
1 

 

 Advanced Homomorphic Encryption for Cloud Data Security  

D.Chandravathi #, Dr.P.V.Lakshmi * 

# GVP College for Degree and PG courses Rushikonda, Viakhapatnam-45 

E-mail: chandravathi.d@gmail.com 

* GITAM University, Rushikonda, Viakhapatnam-45
 

 

 

 
Abstract— This paper aims to provide security of data in the Cloud using Multiplicative Homomorphic Approach. Encryption process 

is done with RSA algorithm. In this RSA algorithm, Shor’s algorithm is used for generating Public key Component, which enhances 

the security. Shor’s algorithm plays as important role in generating public key. Plain Text Message is encrypted with Public Key to 

generate Cipher Text and for decryption Chinese Remainder Theorem (CRT) is used to speed up the computations. By doing so, it 

shows how the CRT representation of numbers in Zn can be used to perform modular exponentiation about much more efficiently 

using three extra values pre-computed from the prime factors of n. Hence, security is enhanced in the cloud provider. 
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I. INTRODUCTION 

Security of data is the most important aspect that 

has to be considered in the cloud, which gives an importance 

and value of exchanged data over the Internet or other media 

types. This paper tries to increase a fair performance of the 

most commonly used RSA(Rivest-Shamir-Adleman) 

algorithm in the data encryption field[9]. Cryptography is 

usually referred to as “the study of secret”, while now a day 

is most attached to the definition of encryption. Encryption 

is the process of converting plain text to a hidden form or 

scrambled manner to secure it against attacks[1]. This 

process has another part where cryptic text needs to be 

decrypted on the other end to be understood. The process of 

encryption is carried using RSA algorithm and the cipher is 

generated which is stored in the cloud. Further,in the cloud 

homomorphic multiplicative operation is performed for 

authentication . If authentication is successful then we using 

Chinese reminder theorem to decrypt the cipher text to 

generate plain text[1][2]. 

 

RSA Cryptosystem 

The RSA system is an asymmetric public key 

cryptosystem .This means that there are many number of 

pairs of algorithms (E, D) both defined on the same set of 

values. E is the public encryption algorithm and D is the 

private decryption algorithm [4][9]. These satisfy: 

 

• Encryption process followed by decryption process 

: If c=E(m) is the chipper text generated from some 

plaintext m, then m=D(c) i.e. m=D( E( m ) ) 

• Encrypt efficiently: For any message m, there is an 

efficient algorithm to calculate E( m ). 

• Decrypt efficiently: or any message or cipher text x, 

there is an efficient algorithm to calculate D( x ). 

• Public and private keys intact: From knowledge of 

E, there is no efficient way to discover D. 

• Signing phase: The set of messages m are the same 

as the set of cipher texts c=E( m ), for all m, so that 

the decryption algorithm can be applied to a 

message, resulting in  signature.  

• Verification: If s=D (m) is the signature 

corresponding to some plaintext m, then m=E( s ). 

 

Shor’s Algorithm 

This algorithm is used in the generation of the public 

key used in RSA encryption. It helps in the generation of 

two GCD values and from which we can decide on one as 

the public key. We first compute gcd of the number by using 

Euclidean algorithm.Then we check whether the gcd of the 

number is not equal to 1.If it so then it is the gcd otherwise 

we use to find period subroutine a r /2 ≢ −1  mod B,which 

generates two gcd values ie, gcd (ar/2 + 1, N) and gcd (ar/2 - 

1, N) .The below is the Shor’s algorithm : 
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Pick a random number a < N. 

1. Compute gcd(a, N). This can be done using 

the Euclidean algorithm. 

2. If gcd(a, N) ≠ 1, then there is a nontrivial factor 

of N, so we are done. 

3. Otherwise, use the period-finding subroutine 

(below) to find r. 

4. If r is odd, go back to step 1. 

5. If a r /2 ≢ −1 (mod N), go  to step 1. 

6.  gcd (ar/2 + 1, N) and gcd (ar/2 - 1, N) are both 

nontrivial factors of N. We are done. 

 

Homomorphic Encryption 

Homomorphic Encryption systems are used to perform 

operations on encrypted data.This is done without knowing 

the private key (without decryption).The client is the only 

holder of the secret key[4][5]. When we decrypt the result of 

any operation, it is the same as if we had carried out the 

calculation on the raw data. For example let us consider two 

ciphers as 3 and 2.Then we need to calculate the 

multiplicative operation for homomorphic encryption as  

3 * 2 = ? 

Encrypt 3 to get =10 

Encrypt 2  to get =20 

10 * 20 =  200 

Decrypt 200 with private key to get original value 6. 

 

Chinese Reminder Theorem: 

The major importance of CRT is that it speeds up the 

calculations for RSA algorithm. CRT representation of 

numbers in Zn is used to perform modular exponentiation 

which is about four times more efficient. By using three 

extra values pre-computed from the prime factors of n, and 

Garner's formula for the calculations make it more 

efficient.To decrypt ciphertext ‘ c ‘ or to generate a signature 

using RSA with private key (n, d), calculation of the 

modular exponentiation m = cd mod n is needed. The private 

exponent ‘d’ is not as convenient as the public 

exponent .Hence we can choose a value with as few '1' bits 

as possible. For a modulus n of k bits, the private 

exponent ‘d’ will be  of similar length, with approximately 

half being '1'. CRT is used to compute m = cd mod n more 

efficiently which is given below. 

 

CRT is used for the process of decryption of the data stored 

in the cloud. 

• Compute the following values 

given P,  Q with P > Q 

                      dP = (1/e) mod (p-1) 

                      dQ = (1/e) mod (q-1) 

                      QInv = (1/Q) mod p  

the (1/e) notation means the modular inverse. The 

expression x = (1/e) mod N is also written as x = e-

1 mod N, and x is any integer that satisfies x.e ≡ 1 

(mod N). In our case, where N = n = pq, we use the 

unique value x in Zn, ={0, 1, 2, ..., n-1}. 

•  To compute the Plain message m given c do 

                          m1 =cdP mod P 

                          m2 = cdQ mod Q  

                          h = QInv.(m1 - m2) mod P 

                          m = m2 + h*Q 

Store the  private key as the quintuple (P, Q, dP, dQ, 

QInv). 

Chinese Remainder Theorem (CRT) and Euler's 

Theorem (also called the Euler-Fermat Theorem) are used 

from number theory. 

II. MATERIALS AND METHOD 

 

Proposed Method 
There are many traditional algorithms for encryption 

and decryption such as RSA,DES,IDEA etc. But these are 

not sufficient to provide security in cloud, since  much of 

calculations are done for using private key.  The proposed 

scheme uses Shor’s algorithm for generating two GCD 

values which enhances more security and the computed 

cipher is stored in cloud. It provides confidentiality to the 

data because at no stage data is exposed in plain text and 

also uses Chinese remainder theorem(CRT) to decrypt the 

cipher which would be much more  faster than standard RSA. 

 

 
Fig. 1  Work Flow 

 

In standard RSA, for encryption we need a public key. 

For finding it, we calculate ‘e’ value which is difficult for 

the user to choose such value. To overcome this problem 

shor’s algorithm is used to find two GCD values. It reduces 

the effort of user for finding public key. 

 

Algorithm 

• Step 1. Choose random large prime integers P and 

Q which are roughly the same size and which are 

not too close together.  

• Step 2. Calculate the product N= P * Q. 

• Step 3. Calculate Ø(N)=(P-1)*(Q-1) 

• Step 4. Calculate ‘e’ such that 1 < e < phi(n) 

(For Calculating ‘e’ using Shor’s Algorithm, 

randomly choose 

‘x’ between 1 and Ø(N), then find  r = x mod 

Ø(N)  and 

y = x^(r/2) mod Ø(N ) .Then find GCD(y+1, 

Ø(N ) =1 and 

GCD(y-1, Ø(N ) =1 ) 

• Step 5. Calculate ‘d’ such that e * d mod Ø(N ) = 1 

• Step 6. Encryption:  C = M^e  %  Ø(N ). 

 

Homomorphic Encryption to provide Security  in Cloud 

 

• Step 7. Compute (C1 * C2*….. * Cn) and Store the 

Mulitple value in cloud. 
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• Step 8. Decrypt the Cipher Multiple Data with 

private key to get some value which is equal to the 

original multiples of the Plain Text. 

 (if authentication is Failed then Stop the 

Process otherwise  go to  Step 9 for decryption) 

• Step 9:Precompute the following values  

given P, Q with P > Q 

                      dP = (1/e) mod (P-1) 

                      dQ = (1/e) mod (Q-1) 

                      qInv = (1/Q) mod P 

where the (1/e) notation means the modular inverse. 

The expression  

       x = (1/e) mod N is also written as x = e-1 mod 

N, and x is any integer that satisfies x.e ≡ 1 (mod N). 

In our case, where N = n = P*Q, we use the unique 

value x in Zn, the set of numbers {0, 1, 2, ..., n-1}. 

• Step 10. To compute the Plain 

message m given c do 

                          m1 =cdP mod P  

                          m2 = cdQ mod Q  

                          h = QInv.(m1 - m2) mod P  

                          m = m2 + h*Q 

     Store the private key as quintuple (P,Q, dP, dQ, 

QInv). 

      

Example: 

RSA encryption Process using Shor’s algorithm for gcd 

generation: 

• Let P = 137, Q= 131, N = 137*131 = 17947,  

• Calculate phi(n)=136 * 130 =17680 

• 1 < e < 17680 (using shor’s Algorithm) 

           choose random value x = 30  

            r = 30 mod 17680 = 30 

           and  y = 30^15 mod 17680= 480 

• GCD(481,17680) ≠ 1  GCD(479,17680) = 1 

•  Hence e = 479 

• e * d  % Ø(N ) =1  

•   Therefore, d= 2879 

• M1 = 513 (Plain Text)  M2 = 171 

• c1= 513479 mod 17947 = 5337 and c2 = 171479 mod 

17947 = 13822 

• c1 * c2 =  5337 * 13822 = 73768014 (Store this 

value in cloud for authentication) 

• Decrypt  c1 * c2 with the private key ‘d’ 

• 737680142879 mod 17947 = 15935(which is equal to 

the multiples of plain text message) 

• 513 * 171 = 36423 mod 17947 = 15935 

(Authentication Successful) 

 

Standard RSA Process for Decryption: 

 

• To decrypt c we could compute cd mod n directly 

• m1 = 53372879 mod 17947 = 513. m2 = 13822 2879  

mod 17947= 171 
• Pretty difficult to do on your pocket calculator. 

Now let's use the CRT method - notice how the 

exponent and modulus values are much smaller and 

manageable. This simple (but obviously insecure) 

example should demonstrate how much easier it is 

to break down the RSA calculation into smaller 

ones. 

Proposed Process: 

• dP = e-1 mod (P-1) = 479-1 mod 136 = 23  

• dQ = e-1 mod (Q-1) = 479-1 mod 130 = 19 

•  QInv = Q-1 mod  P = 131-1 mod 137 = 114  

• m1 = cdP mod P = 533723 mod 137 = 102  

• m2 = cdQ mod Q = 533719 mod 131 = 120 

•  h = QInv*(m1 - m2) mod P = 114.(102-120+137) 

mod 137 = 3  

      [we add in an extra p here to keep the sum 

positive] 

•  m = m2 + h*Q = 120 + 3.131 = 513. 

• m1 = cdP mod P = 13822 23 mod 137 = 34 

• m2 = cdQ mod Q = 13822 19 mod 131 = 40 

•  h = QInv*(m1 - m2) mod P = 114.(34-40+137) mod 

137 = 1  

      [we add in an extra p here to keep the sum 

positive] 

   m = m2 + h.Q = 40 + 1.131 = 171 

 

Results: 

The implementation is carried using python and the 

database as MySQL.Here the exection is done taking 

different file sizes with respect to the keyids .’e1’ and ‘e2’ 

are public keys that are generated using shor’s algorithm and 

d is the private key.Below is shown the analysis of 

encryption and decryption time. The average execution time 

for encryption and decryption is generated using MYSQL 

query which is shown below. It is clear that the process of 

decryption is faster than encryption process. Hence 

homomorphic encryption takes less time and it is faster and 

secure. 

 

 
Fig. 2  SQL Result 

 

SELECT AVG( etime )  FROM `user_ciphertext`; 

avg(etime) 

0.07077646255493164 

SELECT AVG( dtime )  FROM `user_ciphertext`; 

avg(dtime) 

0.025585246086120606 

 

 

 

http://127.0.0.1/phpmyadmin/url.php?url=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.5%2Fen%2Fselect.html&token=1bb9349946e00099898610d7b815af0f
http://127.0.0.1/phpmyadmin/url.php?url=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.5%2Fen%2Fgroup-by-functions.html%23function_avg&token=1bb9349946e00099898610d7b815af0f
http://127.0.0.1/phpmyadmin/url.php?url=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.5%2Fen%2Fselect.html&token=1bb9349946e00099898610d7b815af0f
http://127.0.0.1/phpmyadmin/url.php?url=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.5%2Fen%2Fgroup-by-functions.html%23function_avg&token=1bb9349946e00099898610d7b815af0f
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Encryption Analysis 

Fig. 3  Encryption Analysis 

 

Decryption Analysis 

 

 
   Fig. 4  Decryption Analysis 

 

 

III. CONCLUSIONS 

The Security of Data is a major concern in Cloud 

Computing. Homomorphic Encryption is a new concept of 

security which enables to provide the results of calculations 

on encrypted data without knowing the raw entries on which 

the calculation was carried out respecting the confidentiality 

of data. From the analysis it is clear that the decryption 

process is decreased than encryption process. Even though 

computing of two exponentiations instead of one and there 

are additional steps involved in doing CRT, overall, the 

decryption would be much faster. 
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