
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

The Investigation of Java Mutation Testing Tools

Sara Tarek ElSayed Abbas a,b, Rohayanti Hassan a,b,*, Shahliza Abd Halim a,b, Shahreen Kasim c,

Rohaizan Ramlan d

a Computer Science Department, AL-Salam University College, Hay AL-khadra’a, Baghdad, 10022, Iraq
b School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bharu, Johor, Malaysia

c Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia
d Production and Operation Management Department, Faculty of Technology Management and Business, Universiti Tun Hussein Onn

Malaysia, 86400 Batu Pahat, Johor, Malaysia.

Corresponding author: *rohayanti@utm.my

Abstract—Software Testing is one of the most significant phases within the software development life cycle since software bugs can be

costly and traumatic. However, the traditional software testing process is not enough on its own as some undiscovered faults might still

exist due to the test cases’ inability to detect all underlying faults. Amidst the various proposed techniques of test suites’ efficiency

detection comes mutation testing, one of the most effective approaches as declared by many researchers. Nevertheless, there is not

enough research on how well the mutation testing tools adhere to the theory of mutation or how well their mutation operators are

performing the tasks they were developed for. This research paper presents an investigative study on two different mutation testing

tools for Java programming language: PIT and µJava. The study aims to point out the weaknesses and strengths of each tool involved

through performing mutation testing on four different open-source Java programs to identify the best mutation tool among them. The

study aims to further identify and compare the mutation operators of each tool by calculating the mutation score. That is, the operators’

performance is evaluated with the mutation score, with the presumption that the more prominent the number of killed mutants is, the

higher the mutation score, thus the more effective the mutation operator and the affiliated tool.

Keywords— Mutation testing; mutation score; PIT tool; µJava tool, JUnit.

Manuscript received 17 Dec. 2021; revised 29 Jan. 2022; accepted 21 Apr. 2022. Date of publication 31 Aug. 2022.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Software testing is the process within the SDLC that plans,

prepares, and evaluates the features of a software item,

intending to point out the underlying defects to ensure that the

Software Under Test (SUT) meets the identified software

requirements [1]. The process has various purposes, including

the prevention of software failure, running tests to find
failures, measuring quality, and providing confidence in the

product [2]. The technique is now a key component of

software product development because reliability, security,

and high performance are guaranteed from a properly tested

software product which further leads to saving time, money

and ensuring customer satisfaction.

White-box testing is a technique that aims at testing the

internal structure of a software system, in contrast to its

counterpart black-box testing that instead evaluates the

functionality without looking neither at the software’s internal

structure nor operations [3]. Through white-box testing, the

internal components get exercised to achieve the most

satisfactory outcome. The typical white box testing process

involves the scenario of test cases generation to test the inner

workings of an application. The quality gets assessed via the

created test cases by exercising the paths through the code and

comparing the anticipated results with the actual outputs.

However, this is not enough on its own because some

undiscovered faults might still exist due to the test cases’

inability to detect all underlying faults. For that reason,

researchers developed various techniques to detect if the test

cases are good at revealing the underlying faults and capable
of properly evaluating the quality of a test suite. Amidst the

numerous techniques proposed comes a fault-based testing

strategy known as Mutation Testing.

Mutation Testing is a fault-injection white-box testing

technique where a few statements of the source code are

deliberately mutated with mutation operators to ensure that

the test cases are capable of detecting errors in the software.

For instance, adding mutation operators to replace arithmetic

455

JOIV : Int. J. Inform. Visualization, 6(2-2): A New Frontier in Informatics - August 2022 455-462

operations, alter increments, change logical operators, remove

a line of code, or set an assignment to a hard-coded value

instead of a variable. In case the tests detect a different test

result for the mutant than the one it has for the original version

of the program, then we can conclude that the test case is

effective since it has killed the generated mutant by detecting

the syntactic error. In this respect, the mutant is said to be dead

as the inserted error was identified successfully by the test

cases. On the other hand, if the code runs successfully with no

recognized errors, then the test case is deemed inadequate due

to its inability to detect the presence of errors, and the mutant,
in this case, is said to be live.

The traditional mutation testing process commences with

the original program P, where a few faults are introduced by

a set of mutators m, generating a collection of mutated

programs P’ known as mutants. For the generated mutants, a

collection of test cases is executed, and the behavior of the

tests is monitored and assessed accordingly to denote their

efficiency. An example of the mutants’ formulation is shown

in Error! Reference source not found.. The mutated

program P’ is produced via mutator m, which switches the or

operator (||) of the original program into the and operator
(&&), thus forming the mutant version of the program P’.

TABLE I

APPLYING A MUTATION OPERATOR TO A PROGRAM

Original Program P Mutant P’

if (int i > 0 || int q > 0)

return 1;

if (int i > 0 && int q > 0)

return 1;

The mutation testing technique is considered one of the
most adequate approaches to assess the quality of a test suite

in several domains [4]. It is effective to the point of subsuming

almost all other structural testing techniques [5]. However,

despite the effectiveness of mutation testing in evaluating the

quality of test suites, it still suffers from several problems that

shall be addressed.

Mutation testing has failed to gain widespread adoption in

the software engineering practice, and make its industrial

debut [6]–[9]. These limitations led to the dismissal of the

technique by many software testers and organizations despite

its effectiveness. Researchers reveal the unpopularity of

industrial mutation testing is due to the hefty expenses
associated with the procedure [10]–[12]. Generating, running,

and executing an enormous number of mutants against a test

set is considered very expensive [13], time-consuming, and

onerous as it requires substantial computational resources that

call for large storage space. Wherefore, it is significant to save

time, effort [14], and resources by using an automated, fast,

and reliable mutation testing tool. Software testing, however,

is a costly process, costing more than 50% of the whole

development expenses. This is why decreasing the costs of the

technique and improving the test efficiency through

automating the process of software testing is significant [15].
Another issue affiliated with the technique is that the

performance of mutation testing varies from one tool to

another. Whereas different results could be obtained for the

same test suites owing to the fact that the strength of mutation

testing and its effectiveness highly depends on the set of

mutants used in the mutation process. In other words,

different sets of mutants that are based on well-defined

mutation operators can lead to different results [16]–[18].

Therefore, it is necessary to identify and use the most optimal

set of mutation operators that generates an effective collection

of mutants, efficiently assessing the adequacy of the test suites.

There is a diversity of tools for mutation testing, each with

its different applications, restrictions, and set of used mutants.

The different implementations and limitations of the tools can

lead to different results in terms of the effectiveness of the test

suites [19]–[21]. Furthermore, since the technique is very
time-consuming, it is necessary to use a reliable, fast, and

automated mutation testing tool. The tool shall be efficient in

terms of its performance and capability of generating mutants

that are to be run and executed against a suite of tests [22],

[23]. The tool shall further be effective in reporting the

mutation score.

This paper presents an investigative study of two

distinctive Java Mutation Testing tools: µJava and PIT. The

study aims to perform mutation testing on four different open-

source Java applications to identify the best mutation tool

among them. The study aims to further identify and compare
the mutation operators of each tool in terms of fault detection

rate through calculating the mutation score. This is done with

the presumption that the more prominent the number of killed

mutants is, the higher the mutation score, thus the more

effective the mutation operator and the affiliated tool.

II. MATERIAL AND METHOD

This investigative study on Java Mutation Testing Tools is

briefly about conducting a mutation analysis on different
applications written using Java programming language with

the help of two mutation testing tools: µJava and PIT, to

determine which tool is more efficient and effective in

detecting the injected mutants. This will be achieved by

comparing the number of killed mutants to the total number

of mutants generated to calculate the overall mutation score

for each test suite. This section presents the experimental

setup carried out for mutation testing process.

A. Experiment and Evaluation

Firstly, the environment for mutation testing is setting up,

which includes installing the appropriate tools used in the

study. Afterwards, the experiment will start operating where

the process of mutation testing will be implemented on the

selected Java applications to test the performance of the

mutation operators for each one of the two tools used in the

study. For evaluation, mutation score metric will be used to

assess the performance of the tools with their respective

operators. Mutation score is a fault-based technique that

measures how well a set of operators are performing. Eq. 1

displays the Formula of Mutation Score. ‘P shows the
generated mutants, P represents the original program under

test, T represents the test suite, K is the total number of killed

mutants and E displays the equivalent mutants. The Mutation

testing score is the percentage of the total killed mutants to

the total number of generated mutants (excluding equivalent

mutants in the program).

 ����, �� =

���
��
 (1)

456

B. µJava Tool

µJava—Mutation System for Java, is an open-source

automated mutation testing tool innovated by the Korea

Advanced Institute of Science and Technology (KAIST) in

South Korea and George Mason University in the USA’s
collaboration. The tool allows the testers to perform mutation

analysis on Java programs by automatically generating a set

of mutants based on the mutation operators selected. Then, it

further executes the supplied JUnit test cases against the

mutants produced, reporting the mutation testing score

accordingly. As illustrated in Error! Reference source not

found., uJava tool contains three main components: 1)

mutants’ generator, 2) mutants’ viewer, and 3) mutants’

executor.

Fig. 1 µJava’s Structural Architecture

The mutant generator is responsible for generating the

mutants, which could be traditional mutants or class mutants.

The mutants generated are produced in the form of source

code, which is then compiled into byte code. Accordingly, the
details of every single mutant could be observed from the

mutants’ viewer that displays the number and type of

generated mutants, along with the manipulated part of the

code. The mutants’ executor executes the mutants against the

test suite and accordingly calculates its test score.

C. PIT Tool

Parallel Isolated Test (PIT)—alternatively known as Pitest,

is one of the best performing Mutation Testing tools for java

that is well known for its fast process of mutants’ generation
[24]. The tool [25]–[27] is designed to conduct mutation

analysis on java programs to support the software testers with

the process of mutation testing on real-world codebases. It can

be used via the Command Line Tool, as a plugin in Maven,

Eclipse, IntelliJ IDEA, and Gradle, or as an Ant task. In this

study, IntelliJ’s PIT mutation testing Idea plugin version 1.4.5

by Michael Jedynak is used.

There are four different phases of mutation testing in PIT.

The first phase is the Mutants Generation phase that generates

mutants in PIT by manipulating the bytecode of the compiled

classes using the assistance of java’s ASM library. The second
phase, Test Selection, is the phase where code coverage is

used to select only the tests executing the link, block, or

instruction containing the mutant that will be run against.

Measuring the code coverage in PIT allows only the tests that

could kill the mutant to run. The third phase is Mutant

Insertion. In this phase, PIT inserts the mutants via JVM using

the instrumentation API. The generated mutants are all held

in memory without getting stored locally. The fourth and last

phase is the Detection of Mutants where the test classes are

divided into individual test cases that are run accordingly until

one of these test cases kills a mutant.

D. Subject Programs

To test the selected tools, µJava and PIT, four Java

programs were selected of different lengths and complexity.

Error! Reference source not found. describes the

applications used in the experiment.

TABLE II

PROGRAMS USED IN THE EXPERIMENT

Java Program Classes LOC

Min Min 27
Calculator Calculator 19
TriTyp TriTyp 68
CoreBanking account.account 252

corebanking 107
datamanagement.ReadFromDB 63
transaction.BankTransaction 96

transaction.CashTransaction 101

E. Experimental Design

After conducting an extensive study on the mutation testing

domain, a simple flowchart as illustrated in Fig. explains the

experimental design to-be followed for this research. To start

the processes of Unit and Mutation Testing, the environment

needs to be suitable for the software testing process with Java.

Thus, the first step is the installation and setup of the Java

environment (installing JDK 8), followed by an installation of

JUnit 4 for the process of unit testing.

Thereafter, the subject programs (the Java program files

used in this study, namely Min, Calculator, TriTyp, and

CoreBanking) shall be installed into the machine. Once the

files are installed successfully, they shall be loaded into
IntelliJ IDEA for the purpose of Unit Testing. For each java

program used in this study, a set of JUnit 4 test cases is written.

All the actual results obtained from the tests shall match the

expected results once executed by having a status of pass. In

case the tests have a failed status, then they shall be revised

until they all pass successfully.

To ensure that the tests created are adequate, we shall not

only rely on the tests’ pass/fail status. Thus, all tests are

further tested via test coverage. The required test coverage

criteria are 100% line and method coverage. For all tests, if

one failed to achieve either 100% line or method coverage, it
is fixed until the coverage metrics are successfully met. Once

this step is completed, then the succeeding step of setting up

the environment for PIT and µJava begins. The download of

µJava requires an installation of mujava.jar, openjava.jar and

mujava.config files. Once downloaded, the CLASSPATH is

changed, the mujava.config file is set to point to µJava’s

directory, and the subdirectories that shall contain the source

files, class files, test sets and the results get created.

457

Fig.1 Experimental Design Flowchart

The download of PIT on the other hand is performed using

Maven plugin in IntelliJ IDEA. The plugin is added to the

build file in pom.xml to configure the tool. After the

successful setup of the environment, mutation testing begins.

The process is performed on each tool independently by
generating mutants via the mutation operators and the mutants

are then executed against the created tests. The results

obtained are analyzed to assist with the evaluation process.

Once the mutation testing process completes and all results

are analyzed, the obtained findings shall indicate the

performance of the mutation tools and their affiliated

operators, marking the end of the research.

F. White-box Unit Testing

This section covers the procedure and implementation of

mutation testing with PIT and µJava to evaluate their overall

performance along with detecting their best-performing

mutation operators. Regular white-box automation testing is

performed as a start on the four subject programs via JUnit 4

testing framework. Test coverage is further performed on the

developed tests to ensure that they are adequate for usage in

the mutation testing process. Once the coverage metrics are

met, the actual mutation testing process begins.

The mutation testing is performed independently via each

tool to point out the defects that were not detected beforehand

during the regular white-box testing. In mutation testing, the
mutants shall be generated for each subject program once via

PIT’s mutation operators and once via µJava’s mutation

operators. Next, these mutants shall be executed accordingly

on the generated test cases. The results obtained from the

mutation testing process are then gathered and further

analyzed to achieve the objectives of this study.

Initially, each subject program is loaded individually into

the src directory in JetBrains’ IntelliJ IDEA. Then, a new

directory is added to the project structure to hold the test files

created for testing the SUT. It is crucial to maintain the

project’s structure by marking the directories either as

Sources (sources root) or Tests (test sources root) from the

Project Settings as shown in Fig.; otherwise, the IDE will not

be able to recognize nor differentiate the test files from the
source files and an issue would arise as a consequence.

Fig.3 Marking the Project Directories in IntelliJ IDEA

Once the project structure is maintained, JUnit can lastly

be added to the classpath via Maven (the JUnit 4.12 library

will be downloaded from Maven Repository) for the IDE to

recognize the JUnit test cases that will be created later on in

the software testing process. Now that the test environment is

configured currently in IntelliJ IDEA, the process of Unit

testing starts.

The unit testing process begins with the creation of unit

tests, which are small programs created to exercise and
execute the SUT under defined conditions and with specified

inputs. Upon the successful creation of test cases, they are

executed via the test runner to exercise the SUT.

As an outcome of a successful test run, the test results are

produced. As displayed in Eq. 2, for a test t running on

program P, a test result r that is determined by the test oracle

is produced. The result can either be a pass or a fail for a given

test.

458

 ���� = �, ����� � ∈ �����, ����� (2)

G. Mutation Testing

Traditional coverage metrics that are used to evaluate the

quality of unit-level tests measure how effectively the test

inputs exercise certain code structures. However, these

metrics have no way of judging the quality of the checks used

in detecting defects. That is why mutation testing is an
important concept, as the technique, unlike the traditional

code coverage, assesses and improves the quality of software

tests not only in terms of coverage, but also in terms of checks.

The mutation testing process is performed via mutation

testing tools, each with its own unique set of operators. These

operators are used to introduce defects into the original

program by generating mutants. The mutants aim at

mimicking the typical errors the developers are prone to

making. In other words, a mutant is a result of applying a

mutation operator into a given program. Mutant detection as

perceived from Eq. 3 is when a mutant ‘P is detected by a test
suite T (containing test t) due to the different result produced

for the original program P than for the mutant.

 ∃�∈��′�� ���� (3)

1) Mutation Testing with PIT: The first step of the

mutation testing process with PIT is preparing the mutation

testing environment for PIT on IntelliJ IDEA by installing

IntelliJ’s PIT mutation testing Idea plugin. Right after, the

workspace shall be prepared by loading the project file(s) into

the IDE, followed by loading the test files, then adjusting the

project structure accordingly. These steps are similar to the

ones carried out previously at the beginning of the white box
testing process with IntelliJ.

Given that the environment on IntelliJ is ready for mutation

testing, the actual process of mutation testing with PIT begins.

The operation starts by choosing Pitest all tests in module

option attained by right clicking the project folder from the

project viewer in IntelliJ. As an outcome, PIT Run
Configuration window appears.

The window displays the information related to the

mutation testing process performed. This information

includes the result of mutation testing for each operator used

in the testing process, the number of mutants each operator

has generated, the number of mutants killed by the test suite,

and the number of mutants that have survived and the

mutation score for this given operator. Moreover, at the end

of the Run Configuration window lies a Statistics section

summing up the total result of the mutation testing performed.

Fig. 4 Pit Test Coverage Report for TriTyp Project

A feature of PIT is the HTML report generated by the end

of the testing. This report contains a summary of the mutation

testing performed. To open the PIT Test Coverage Report, the

hyperlink titled Open report in browser lying by the end of

the PIT Run Configuration Window is clicked. An example

of the Pit Test Coverage Report is displayed in Fig. .

2) Mutation Testing with µJava: To perform mutation

testing with µJava, a few steps are ought to be followed. First,

the source file(s) of the subject program(s) shall get added into

the src folder found in µJava’s main directory. Then, the

compiled versions of these source files are to be added to
the classes folder. Lastly, the compiled versions of the test

scripts are to be added to the testset folder.

The next step is to generate mutants. This target is achieved

by launching the Mutants Generation GUI via the execution

of the command java mujava.gui.GenMutantsMain. From the
Mutants Generator GUI, the source files that will be mutated

are selected from the Files section. Then, the mutation

operators that will be applied to these source files are chosen

from the list of mutation operators provided by the tool. For

the mutators to generate the mutants, the Generate button is

pressed. Assuming that all of the steps are completed

successfully, the generated mutants are added by µJava into

the result folder.

Lastly, the tests are executed against the generated mutants.

To do this, the command: java mujava.gui.RunTestMain is

executed from the terminal to launch µJava’s Test Case

Runner GUI. From the GUI, the class file to be tested is
selected, followed by the selection of the methods, and the test

files related to the chosen class file. Then, the run button is hit

for it to run tests. The number of live, killed, and total mutants

along with the Mutation Score for the Traditional and Class

Mutants shall be displayed as a result. Fig. 1 is an example of

this step once applied to TriTyp program.

Fig. 1 µJava’s Test Case Runner GUI

III. RESULTS AND DISCUSSIONS

This section displays and analyzes the results and

observations obtained during the mutation testing process

459

performed with PIT and µJava. The result analysis is used in

the evaluation of the two tools and their operators’

performance to conclude the best performing mutation testing

tool among them.

A. PIT Results

Error! Reference source not found. gathers the overall

number of Mutation Operators applied via PIT on the four

subject programs. The table shows the total number of
generated, killed, and live mutants for each mutator in PIT, in

addition to the mutation score. Overall, Void Method Call

Mutator was applied the most throughout the mutation testing

process, followed by Negate Conditionals Mutator. The total

number of generated mutants for Boolean True Return Vals

Mutator, Null Return Vals Mutator, Boolean False Return

Vals Mutator, and Primitive Returns Mutator stood under ten

mutants. The tests managed to kill all mutants produced

by Boolean True Return Vals and Null Return Vals Mutators,

followed by Empty Return Vals Mutator and Negate

Conditionals Mutator with a total mutation score of 91%, and
lastly at the third place comes Math Mutator with 81%

Mutation score. To detect the best performing mutants for PIT,

Boolean False Return Vals, Boolean True Return Vals, Null

Return Vals and Primitive Returns mutators were eliminated

from the comparison because they have generated a fewer

number of mutants than the rest of the operators. As for the

performance of PIT on the subject programs, a summary of

the overall mutation testing result for each program can be

observed from 4.

TABLE III

OVERALL RESULTS FOR PIT MUTATION TESTING OPERATORS

PIT Mutation

Operator

Total

Generated

Mutants

Total Live

Mutants

Total

Killed

Mutants

Mutation

Score

Boolean True Return

Vals Mutator
3 0 3 100%

Empty Object Return

Vals Mutator
11 1 10 91%

Conditionals

Boundary Mutator
15 11 4 27%

Void Method Call

Mutator
83 19 64 77%

Null Return Vals

Mutator
8 0 8 100%

Math Mutator 16 3 13 81%

Boolean False Return

Vals Mutator
1 1 0 0%

Negate Conditionals

Mutator
45 4 41 91%

Primitive Returns

Mutator
7 2 5 71%

TABLE IV

PIT OVERALL MUTATION RESULT

Java Program Classes Mutant

Generated

Live

Mutant

Killed

Mutant

Mutation

Score

Min Min 13 8 5 38%

Calculator Calculator 9 4 5 56%

TriTyp TriTyp 76 28 48 63%

CoreBanking account.account 26 3 23 88%

corebanking 11 7 4 36%

datamanagement.

ReadFromDB
17 7 10 59%

transaction.Bank

Transaction
21 4 17 81%

transaction.Cash

Transaction
16 5 11 69%

Java Program Classes Mutant

Generated

Live

Mutant

Killed

Mutant

Mutation

Score

Total 189 66 123 65%

B. µJava Results

The overall number of mutation operators executed against

the subject programs via µJava and their performance in terms

of the total number of generated, live, and killed mutants are

gathered in Error! Reference source not found.. For all

mutation operators applied in the study, AOIS that generated

262 mutants comes in first place in terms of the highest

number of mutants generated, followed by the ROR mutator

with a total of 213 mutants. SDL operator comes in third place

with 176 mutants, and ODL with 131 mutants in fourth place.

The mutators generating the least number of mutants are IHI,
JTI, and COD (only one mutant is generated for each

operator). All mutators generating a total number of mutants

below ten got eliminated from the comparison since their

mutation generation value is low compared to the rest of the

mutators. After the elimination, there is a total number of 10

mutators. µJava’s performance against the subject programs

used in this study is summarized in Error! Reference source

not found.6. For each program, the table shows the total

number of generated, surviving, and killed mutants, in

addition to the mutation score.

TABLE V

OVERALL RESULTS FOR µJAVA MUTATION TESTING OPERATOR

PIT

Mutation

Operator

Total

Generated

Mutants

Total

Live

Mutants

Total

Killed

Mutants

Mutation

Score

AORB 64 20 44 69%

AORS 4 2 2 50%

AOIU 47 15 32 68%

AOIS 262 163 99 38%

AODU 1 1 0 0%

ROR 213 73 140 66%

COR 16 9 7 44%

COD 1 0 1 100%

COI 56 7 49 88%

LOI 74 18 56 76%

ASRS 8 1 7 88%

SDL 176 55 121 69%

VDL 31 18 13 42%

CDL 30 7 23 77%

ODL 131 44 87 66%

IHI 1 0 0 0%

IOD 3 0 3 100%

PRV 3 1 2 67%

JTI 1 0 1 100%

JSI 9 6 3 33%

JSD 6 2 4 67%

JID 4 4 0 0%

EAM 7 2 5 71%

TABLE VI

µJAVA OVERALL MUTATION RESULT

Java Program Classes Mutant

Generated

Live

Mutant

Killed

Mutant

Mutation

Score

Min Min 72 26 46 63%

Calculator Calculator 28 3 25 89%

TriTyp TriTyp 523 224 299 57%

CoreBanking account.account 327 122 205 62%

corebanking 15 9 6 40%

datamanagement.

ReadFromDB
32 10 22 69%

transaction.Bank

Transaction
59 12 47 80%

460

transaction.Cash

Transaction
96 47 49 51%

Total 189 1152 453 699

C. Overall Results

The different test suites, adequate for PIT’s operators, were

also measured in their ability to detect the mutants generated

by µJava. The results obtained from the process are illustrated

in Fig. 2, which shows the mutation score for each subject

program via µJava and PIT. For some programs, µJava has

managed to kill a higher number of mutants than PIT, which
led to better results for the given program. For instance, µJava

has produced a higher mutation score in Calculator, Min, and

BankTransaction with 63%, 89%, and 69% mutation scores,

respectively, in contrast to PIT with 38%, 56%, and 59%

consequently. Nevertheless, PIT has had a better performance

for other programs such as TriTyp, Account, and

CoreBanking with 63%, 88%, and 69% each compared

to µJava’s performance of 57%, 62%, and 51%.

Fig. 2 A comparison between PIT and µJava’s Mutation Score for all subject

programs

Though the mutation score varies from one program to
another for each tool, the overall performance of PIT

exceeded µJava’s with a mutation score of 65%. This leads to

the conclusion that PIT is the best performing tool. Aside

from the mutation score, the number of mutants generated in

addition to the tools’ timings play an important role when it

comes to assessing the tools’ effectiveness. As Fig. 3

suggests, µJava produces far more mutants than PIT. For

instance, µJava produced a number of mutants that is seven

times as much as PIT’s in TriTyp, and for CoreBanking’s case,

it generated a sextuple of PIT’s number of mutants.

Fig. 3 A comparison between PIT and µJava’s total number of generated

mutants all subject programs

This suggests that a large number of µJava’s mutation

operators are redundant and leads to the conclusion that PIT

employs an efficient set of operators that values quality over

quantity, which strengthens the claim that PIT is the best

performing mutation testing tool for java.

IV. CONCLUSION

This research carried out a comparative experiment on two

different Java mutation testing tools: µJava and PIT, which

used the assistance of the four subject programs: Min,

Calculator, TriTyp and CoreBanking. The process of

mutation testing was performed to compare the behaviour of

the two tools, leading to the identification of the most efficient

tool among them based on the results concluded from the

experiment: PIT (with a total overall mutation score of 65%

in comparison to µJava’s 61%). Moreover, the best

performing mutation operators were further evaluated in

terms of their effectiveness. The objective was achieved with
the help of the mutation score (ms), which calculates the

performance of the test suites dividing the percentage of the

number of killed mutants by the test case over the total

number of generated mutants. As a result, the best performing

mutation operators for PIT were Empty Object Return Vals

with 91% ms, Negate Conditionals with 91% ms and Math

with 81% ms. The best performing µJava mutation operators

on the other hand were COI with 88% ms, CDL with 77% ms

and LOI with 76% ms.

ACKNOWLEDGMENT

This work was supported/funded by the Ministry of Higher

Education under Fundamental Research Grant Scheme

(FRGS/1/2020/ICT02/UTM/03/1).

REFERENCES

[1] P. Mudholkar, M. Mudholkar, and S. Kulkarni, “Software testing,”

Proc. Int. Conf. Work. Emerg. Trends Technol., pp. 1024–1024, Feb.

2010, doi: 10.1145/1741906.1742242.

[2] R. Black, E. van Veenendaal, and D. Graham, Foundations of software

testing : ISTQB certification. 2012.

[3] S. Sangwan, “Software Testing Techniques and Strategies,” Isha Int.

J. Eng. Res. Appl., vol. 4, no. 4, pp. 99–102, 2014.

[4] P. Ammann and J. Offutt, Introduction to Software Testing. 2007.

[5] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an

appropriate tool for testing experiments?,” Proc. - 27th Int. Conf.

Softw. Eng. ICSE05, pp. 402–411, 2005, doi:

10.1145/1062455.1062530.

461

[6] B. Falah, M. Akour, and S. Bouriat, “RSM: Reducing mutation testing

cost using random selective mutation technique,” Malaysian J.

Comput. Sci., vol. 28, no. 4, pp. 338–347, 2015, doi:

10.22452/MJCS.VOL28NO4.5.

[7] S. Hamimoune and B. Falah, “Mutation testing techniques: A

comparative study,” Nov. 2016, doi: 10.1109/ICEMIS.2016.7745368.

[8] M. Al-Hajjaji, J. Krüger, F. Benduhn, T. Leich, and G. Saake,

“Efficient Mutation Testing in Configurable Systems,” in Proceedings

- 2017 IEEE/ACM 2nd International Workshop on Variability and

Complexity in Software Design, VACE 2017, 2017, pp. 2–8, doi:

10.1109/VACE.2017.3.

[9] P. Jung, S. Kang, and J. Lee, “Efficient regression testing of software

product lines by reducing redundant test executions,” Appl. Sci., vol.

10, no. 23, pp. 1–21, Dec. 2020, doi: 10.3390/app10238686.

[10] M. Hafiz, “Mutation Testing Tool for Java,” 2008.

[11] M. Delamaro and J. C. Maldonado, “Proteum - A Tool for the

Assessment of Test Adequacy for C Programs User’s guide,” 1996.

[12] D. Singh and B. Suri, “Mutation testing tools-An empirical study,”

IET Conf. Publ., vol. 2013, no. CP646, pp. 230–239, 2013, doi:

10.1049/CP.2013.2596.

[13] Y. Jia and M. Harman, “An analysis and survey of the development of

mutation testing,” IEEE Transactions on Software Engineering, vol.

37, no. 5. pp. 649–678, 2011, doi: 10.1109/TSE.2010.62.

[14] M. S.GeethaDevasena and M. L. Valarmathi, “Search based Software

Testing Technique for Structural Test Case Generation,” Int. J. Appl.

Inf. Syst., vol. 1, no. 6, pp. 20–25, 2012, doi: 10.5120/ijais12-450185.

[15] S. Anand et al., “An orchestrated survey of methodologies for

automated software test case generation,” J. Syst. Softw., vol. 86, no.

8, pp. 1978–2001, Aug. 2013, doi: 10.1016/j.jss.2013.02.061.

[16] M. Papadakis, C. Henard, M. Harman, Y. Jia, and Y. Le Traon,

“Threats to the validity of mutation-based test assessment,” in ISSTA

2016 - Proceedings of the 25th International Symposium on Software

Testing and Analysis, Jul. 2016, pp. 354–365, doi:

10.1145/2931037.2931040.

[17] R. Gopinath, I. Ahmed, M. A. Alipour, C. Jensen, and A. Groce, “Does

choice of mutation tool matter?,” Softw. Qual. J., vol. 25, no. 3, pp.

871–920, 2017, doi: 10.1007/s11219-016-9317-7.

[18] M. Delahaye and L. Du Bousquet, “Selecting a software engineering

tool: Lessons learnt from mutation analysis,” in Software - Practice

and Experience, Jul. 2015, vol. 45, no. 7, pp. 875–891, doi:

10.1002/spe.2312.

[19] M. Kintis, M. Papadakis, A. Papadopoulos, E. Valvis, and N. Malevris,

“Analysing and comparing the effectiveness of mutation testing tools:

A manual study,” in Proceedings - 2016 IEEE 16th International

Working Conference on Source Code Analysis and Manipulation,

SCAM 2016, Dec. 2016, pp. 147–156, doi: 10.1109/SCAM.2016.28.

[20] B. Venners, “Test-Driven Development,” in A Conversation with

Martin Fowler, Part V, 2002, p.

http://www.artima.com/intv/testdrivenP.html.

[21] S. Kim, J. A. Clark, and J. A. McDermid, “Investigating the

Effectiveness of Object-Oriented Strategies with the Mutation

Method,” in Mutation Testing for the New Century, Springer, Boston,

MA, 2001, pp. 4–4.

[22] C. Wohlin, M. Höst, and K. Henningsson, “Empirical research

methods in software engineering,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 2765, pp. 7–23, 2003, doi: 10.1007/978-3-540-

45143-3_2.

[23] W. Zheng, “Automatic Software Testing Via Mining Software Data,”

2011.

[24] S. Rani, B. Suri, and S. K. Khatri, “Experimental comparison of

automated mutation testing tools for Java,” Dec. 2015, doi:

10.1109/ICRITO.2015.7359265.

[25] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque,

“PIT: A practical mutation testing tool for Java (Demo),” ISSTA 2016

- Proc. 25th Int. Symp. Softw. Test. Anal., pp. 449–452, Jul. 2016, doi:

10.1145/2931037.2948707.

[26] H. Coles, “GitHub - pitest/pitclipse: Mutation testing for Java in

Eclipse IDE. Based on PIT (Pitest).”

https://github.com/pitest/pitclipse.

[27] H. Coles, “PIT - Mutation operators.” https://pitest.org/.

462

