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Abstract— Unbalanced conditions in the dataset often become a real-world problem, especially in machine learning. Class imbalance 

in the dataset is a condition where the number of minority classes is much smaller than the majority class, or the number is insufficient. 

Machine learning models tend to recognize patterns in the majority class more than in the minority class. This problem is one of the 

most critical challenges in machine learning research, so several methods have been developed to overcome it. However, most of these 

methods only focus on binary datasets, so few methods still focus on multiclass datasets. Handling unbalanced multiclass is more 

complex than handling unbalanced binary because it involves more classes than binary class datasets. With these problems, we need an 

algorithm with features that can support adjustments to the difficulties that arise in multiclass unbalanced datasets. One of the 

algorithms that have features for adjustment is the ensemble algorithm, namely Xtreme Gradient Boosting. Based on the research, our 

proposed method with Xtreme Gradient Boosting showed better results than the other classification and ensemble algorithms on eight 

datasets with five evaluation metrics indicators such as balanced accuracy, the geometric-mean, multiclass area under the curve, true 

positive rate, and true negative rate. In future research, we suggest combining methods at the data level and Xtreme Gradient Boosting. 

With the performance increase in Xtreme Gradient Boosting, it can be a solution and reference in the case of handling multiclass 

imbalanced problems. Besides, we also recommended testing with datasets in the form of categorical and continuous data. 
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I. INTRODUCTION

Class imbalance in the dataset is a situation or condition 

where the value of the minority class is much smaller than that 

of the majority class or so inadequate that the model 

recognizes patterns in the majority class more than the 

minority class. For example, in the medical world, the amount 

of data from patients with diabetes is less than from patients 

who do not have diabetes. This problem can result in an 

inaccurate classification and be fatal if implemented in the 

real world [1]–[3]. The problem of imbalanced datasets is one 

of the most critical challenges in the machine learning 

research community. Various methods have been developed 
to overcome these problems, such as resampling methods, 

cost-sensitive approaches, ensemble learning algorithms, 

kernel-based methods, and active learning methods. These 

techniques can be categorized into several approaches based 

on how to overcome the problem of imbalanced data. The first 

approach at the algorithm level is to create or modify an 

algorithm to consider the significance of the positive class. 

Algorithm-based approaches include cost-sensitive methods 

and recognition-based approaches [4], [5]. The second 

approach, namely the data level, is carried out at the pre-data 

processing stage. The class distribution in the data is 
rebalanced to reduce the effect of the number of majority 

classes being too dominant in the learning process. One 

alternative to improving the model's performance in the 

imbalance class is to use the ensemble method. The ensemble 

method, in principle, combines a set of classifiers trained to 

create a mixed classification model with good performance so 

that the classifier formed is more accurate than the original 

classifier in performing a classification. Boosting, Stacking, 

and Bagging are the most popular ensemble methods used 

[6]–[10]. 

The majority of research conducted focused on binary 
imbalanced datasets. The multiclass imbalance learning 

problem is much more challenging than the binary scenario 

because the decision boundary involves distinguishing 

between more classes [2], [11]. Unfortunately, directly 

applying the proposed method to deal with binary dataset 
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imbalances on multiclass datasets may not be valid. In 

addition, imbalanced multiclass also often appear in real-

world problems. Three types of challenges are associated with 

imbalanced class conditions in multiclass datasets: one 

majority class and many minority classes, one minority and 

many majority classes, and many minorities and many 

majority classes. In addition, the slope of the distribution of 

instances among classes is one of many sources of difficulty 

for classification algorithms to deal with multiclass 

unbalanced data sets. Other difficulties in the data structure 
are always present, such as overlapping classes, slight 

separation (a minority class may consist of several sub-

concepts), and small sample sizes (lack of representative 

minority examples) [12]–[14]. 

The following are previous studies that have been carried 

out related to handling multiclass imbalanced datasets. 

Research conducted by Abdi and Hashemi [15] proposed a 

new method at the data level. The method is named 

Mahalanobis Distance Oversampling (MDO). This method 

creates synthetic data with the same Mahalanobis Distance 

from the corresponding class average. This method has been 
tested on 20 multiclass imbalanced datasets. With MAUC, 

Geometric Mean (G-Mean), precision, recall, and f-measure 

metrics, this method can significantly outperform Borderline-

SMOTE, SMOTE, and ADASYN with the base classifiers 

KNN and RIPPER. Ding et al. [16] proposed a new method 

at the algorithm level in their research. The method is a 

Weighted Online Sequential Extreme Learning Machine with 

Kernels (WOS-ELMK) for Class Balanced Learning (CIL). 

Different from the Online Sequential Extreme Learning 

Machine (OS-ELM) method, which generally uses random 

feature mapping, WOS-ELMK uses kernel mapping for 
online class imbalance learning to overcome the problem of 

hidden node non-optimization, which is often associated with 

random feature mapping. This method has been tested on 17 

binary and eight multiclass imbalanced datasets. With the g-

mean metric, WOS-ELMK can outperform VWOS-ELM and 

KOS-ELM. Meanwhile, a study by Bi and Zhang [17] 

proposed the Diversified Error-Correcting Output Codes 

(DECOC) method. The DECOC method is a method that 

combines Error-Correcting Output Codes (ECOC) to 

overcome class imbalances and various ensemble learning 

frameworks to find the best classification algorithm for each 

individual sub-dataset derived from the resampling process 
from the original data. DOC has been tested on 19 datasets 

with metric accuracy; AUC, g-mean, and f-measure 

outperformed 17 state-of-art methods on imbalance learning. 

The limitation of the DECOC method is that it is time-

consuming or takes much time in the execution process of the 

method.  

On the other hand, Krawczyk, Koziarski, and Woźniak [18] 

used a method called Multiclass Radial-Based Oversampling 

(MC-RBO). This method performs oversampling that does 

not use NNs from minority agencies, so it differs from 

algorithms such as SMOTE. This method has been tested on 
20 multiclass imbalanced datasets. With Average Accuracy 

(AvAcc), CBA, MGM, and CEN metrics, the process can 

outperform SMOTE-all, S-SMOTE, MDO, SMOM, HTREE, 

NB-SVM, and AdaBoost.NC, SMOTEBag, OVO-RUS, 

OVO-SMOTE , OVO-BSMOTE, OVO-ADASYN [18]. 

Research related to handling class imbalances was also 

carried out by Fernandes and de Carvalho [19]. This study 

uses the method of multi-objective evolutionary algorithm 

(MOEA). This method can outperform SMOTEBagging, 

RUSBagging, ROSBagging, AadaboostM1, and RUSBoost 

in terms of the g-mean average. 

Most previous research was limited to handling class 

imbalances in class binary datasets. Therefore, this study will 

focus on imbalanced classes in multiclass datasets. On the 

other hand, imbalanced multiclass is often found in real-world 

problems. The novel proposed method in this study uses the 
XGBoost algorithm. XGBoost is an ensemble method that can 

be used for imbalanced multiclass problems. The two basic 

ideas why using XGBoost first are to maintain the 

naturalization of the dataset. The second is to create a reliable 

machine-learning model in imbalanced multiclass conditions. 

This research's main novelty and contribution can be a 

solution to handling the imbalanced class on the machine 

learning model, especially in the multiclass imbalanced case, 

to maintain the naturalization of the datasets. Furthermore, the 

proposed method will be compared with several popular 

methods, single-classifiers, and other ensemble models. This 
comparison aims to measure how well the XGBoost algorithm 

performs compared to popular existing models, especially in 

multiclass imbalances. 

The rest of this paper is organized as follows. Section II 

describes the methods used to handle the imbalanced class. In 

Section III, we discuss the results of the proposed method. 

Finally, Section IV presents our conclusions. 

II. MATERIAL AND METHODS 

This research was conducted through several stages. Fig 1. 

below shows the steps of research that have been done. 
 

 
Fig 1  Research Workflow 

The following steps are the explanation for each process: 

A. Problem Identification 

This part identifies the existing problems in the form of 

background, formulation, problem limitation, objectives, 
benefits, and methodology. 

B. Datasets 

The dataset used in this study is a specific public dataset in 

the imbalance dataset obtained from the KEEL and UCI 

Machine Learning repositories consisted of nine imbalanced 
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datasets with varied ratios and classes. The following Table I 

and Table II show the details of the dataset used. 

TABLE I 

DATASETS 

Name Code Instances Features Classes 

car D1 1728 7 4 
contraceptive D2 1473 10 3 
glass D3 214 10 6 
hayes-roth D4 132 6 3 
new-thyroid D5 215 6 3 
pageblocks D6 5473 11 5 
winequality-red D7 1599 12 6 
winequality-white D8 4898 12 7 

yeast D9 1484 10 10 

TABLE II 

CLASS DISTRIBUTION OF DATASETS 

Name Code Class Distribution 

car D1 1210:384:69:65 
contraceptive D2 629:511:333 

glass D3 76:70:29:17:13:9 
hayes-roth D4 51:51:30 
new-thyroid D5 150:35:30 
pageblocks D6 4913:329:115:88:28 
winequality-red D7 681:638:199:53:18:10 
winequality-white D8 2198:1457:880:175:163:20:5 
yeast D9 463:429:244:163:51:44:35:30:20:5 

C. Data Preprocessing 

At this stage, checking for missing values, instance 

duplication, data inconsistency, and data outliers is carried 

out. However, this study did not find missing values, duplicate 

instances, inconsistent data, or outliers. 

D. Classification using Extreme Gradient Boosting 

This study proposed the Extreme Gradient Boosting 

(XGBoost) ensemble method to handle multiclass imbalanced 

datasets. This method is a tree-based boosting method 

derivative of Gradient Boosting but in an optimized version 

[20]. Fig 2. below is an illustration of the XGBoost model: 

 
Fig. 2  XGBoost model illustration 

Fig 2. shows that the XGBoost structure is similar to the 

Random Forest structure. However, each tree model in 

XGBoost minimizes the residuals from the previous tree 

model. Unlike the GBDT, which generally uses the first 

derivative of error information, XGBoost performs a second-

order Taylor expansion on the cost function and uses the first 
and second derivatives. Each tree is trained with a dataset and 

learns the residuals from the previous three to be minimized 

gradually. Then the results from the training of each tree are 

summed using the following equations. 

 ��� � ����� � ∑ 
�
�
�
� ����, 
� ∈ ℱ (1) 

Where f is a function in the functional space F, where F � 
{f�x� � wq�x�}�q : Rm → T, w ∈ RT� being the set of all 

possible classification trees, where q represents the structure 

of each tree, maps an instance to the appropriate leaf index, T 

is the number of leaves in the tree, w is the weight of the 

leaves, and K represents the number of trees. The equation 

below represents the objective function for optimization, 

trained in an additive manner by adding ft, which helps to 

minimize the objective, where ���
�!"��

represents the prediction 

of instance i at iteration t-1, &'�� , ���
�!"��( is the training loss 

function and Ω is the regularization condition. The following 

process is calculating the objective function using the 
following equation. 

 ℒ�!� � ∑ &+
� ,�� , ���

�!"�� - 
! ����. - Ω�
! � (2) 

Using the following equation, the next step is to use a 

complexity control function to prevent overfitting. 

 Ω�
� � γT - �
1 2||4||1 (3) 

This boosting model differs from Gradient Boost, which 

builds trees in series. XGBoost builds trees in parallel, similar 

to the Random Forest method. XGBoost builds trees in 

parallel using all CPU cores during training, resulting in 
shorter compute time [21]–[23]. 

E. Evaluation 

The last stage in this research is to evaluate the resulting 

classification model. The evaluation indicators used in this 

study include balanced accuracy, Multiclass Area Under 

Curve Score (MAUC), True Positive Rate (TPR), True 

Negative Rate (TNR), and geometric mean (G-Mean) [24]. 

These five are comprehensive indicators to be used to 

evaluate the classification model in cases of class imbalance 
in the dataset [25], [26]. XGBoost evaluation results were 

compared with classification algorithms such as Logistic 

Regression, Decision Tree, Gaussian Naïve Bayes, K-Nearest 

Neighbor, and Support Vector Machine. In addition, we also 

compare with the ensemble algorithm, namely bagging and 

stacking. Bagging algorithm structure, use the Decision Tree 

base classifier. The Stacking algorithm structure uses the K-

Nearest Neighbor algorithm, Support Vector Machine, and 

Decision Tree. The tests of all comparison algorithms go 

through the same process flow and datasets. 

III. RESULTS AND DISCUSSION 

In this section, the discussion focuses more on evaluating 

the performance of the XGBoost algorithm and comparing its 

performance with other classification models based on the 

value of balanced accuracy, g-mean, sensitivity, specificity, 

and MAUC. The data set in the XGBoost test scenario would 

be divided into two parts: the training set and the test set. The 

proportion of the distribution is as follows the training of 80% 

of the total data. Meanwhile, the test data is 20% of the total 

data. The followings are the evaluation results for each 
indicator tested on XGBoost and the results of a comparison 

with several other classification models such as Decision Tree 

(DT), Gaussian Naïve Bayes (NB), Support Vector Machine 

(SVM), Bagging, and Stacking. 

A. Balanced Accuracy Score 

In the balanced accuracy evaluation metric, the 

performance of the XGBoost algorithm is relatively good. 

The following Table III is the comparison result of the 
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XGBoost balanced accuracy score when compared to DT, 

Gaussian NB, SVM, bagging, and stacking algorithms. 

TABLE III 

COMPARISON OF BALANCED ACCURACY SCORE 

Dataset 
Balanced Accuracy 

DT NB SVM Bagging Stacking XGBoost 

D1 0.930 0.517 0.882 0.969 0.934 0.980 

D2 0.449 0.483 0.539 0.487 0.453 0.552 

D3 0.566 0.478 0.704 0.637 0.544 0.770 

D4 0.936 0.803 0.795 0.903 0.906 0.970 

D5 0.894 0.989 0.894 0.857 0.894 1.000 

D6 0.823 0.737 0.565 0.824 0.786 0.849 

D7 0.326 0.370 0.282 0.312 0.320 0.364 

D8 0.355 0.272 0.236 0.381 0.346 0.395 

D9 0.392 0.487 0.485 0.427 0.402 0.446 

 

Based on Table III above shows that the balanced accuracy 

value of the XGBoost algorithm can outperform the Decision 

Tree, Gaussian NB, SVM, bagging, and stacking datasets on 

the dataset car, contraceptive, glass, hayes-roth, new-thyroid, 

page blocks, wine quality-red, and wine quality-white. It even 

hits a perfect score of 1.00 on the new-thyroid dataset. 

However, in the yeast dataset, the XGBoost algorithm is less 

valuable than other algorithms. In the table, the values in bold 

are each dataset's highest balanced accuracy values. 

B. Geometric Mean Score 

The second evaluation indicator is based on the geometric 

mean values. On the geometric mean metric, the performance 

of the XGBoost algorithm is relatively good compared to 

others. Table IV compares the geometric mean XGBoost to 

the Decision Tree, Gaussian NB, SVM, bagging, and stacking 

algorithms. 

TABLE IV 

COMPARISON OF GEOMETRIC MEAN SCORE 

Dataset 
Geometric Mean 

DT NB SVM Bagging Stacking XGBoost 

D1 0.959 0.672 0.933 0.981 0.961 0.989 

D2 0.573 0.596 0.645 0.604 0.576 0.657 

D3 0.716 0.646 0.817 0.772 0.697 0.860 

D4 0.948 0.841 0.847 0.921 0.923 0.975 

D5 0.916 0.990 0.916 0.889 0.889 1.000 

D6 0.889 0.828 0.725 0.891 0.866 0.907 

D7 0.542 0.575 0.501 0.530 0.537 0.579 

D8 0.568 0.490 0.460 0.592 0.561 0.605 

D9 0.605 0.668 0.676 0.633 0.613 0.650 

 

Table IV shows that the geometric mean value of the 

XGBoost algorithm could outperform the Decision Tree, 

Gaussian NB, SVM, bagging, and stacking datasets on the 

car, contraceptive, glass, hayes-roth, new-thyroid, page 

blocks dataset, wine quality-red, and wine quality-white. It 

even hits the perfect score of 1.00 on the new-thyroid dataset. 
However, in the yeast dataset, the XGBoost algorithm has a 

lower value than other algorithms. In the table, the values in 

bold are each dataset's highest g-mean score. 

C. Multiclass Area Under Curve Score (MAUC) 

The third evaluation indicator is based on the MAUC 

values. On the MAUC metric, the performance of the 

XGBoost algorithm is relatively good. Table V compares the 
MAUC XGBoost value to the Decision Tree, Gaussian NB, 

SVM, bagging, and stacking algorithms. 

TABLE V 

COMPARISON OF MAUC SCORE 

Dataset 
Multiclass Area Under Curve 

DT NB SVM Bagging Stacking XGBoost 

D1 0.959 0.870 0.998 0.999 0.998 0.999 

D2 0.592 0.635 0.703 0.675 0.648 0.725 

D3 0.736 0.777 0.893 0.888 0.832 0.860 

D4 0.948 0.926 0.931 0.963 0.917 0.969 

D5 0.917 0.997 0.997 0.999 0.997 1.000 

D6 0.894 0.967 0.980 0.957 0.977 0.992 

D7 0.613 0.703 0.831 0.696 0.793 0.808 

D8 0.632 0.757 0.823 0.744 0.772 0.865 

D9 0.663 0.802 0.875 0.774 0.857 0.772 

 

Table V shows that the MAUC value of the XGBoost 
algorithm could outperform Decision Tree, Gaussian NB, 

SVM, bagging, and stacking datasets on the dataset car, 

contraceptive, hayes-roth, new-thyroid, page blocks, and 

wine quality-white. It even hits a perfect score of 1.00 on the 

new-thyroid dataset. However, on the glass, wine quality-red, 

and yeast dataset, the XGBoost algorithm has a lower value 

than the other algorithms. The MAUC results are clarified in 

Table IV, where the value in bold is the highest in each 

dataset. 

D. True Positive Rate (TPR) 

The fourth evaluation indicator is based on the TPR values. 

On the sensitivity metric, the performance of the XGBoost 

algorithm is relatively good. Table VI shows a comparison of 

XGBoost’s TPR values when compared to the Decision Tree, 

Gaussian NB, SVM, bagging, and stacking algorithms 

TABLE VI 

COMPARISON OF TRUE POSITIVE RATE 

Dataset 
True Positive Rate 

DT NB SVM Bagging Stacking XGBoost 

D1 0.930 0.517 0.882 0.969 0.934 0.980 

D2 0.449 0.483 0.539 0.487 0.453 0.552 

D3 0.566 0.478 0.704 0.637 0.544 0.770 

D4 0.936 0.803 0.795 0.903 0.906 0.970 

D5 0.894 0.989 0.894 0.857 0.894 1.000 

D6 0.823 0.737 0.565 0.824 0.786 0.849 

D7 0.326 0.370 0.282 0.312 0.320 0.364 

D8 0.355 0.272 0.236 0.381 0.346 0.395 

D9 0.392 0.487 0.485 0.427 0.402 0.446 

 

Table VI shows that the TPR value of the XGBoost 

algorithm can outperform the Decision Tree, Gaussian NB, 

SVM, bagging, and stacking datasets on the car, 

contraceptive, glass, hayes-Roth, new-thyroid, page blocks, 

and wine quality white-datasets. It even hits a perfect score of 
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1.00 on the new-thyroid dataset. However, in the wine 

quality-red and yeast dataset, the XGBoost algorithm has a 

lower value than the other algorithms. The results of the 

comparison of TPR values are clarified in Table V, where the 

value in bold is the highest in each dataset. 

E. True Negative Rate (TNR) 

The fifth evaluation indicator is based on the TNR values. 
On the sensitivity metric, the performance of the XGBoost 

algorithm is relatively good. Table VII compares the true 

negative rate (TNR) on XGBoost to the Decision Tree, 

Gaussian NB, SVM, bagging, and stacking algorithms. 

TABLE VII 

COMPARISON OF TRUE NEGATIVE RATE 

Dataset 
True Negative Rate 

DT NB SVM Bagging Stacking XGBoost 

D1 0.988 0.873 0.987 0.993 0.989 0.997 

D2 0.731 0.736 0.771 0.750 0.732 0.783 

D3 0.905 0.874 0.947 0.937 0.895 0.960 

D4 0.960 0.881 0.903 0.939 0.940 0.980 

D5 0.940 0.991 0.940 0.923 0.940 1.000 

D6 0.961 0.930 0.931 0.962 0.954 0.969 

D7 0.899 0.893 0.890 0.902 0.900 0.920 

D8 0.909 0.884 0.896 0.919 0.908 0.927 

D9 0.935 0.917 0.942 0.938 0.935 0.948 

 

In addition, Table VII shows that the TNR value of the 

XGBoost algorithm can outperform the Decision Tree, 

Gaussian NB, SVM, bagging, and stacking algorithms on all 

datasets. It even hits a perfect score of 1.00 on the new-thyroid 

dataset. The results of the comparison of TNR values are 

explained in Table VII, where the values in bold are the 

highest in each dataset. 

Based on the evaluation conducted using the five indicators 

above. Overall, XGBoost can perform better than other 

models on eight datasets, including car, contraceptive, glass, 
hayes-Roth, new-thyroid, page blocks, wine quality-red, and 

wine quality-white. At the same time, the yeast dataset 

XGBoost model still needs to be better compared to other 

models. The point that makes XGBoost superior can be seen 

in the TPR and TNR values. These two indicators are essential 

in cases of class imbalance in datasets, especially multiclass 

datasets. When a model can produce good performance on the 

TPR and TNR value indicators, the model can also produce 

good scores on other indicators. Therefore, XGBoost can be a 

solution in the case of multiclass imbalanced datasets by 

maintaining the natural condition of the dataset. However, 
XGBoost has drawbacks for multiclass datasets with a class 

number greater than ten classes. 

IV. CONCLUSION 

Based on the research conducted, there are three 

conclusions. First, the proposed XGBoost method has a better 

evaluation value than the Decision Tree, Gaussian NB, and 

SVM classification methods. Second, the XGBoost model has 

a better evaluation value than the ensemble bagging method 
based on the Decision Tree classifier and stacking based on 

the KNN, SVM, and Decision Tree algorithms. Third, the 

XGBoost method has problems dealing with the class 

imbalance in datasets with multiple types greater than ten. 

However, this proposed model still needs to improve if it 

handles imbalanced cases with larger classes equal to ten. An 

example is the case of the yeast dataset, which has the largest 

number of classes compared to the other eight datasets. 

In future research, researchers are suggested to combine 

methods at the data level, such as undersampling or 

oversampling and XGBoost. The basic idea is sampling to 

handle datasets with more than ten classes. In addition, it is 
also recommended to perform tests with categorical and 

continuous data types to ensure the reliability of the XGBoost 

model. 
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