%, especially to detect motorcycle is too small if we take 

a look the dataset drone in video form. 

 
Fig. 2  MAP results from object class detection from UAV Datasets on public 

highways using Densenet 112 

 

 

Fig. 3  MAP results from object class detection from UAV Datasets on public 

highways using CsResNext -Panet 50 

II. MATERIAL AND METHODS 

Drones or Unmanned Aircraft are developing; basically, 
the existence of UAV technology in the world of aviation 

continues to experience increasing development in recent 

years. However, as air transportation, it is also used in 

commercial and military circles, including technology with 

other functions such as regional mapping, the film industry, 

maritime patrols, disaster, medical assistance, and forest fire 

detection [8]. One of the technologies mentioned is the UAV 

(Unmanned Aerial Vehicle). UAV is a pilotless aircraft 

operated using remote or automatic control. UAVs have 

various shapes, sizes, configurations, and characters and are 

controlled remotely. The data collection results from 

Drones/UAVs are used to implement several deep learning 

algorithms for object detection in processing drone-generated 

datasets. He also uses a UAV Dataset that is flown at low 

altitudes, and in his research, the dataset used is the result of 

drone acquisition at an altitude of 350m [12]. There are at 

least four categories in computer vision on the UAV Dataset: 

image object detection, video object detection, single object 
tracking, and multi-object tracking. The dataset’s 

characteristics are categorized into two types, namely urban 

and sub-urban areas. Several researchers said that there are 

several issues and problems in the UAV Dataset, namely 

small objects, occlusion, spatial scale/resolution variations, 

and class imbalance [13]. 

Another research revealed that there are many obstacles 

that UAVs mostly face, is the difficulty of landing on a base. 

This difficulty can be solved by the renewal of UAVs, which 

is the development of landing vision by detecting the helipad 

to prevent the risk of accidents that could be harmful and 
could lead to death [15]. Another study used UAVs to detect 

forest and land fires so that they have an impact on ecosystem 

damage. Besides, forests in Indonesia continue to shrink every 

year due to forest fires. One solution to this problem is using 

a UAV (Unmanned Aerial Vehicle) to direct observations 

through the camera. In detecting fire by producing an average 

accuracy of 0.92. The best accuracy was obtained on the 3rd 

test with a precision score of 0.96, a recall score of 0.98, and 

an accuracy score of 0.96. This research can continue to be 

developed [16]. In another paper, an approach for vehicle 

detection is presented with virtual line-based sensors, which 
are just straight detection lines that are first set on-road lanes. 

The proposed method has an outstanding advantage in any 

condition, such as excellent traffic jams, sunny, cloudy, and 

rainy days, nighttime, or even tunnels with complex 

illumination [17]. 

Several studies on UAVs have been widely published in 

international journals and conferences in different application 

areas, such as search and rescue [18], air security and 

monitoring [19], disaster management planning [20], plant 

management vision [21], and mission communication [22]. 

Air the vehicle can fly at different speeds to hover over the 

target, perform outdoor flights, and maneuver at a close range 
of objects over a suitable place [23]. These features make it 

suitable for replacing humans in operations where human 

intervention becomes difficult to perform completely. Some 

of the major challenges in low-altitude UAV based object 

detection when compared to standard images such as large-

scale variety, dense distribution of objects, arbitrary 

orientation, objects Relative motion and turbulence of 

atmospheric conditions cause objects to become blurry [24]. 

All these challenges lead to object development detection in 

low-altitude aerial images using low-level scene features and 

immersive features to process. Some other important critical 
issues in object detection on drone platforms due to 

differences in mAP can be seen [25]. An overview of the 

percentage of drone technology utilization in several types of 

activities supported by deep learning algorithms. All 

implementations can be seen in Fig. 4. 
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Fig. 4  Some examples in some fields of the use and utilization of object 

detection [1] 

 

It is quite evident in recent years that a boost in research 

publications happened due to the emergence in the field of 

deep learning-based object detection, but a high value of 

accuracy cannot be achieved in the case of low-altitude UAVs. 

Object detection is infinite if we consider each and every 

development, but we would strictly stick to algorithms that 
have scope in low-altitude aerial images [26]. The literature 

on object detection in aerial images has been classified into 

two categories: classical and modern object detection 

approaches. The classical categorization includes 

conventional techniques, including vision-based and machine 

classifier-based approaches. Whereas modern deals with deep 

learning-based algorithms, which is our focus area. Classical 

object detection approaches include all major developments 

in aerial images using handcrafted features based on machine-

learning approaches [27]. 

A. Measuring Model Performance 

In types of vehicles, the detection study uses different CNN 

models to improve recognition; each model will perform 

differently. This happens because each CNN model has a 

different architecture that makes each model unique. This is 

why some models could work well in certain situations, 

especially in detecting the vehicle object. Therefore, by using 

the data collected throughout the training process, it will be 

possible to compare the four CNN models. Several 

calculation metrics like mAP, Precision, Recall, and F1-score 
are used as comparison variables. The comparison variables 

between each CNN model will determine the best approach to 

detect vehicle objects on highways based on UAV Dataset in 

Video form. The samples needed for measuring the CNN 

model’s performance are split into two categories. The first 

category is the positive samples, which have the targeted 

object in them. The second category is the negative samples, 

which have none of the targeted objects.  

1) Precision and Recall: There are two necessary 

variables to calculate the precision value. The first variable is 

the number of positive samples the model correctly classified 
and the last one is the total number of samples classified as 

positive samples (whether the model correctly classified them 

or not). The range value of precision is from 0 to 1, with 0 as 

its lowest score and 1 as its highest score. This precision value 

reflects the model’s reliability when classifying the positive 

samples. The result of precision is obtained by dividing only 

correctly classified positive samples by the total number of 

positive samples. Compared to precision, a recall is calculated 

by dividing the number of positive samples the model 

correctly classified and the number of total positive samples 

[28], [29]. Recall completely ignores the negative samples 

and only focuses on the result of the positive samples. With 

the range the same as precision, a recall measures how many 

of the model correctly classifies positive samples. Both 

precision and recall formulas are illustrated below: 

Precision 	
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Recall 	
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 (3) 

Where: 

TRUEpositive= total of positive samples that the model 

correctly classified. 

FALSEpositive= total of negative samples that the model 
mistakenly classified as positive samples. 

FALSEnegative = total of positive samples that the model could 

not be classified. 

2) Intersection over Union (IoU): Intersection over 

Union or IoU has two things that need to be addressed because 

the two are defined later in the IoU formula. Those two values 

are the predicted bounding box and the truth bounding box. 

The predicted bounding box is the box the model predicts to 

have one of the targeted objects or items. Meanwhile, the truth 

bounding box is the box the tester initially marked as the 

targeted object before the measuring process. Finally, the 

definition of IoU is the ratio between the intersection of the 
predicted bounding box and the truth bounding box with the 

combined area or union of the two boxes (see Fig. 5). The 

more the predicted box overlay the area of the truth box, the 

higher the accuracy of the model. In return, the IoU score 

would be near the value of 1, which is the highest accuracy 

score [28]. 

 

 

Fig. 5  IoU Formula and Illustration 

3) F1-Score and mAP (mean Average Precision): F1 

score used the two previous metrics: precision and recall. F1-
Score is a metric that combines the precision and recall 

metrics into a single metric. The formula for the F1-score is 

defined as the average of precision and recall [28], [29]. 

Besides F1-score that summarizes the two previous metrics,  

the mean Average Precision(mAP) is the metric that shows 

the mean value of average precision for the detection process 

of all the previously determined classes [17]. Average 

Precision, or AP, is the average of the precision metric across 

394



all recall values between 0 and 1 at various IoU thresholds 

[28]. The mAP model is one of the core metrics to determine 

which model has the best overall performance because it 

considers all previously mentioned metrics. The formula’s 

output will give an F1-score value ranging from 0 to 1, where 

1 is the highest accuracy value. 

F1 score 	 2 ∗
%&'()*)+, ∗ �'(-..

%&'()*)+, �  �'(-..
 (4) 

B. Methodology (Stages) 

In research for vehicle object recognition on UAV Datasets, 

the distance between surfaces is between 300 - 400 meters. 

Three objects are detected: Car, Truck, and Motorcycle 
Objects. The truck category is divided into 2, namely trailer 

trucks and ordinary trucks, and the car is not divided into the 

type of vehicle. The motorcycle object looks exceedingly 

small, so it is not easy to distinguish it from a bicycle.  

This research is divided into three main parts, namely the 

preparation stage, the training stage, and the testing stage. The 

preparation stage is the process of collecting video data and 

analyzing the video dataset. For the training stage, all data 

collected is processed, and each data’s weight is calculated to 

be recognized in the testing process. In the testing process, the 

test data is recognized based on the training data that has been 
collected. An overview of the processes that occur at the 

preparation stage can be seen in Fig 6. 

 
Fig. 6  The Preparation stages of in-vehicle object detection 

Fig. 5 is the preparation stage. At this stage, video data is 

collected through Drone/UAV technology and put in the 
drone video dataset as training data. All data collected will be 

carried out into object classes, including processing the initial 

data, which will be processed as the training dataset to support 

the training stage. Another process in this stage is pre-trained 

convolutional weight, including conFig. The video file uses 

dataset labeling directly to carry out the training dataset’s 

image label. It is necessary to prepare things for the 

experiment. It is required to have data video taken by drone 

technology, including image labels, path paths, and train data. 

In this case, all data were obtained from UAV Dataset. The 

next stage is the training process, which can be seen in Fig 7.  

 

 
Fig. 7  The Training stage in vehicle object detection 

Fig. 7 informs the training stage, which outputs weight files. 

As stated before, it requires files which are images for train, 

image label, class identity, train data, model pre-trained 

weight, and a matching model configuration before training. 

This stage aims to use the drone data in video form that were 

previously prepared in the preparation stage to be trained 
using the Darknet algorithm. The vehicle detection process 

will continue until the iteration modulus is completed or the 

1000th iteration modulus finishes. The results of the training 

phase are weight files. Weights are purposed by choice of a 

target-object-space, which depends heavily on the nature of 

the objects in the training set and the predicted property”. So 

that to get the most accurate data possible, the training process 

can be done using the same device and training data set, and 

the result would be in a less ambiguous weight file. To support 

the experiment, the Darknet framework was used to help only 

in the training process, which carried out some CNN models.  
After the training process is carried out, it is continued with 

the testing process on vehicle object data taken from other 

UAV Datasets. Based on the training data, all testing data will 

be detected optimally. In this experiment, 4 CNN models 

were also used to know which is optimal in carrying out the 

vehicle object detection process. The stages of the testing 

process can be seen in Fig. 8. 

Fig. 8. illustrates that after the training is complete, the 

system can start the testing phase by importing the required 

files for testing. These are the trained weight, configuration, 

and trainer data files. The testing process starts by taking a 

frame from the UAV Dataset in video form. Then, calculate 
the prediction using non-max suppression (NMS). The other 

process is drawing the bounding box, and the system will 

determine call traffic type and calculate the volume of the 
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object class as the target object. The bounding box usually 

comes with other information like class and coordinate. This 

information is important for vehicle object detection and Keep 

ID. It is to generate the appropriate virtual key for the UI to 

receive after the system succeeds in detecting the vehicle 

object. Then, some condition cases algorithm decides which 

behavior to apply within the case, including showing the 

accuracy starting with the lowest percent will grow up after 

detecting the vehicle. Finally, the bounding box of the vehicle 

should respond to the Id key and accuracy percent according 
to the predefined bindings.  

 
Fig. 8  The Training stage in vehicle object detection 

 

Two choices are made if the different objects are too close 

and have the same id. If yes, a new id is assigned, but if not, 

the old id is assigned; however, for the assigned id and old id. 

At the same time, the object is shown from the processed 

frame. In this testing stage, the output is accuracy, precision, 

F1 score, and others, so that the UAV Dataset can acquire the 

accuracy percentage in vehicles detection in the video form in 

the show frame process with the output testing is the 
performance of vehicle detection on the video UAV Dataset. 

III. RESULT AND DISCUSSIONS 

A. Training Results 

The training process used the Darknet algorithm model to 

support, and all of the models resulted in a good loss average 

result. The training uses PCs with the latest CPU and GPU 

technology. The use of PC technology will not affect the 

aftermath use of the models. This method has a benefit in 

accelerating the training duration of the model because the 
Darknet framework supports the GPU Acceleration method 

for the training phase. Thus, reducing the training time when 

compared to using the CPU for training. If the training is done 

with much less advanced technology, it will take more time to 

finish because the output weight file would result in the same 

file. The bigger the model architecture, the slower the 

machine can train. The size of the model also affects the 

model output size. Fortunately, all of the tested models are 

designed for small devices and have a small architecture that 

could  

Fig. 8 shows the graph training curve can vary depending 

on the model. At first, most of the model’s loss declined in the 

first 1000 iterations. However, it did not happen to Yolo V3 

and Yolo V4 as they have similar architecture, with one being 

smaller than the other. It will not have any effects as long as 

it declines to a level. After a steep decline at the start, the loss 

starts to stabilize in a gentle curve. It shows that the model is 

starting to understand the given dataset. Finally, the graph 

shows that the loss stabilizes until the end of the iteration. This 

result means the trained model has learned the given hand 
gestures dataset without a problem. Each model architecture is 

unique and has a beneficial impact in certain cases. Therefore, 

the experiment can go on using the generated train weights. A 

more detailed training result can be seen in Table 5. 
 

 
Fig. 9  Training Graph of Each CNN Model 

TABLE I 

TRAINING RESULT OF EACH CNN MODELS USING AVERAGE LOSS PARAMETER 

Model Average loss (%) 

Yolo V3 0.1546 
Yolo V4 0.2984 
Densenet 201 0.8129 
CsResNext –Panet 50 0.2985 

 

Table 1 shows the average loss of the CNN model to 

determine how it will perform. Thus, carrying out it is one of 

the key parameters that could affect the test. As explained 

before, the lower the average loss, the better the machine 

understands the dataset. This way, it could potentially affect 

the performance of detecting objects. If the machine does not 

understand, it will not detect the object as expected. Table 5 

shows that all models have an average loss below 0.2. This 

value is pretty low enough and acceptable for the experiment. 
In detecting vehicle objects in the highways CNN model, 

Yolo V3 has the highest average of 0.1546 with an 

Approximation time of 0.06. Next, Yolo V4 has the second-

highest average loss at 0.2984 with an Approximation time of 

0.09. However, the difference between them is more than 

0.143, which is a lot. CsResNext-Panet 50 model comes third 

with an average loss of 0.2985 with an Approximation time 

of 0.14. Then, Model Densenet201 has an average loss of 
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0.8129 with an Approximation time of 0.08. All the vehicle 

objects must do with proper testing and analysis. The 

performance of a model cannot be determined just by using 

loss value. Therefore, the following section will explain the 

performance in other aspects.  

B. Simulation and Results 

Before testing the weights trained in the self-service 
application, the Vehicle object Detection algorithm must 

import the supporting files. The supporting files are the 

training label, image path, model configuration, and a .data 

file type called the trainer. Data. These supporting files are 

necessary to execute the testing process, which uses the 

OpenCV library as the inference. OpenCV is an open-source 

library mainly used for image processing [20]. Then, the self-

service of accuracy and vehicle class detection will 

automatically be initiated simultaneously. Next, an 

examination of Vehicle object Detection is performed. This 

examination was needed to carry out that the trained object 
detection works properly. In this case, the machine’s frames 

captured and processed were examined in a separate window.  

 

 
Fig. 10  Vehicle class object detection simulation on UAV dataset 

 

When the application detects a vehicle on the highway, it 

can run some objects and calculations flawlessly with above-

acceptable performance. That means a great response feel and 

fast processing speed. This is required for real-time object 

detection to make sure everything is processed without delay 

between one frame to another frame and interactions around 

the bounding box with accuracy number.  

 

 
Fig. 11  CNN Models Average IoU After Optimization Comparison 

However, smaller size comes at the price of processing 

performance. When it was tested to run the same Object 

detection, the response and processing speed were 

unacceptable. The model’s network input sizes in the 

experiment depend on object classes such as trucks, cars, and 

motorcycles. This is to reduce the processing load, which 

could increase processing time. The result of the truth 

bounding box calculation with the combined area or union of 

the two boxes is in Fig. 11. 

Fig. 11 informs the result of calculating the truth bounding 
box with the combined area or union of the two boxes. In 

calculating the IoU Performance for the highest on the CNN 

model, namely CsResNext -Panet at 91.4%, followed by the 

CNN Yolo V4 model at 86.11%. Meanwhile, the lowest IoU 

performance was on the CNN Yolo V3 model at 73.6%. So, 

in this experiment, it is shown that the CsResNext - Panet 

model has the highest IoU performance. So, this CNN model 

can be a guideline for future research. While the system will 

calculate the mean of Procession (MaP) and time processing 

for each vehicle can be seen in Fig. 12. 

 
Fig. 12 Combined Inference Time model Graph Before and After 

Optimization 

 

In Fig. 12, the inference time model is carried out to 

determine whether to reduce network size and include to 

reduce the inference time. Inference time calculates the time 

between the captured frame and the process until it results in 

data in terms of object detection [21]. AS information that the 

bigger the inference time become the slower the detection. 

This also worsens the experience of using this detection 

technology. In Fig. 12, In CNN Model show an additional of 
percent of about more than half the amount of original 

inference time. In the vehicle object detection process, the 

UAV Dataset shows that the average inference time is more 

than 50% compared to the average image accuracy predicted 

by the system. Even the CsResNext-Panet 50 model has 100% 

accuracy, but the inference time does not turn out to be 50% 

or even more than 100%, which is 130.86 ms. 

Furthermore, the Yolo V4 model’s accuracy is 99.19%, 

while the inference time is more than 50%, which is 65.8 ms. 

The Yolo V3 model's average accuracy is 95.75%, while the 

inference time is more than 50%, which is 56.3 ms. This 
model CNN is the most balanced in these metrics after 

optimization. In order to calculate recall, precision, and F1 
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scores with deep learning algorithms on several CNN models, 

can be seen in Fig. 13. 

Based on this experiment, the highest accuracy is in the 

CNN CsResNext-Panet 50 model, where the percentage of 

precision, recall, and F1 score reaches 100%. Followed by the 

Yolo v4 model, where the average is up to 99%, and the 

lowest accuracy is the average Yolo V3 model is 96%. So it 

can be concluded that the approach of the deep learning 

algorithm with several CNN models in the testing process 

would be supported by the Darknet algorithm. So, the 
minimum average accuracy is only 96%. So, it can be 

concluded that object detection with this approach has worked 

well and could detect all objects almost perfectly. 

 

 

Fig. 13  Precisions, Recall, and F1 score of Each Model CNN 

Meanwhile, the combined average precision for each 

vehicle class for each CNN model on the UAV Dataset can be 

seen in Fig. 14. 

 
Fig. 14  The combination of the average accuracy for each vehicle class on 

the CNN model 

Fig. 14 informs the average accuracy in recognizing three 
vehicle class objects using several CNN models in this 

experiment. It is concluded that the CsResNext-Panet  50 

model can recognize all vehicle objects ranging from trucks 

(including trailers), cars (several types of cars), and 

motorcycles (including bicycles) on the UAV Dataset where 

the distance between the surface and the top position of the 

drone is between 300-400 meters with the ground moving 

vehicles for each class up to 100%. The Yolo V4 model can 

also detect all classes of vehicle objects, such as trucks and 

cars, up to 100%, while motorcycles (bikes) can detect up to 

97.6%. The introduction is continued by using the Densenet 

201-Yolo model, where the accuracy of trucks can be 

recognized well, but for cars, there are only a few errors where 

the accuracy reaches 99%, and motorcycle objects can be 

recognized up to 95.5%. For the recognition of moving 

objects on the UAV Dataset, the Yolo V3 model is depicted; 
although it has a smaller accuracy than other models, such as 

motorcycle objects which is only 91.29%, it is still very robust 

to recognize this image because it is still more than 90%. This 

experiment also proves that the approach for vehicle object 

recognition on the UAV Dataset can be recognized on average 

more than 90%. 

In the experiment, four CNN models were tested for their 

performance in object detection technology on the UAV 

dataset. Each CNN model has a unique architecture, 

producing different metric values from each other. This 

difference will be a key component for comparing the four 
CNN models and determining which one is most suitable for 

detecting vehicle object classes. In Figure 13, all CNN models 

depict the average values of Precision, Recall, F1-Score, and 

IoU. The CsResNext-Panet 50 model got the highest average 

IoU value, followed by Yolo V4, Densenet, and yolo V3, thus 

affecting Precision, Recall, and F1-Score on each CNN model. 

Changes in the way each model detects objects in the window 

frame after optimizing statistically depicted accuracy. 

IV. CONCLUSION 

In this study, the right approach is needed to optimize the 

detection of the three classes of vehicle objects depicted in the 

UAV dataset. For example, a motorcycle class is similar to a 

bicycle, a car class is almost similar to several types of cars, 

and a truck class is almost the same for trailers and general 

trucks. In detecting three vehicle class objects on the UAV 

dataset, the deep learning algorithm with 4 CNN models and 

Darknet algorithms would be used to support the training 

process. The experimental results can be concluded that the 

CsResNext-Panet 50 and Yolo V4 as the solution to recognize 
the three-vehicle class in UAV datasets such as car, truck, and 

motorcycle. Based on the experiment results on the UAV 

dataset, it is illustrated that the CsResNet50-Paket model has 

produced precision, recall, and F1 Scores with a percentage 

of up to 100% followed by an average IoU of more than 90%. 

Furthermore, the Yolo V4 model has an accuracy percentage 

is more than 98% with an average IoU of more than 85%. 
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