
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Optimizing Hand Gesture Recognition Using CNN Model Supported

by Raspberry pi for Self-Service Technology

Abdul Haris Rangkuti a,*, Varyl Hasbi Athala a, Farrel Haridhi Indallah a, Fajar Febriansyah a

a Informatics Department, School of Computer Science, Bina Nusantara University, Jakarta-11480, Indonesia

Corresponding author: *rangku2000@binus.ac.id

Abstract— This study describes the optimization of hand gesture recognition on Raspberry Pi 4 technology has advanced over the past

years, and some computers are now able to compute much more complex problems like real-time object detection. However, for small

devices, optimization is required to run in real-time with acceptable performance in terms of latency and low-cost effect on accuracy.

Low latency is a requirement for most technology, especially when integrating real-time object detection as input into Self-Service

Technology on Raspberry Pi for the store. This research was conducted on 288 pictures with six types of chosen hand gestures for

command inputs that have been configured in the Self-Service Technology as a training dataset. In the experiment carried out, 5 CNN

object detection models were used, namely YOLOv3-Tiny-PRN, YOLOv4-Tiny, MobileNetV2-Yolov3-NANO, YOLO-Fastest-1.1, and

YOLO-Fastest-1.1-XL. Based on the experiment after optimization, the FPS and inference time metrics have improved performance.

The performance improves due to a gained average value of FPS by 3 FPS and a reduced average value of inference time by 119,260

ms. But such an improvement also comes with a reduction in overall accuracy. The rest of the parameters have a reduced score on

Precision, Recall, F1-Score, and some for IoU. Only YOLO-Fastest-1.1-XL have an improved value of IoU by about 0.58%. Some

improvements in the CNN and dataset might improve the performance even more without sacrificing too much on the accuracy, but

it's most likely suitable for another research as a continuation of this topic.

Keywords—Darknet; hand gesture; Opencv; object detection; YOLO; Raspberry Pi.

Manuscript received 20 Jul. 2022; revised 29 Aug. 2022; accepted 7 Sep. 2022. Date of publication 31 Mar. 2023.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Technology has advanced over the past years. A computer

is one of the technologies that got improved. The number of

transistors with each new CPU generation increased without

rapidly changing the die size [1]. Such advancements allow

some computers to compute much more complex problems on

different sizes of machines. With such ability, these
computers can run many tasks at the same time. Tasks like

encoding video, encrypting files, and large and complex

number computations are examples that require a lot of

processing power [2]. However, there are still some new

computers that are too slow to run complex problems. This

problem is usually on small devices. Because the smaller the

size, the slower it is due to compensating package size. These

slower devices can only run complex problems when the

system is optimized to run on the computer. Fortunately,

hardware acceleration is often implemented into the

semiconductor to accelerate processing in the supported

environments. Thus, computers can execute commands better

and faster, even on a small device.

Rapid technology advancements also allow Artificial

Intelligence (AI) to integrate into Computers. Real-time

object detection is an example of AI implementation. Object

detection works by generating potential bounding boxes and

then running a classifier on these proposed boxes [3]. This

study uses hand gestures image as the training and to give

some message. The image can be used for identification,

recognition, or classification of traditional clothes [4]. These

data get extracted in the training process for their distinct
characteristics. These characteristics are what define an object.

Therefore, it could better recognize them within the frame.

After training the AI, the weight files contain all the extracted

features for testing the real-time object detection. Therefore,

the machine will be able to recognize human hand gestures

with the help of a camera. Then, it can do any programmed

execution just from detected human hand gestures. Such

interaction is called Human and Computer Interaction (HCI).

58

JOIV : Int. J. Inform. Visualization, 7(1) - March 2023 58-69

Over the years, human-computer interaction technology

has focused on the design interface aspect and how humans

interact with machine. Self-service technology is a

technological interface that customers have to interact with to

produce an independent service that is different from the usual

direct service involving an employee [5]. There are many

implementations of self-service technology. One of them is

self-service technology for ordering products. This

technology has benefits for the store owner and the user. Not

only that, it could reduce operating costs and improve the

quality of service. It is because the nature of this technology
only involves computers in the ordering system. This study

enables human-computer interaction by establishing a

touchless system using hand gestures. Such a combination

prevents direct contact between different users. Therefore,

this technology could help create a more hygienic

environment in stores.

The main focus of this study is to produce self-service

technology that can be used for a raspberry pi environment

with acceptable performance. A self-service technology

application tests the performance by simulating the system's

response feel and latency. The load gets heavier as the self-
service technology also runs in parallel with the hand gesture

recognition system, and it impacts the processor performance

of the raspberry pi worse. Therefore, this study uses several

small CNN models such as YOLOv3-Tiny-PRN, YOLOv4-

Tiny, MobileNetV2-Yolov3-NANO, YOLO-Fastest-1.1, and

YOLO-Fastest-1.1-XL to test accuracy and inference

performance. Although these CNNs are for microprocessors

like raspberry pi, it is still required to tweak the network to

get the most optimal performance. Improving such can

generate hints for recommendation systems, stand-alone

process management, and human input reduction [6]. This
means that there must be a balance between performance and

accuracy. Therefore, optimizations are combined to form

research on optimizing hand gesture recognition using

raspberry pi for Self Service Technology in a store.

II. MATERIALS AND METHOD

A. The Materials

The technology of hand gesture recognition has been

implemented as one of the solutions to different kinds of

problems. One of the implementations of this technology is
used in a study to use hand gesture recognition to send a signal

for help. Using a Deep Neural Network as one of the system's

machine learning types results in an accuracy of 98.79% in

recognizing the hand gesture. This study concluded that using

hand gesture recognition would be simplified and accelerate

the process of asking for help, create a safe and fast way by

using only one hand, and reduce the risk of unwanted things

happening that could further increase the danger to the person

involved [7]. The satisfying result of this study shows that

using hand gesture recognition could increase the

performance of a certain process. This research will
implement the hand gesture recognition system in a self-

service ordering system.

There are a number of papers that conducts study on the

topic of hand gesture recognition. There is one study that

compares different algorithms that are applicable to sign

language hand gesture recognition. This study provides an in-

depth analysis that offers important insights to the researcher,

developers, and any other interested parties on sign language

hand recognition algorithms [8]. Besides using hand

recognition technology to detect and identify the meaning of

sign language, hand recognition technology is used in many

different applications. Using hand gesture recognition for

human-robot interaction [9]–[11], medical treatment [12]–

[14], and automotive human-machine interaction [15] are a

few of the many different uses of hand recognition technology.

A study was conducted to analyze the performance of

YOLOv4, YOLOv4-tiny-PRN, YOLOv3, and YOLOv3-tiny
on three types of Accelerator-based SDCs, which are

NVIDIA Jetson Nano, NVIDIA Jetson Xavier NX and

Raspberry Pi 4B (RPi). The conclusion of this study suggests

that two aspects must be considered before choosing the

hardware for implementing a system intelligence. The first

aspect is that even though ASIC accelerators are low-

performance, they are SBC-friendly. One of the experiments

in this study concluded that the mean confidence on RPi +

NCS2 is 0%, while the other devices have mean confidence

of 57.9%. The second aspect that needs to be considered is

when implementing smart applications to an SBCs-based
GPU. Because of the memory sharing between CPU and GPU,

the architecture and other related parameters must be designed

carefully to achieve satisfying accuracy and speed results [16].

In another study under the title “Real-time object detection

method for embedded devices,” there is an experiment to

compare the performance of two types of YOLO methods for

object detection (YOLOv3-tiny and YOLOv4-tiny) on

embedded devices. When using Raspberry Pi 3B as the

embedded device, the results for YOLOv3-tiny and YOLOv4-

tiny are 0.18 FPS for YOLOv3-tiny and 0.19 FPS for

YOLOv4-tiny. With only a difference of 0.01 FPS, YOLOv4-
tiny proved to have better FPS than YOLOv3-tiny when used

in a Raspberry Pi 3B device [3]. Comparing each model's

performance with the same environment device will reveal

which model is far more superior or optimal than the other

when they are used in the same device. While in this study,

there will be data showing which CNN models will perform

well in an embedded device (Raspberry Pi) where the device

is being used in self-service technology.

Another study was conducted to analyze the performance

difference between YOLOv4 and YOLOv4-Tiny in detecting

images, recorded videos, and real-time video. These models

are converted to TFlite models for implementation in Mobile
Applications using Android Studio. In the training stage, the

YOLOv4-Tiny took less than an hour for 1000 iterations

compared to 2 hours when using YOLOv4 [17]. As for the

testing stage, YOLOv4 achieved 96.92% of accuracy on real-

time video at 5071 ms while the YOLOv4-Tiny achieved

74.72% of accuracy on real-time video at 491 ms. These

results show that YOLOv4-tiny is still effective enough to

detect objects with a much better inference time than

YOLOv4 with an expense of slight decreases in accuracy.

Therefore, this study concludes that YOLOv4-Tiny is a better

choice than YOLOv4 for real-time object detection
applications.

B. Research Method

Figure 1 describes the research on the optimization of self-

service technology in providing services in dealing with

59

infectious diseases. The process of optimizing self-service

technology by utilizing hand gesture recognition technology

has three stages consisting of a preparation stage, a training

stage, and a testing stage. The preparation stage needs the six

data. These data are required to prepare the things to learn and

the network architecture for the training stage. In the training

stage, the darknet framework uses the prepared six data for

the training. After the training stage is complete, the testing

stage uses the file from the training stage.

Fig. 1 Research Component Diagram Study of Optimizing Hand Gesture

Recognition

Figure 1 shows the proposed system of self-service

technology. This stage uses the proposed system to simulate

the effects of the optimization in the real world. It starts by

checking every frame on the webcam, then making a
bounding box on the target object. Then finally, apply the

gesture as a command to the Tkinter UI. For more details, the

stages of each process can be seen in the following

explanation.

Fig. 2 Preparation Phase Flowchart

1) Preparing images of hand gestures and train files:

Figure 2 describes that before starting the process, it is

necessary to prepare things for the experiment. In figure 2, it

is required to have photos, pre-trained weight files and

configuration, image labels, image paths, and train data. First,

this experiment requires photos of a person with certain hand

gestures.

In this case, all images were obtained using a webcam.

These images fall into six categories, as in Table I:

TABLE I
HAND GESTURE IMAGE SAMPLES

Hand Gesture Category

Hi Gesture

Fist Gesture

Three Fingers Gesture

Ok Gesture

L-Shaped Gesture

C-Shaped Gesture

Table I informs that each category has 48 pictures with a

different person, hands, contrast, brightness, lighting, noise,
image size, and image ratio. The only requirement is to have

a picture with at least one hand doing a gesture. Also, all

images must be in the format .jpg. After that, no post-

processing was made to the image. This is done to ensure the

AI learns from different variables and becomes better at

guessing in difficult cases. After that, images are labeled to

output the text label file. Then, the paths of the images must

be generated into a single text file. The information about the

path and total class numbers are then written in a

"trainer.data" file. Last, the pre-trained weight file must also

be prepared and configured to the class total.

2) Dataset Setup: Figure 3 Inform that this study uses six

chosen hand gestures as the category for the hand gestures.

Each of these categories consists of 48 photos.

60

Fig. 3 Hand Gesture Image Dataset

These photos vary in lighting, image size, image ratio,

background, hands, person, and distance. Therefore, a total of

288 images were collected for this experiment. This is to help

the machine recognize the hands better. Then after collecting

the images, all of them must be labeled. Labeling is a

requirement in the topic of object detection. Labeling
provides a good description of image content through visual

mapping features with semantic and spatial labels [18].

Therefore, it helps the machine to learn objects in the image.

This process also outputs a single text file that contains the

coordinate, size, and corresponding class number of the hand

gesture in each image. The dataset also contains a single text

file containing class names and numbers. Figure 3 is the

screenshot of some of the dataset that is ready for training.

3) Training convolutional neural network using darknet:

Figure 4 informs the training stage, which outputs weight files.

As stated before, it requires files which are images for train,
image label, class identity, train data, model pre-trained

weight, and a matching model configuration before training.

This stage aims to use the six data that were previously

prepared in the preparation stage to be trained using Darknet.

Fig. 4 Training darknet Phase Flowchart

The process will continue until the iteration modulus is

completed or the 1000th iteration modulus is finished. The
results of the training phase are weight files. According to

Budagyan and Abagyan [19], “weights are determined by

choice of a target-object-space, which depends heavily on the

nature of the objects in the training set and the predicted

property.” The definition of weights provided by Budagyan

and Abagyan [10] shows that the weight data is not always the

same. So, to get the most accurate data possible, the training

will be done using the same device and training data set. The

result would be in a less ambiguous weight file.

To support the experiment, the darknet framework was

used to help only in training the model. All models were tested,

and these hyperparameters were set the same as in Table II.

TABLE II

TRAINING CONFIGURATION FOR ALL MODELS

Hyperparameters Value

Batch 32

Subdivisions 24

Max_Batch 12000

Classes 6

Based on this experiment, Table II informs that each

category image has different characteristics. For the machine

to learn about human gestures, an artificial neural network in

the form of a Convolutional Neural Network (CNN) is

required. CNN is a variation of multi-layer perceptron human

neural networks inspired by visual cortex research on cats’
visual senses [20]. This experiment uses five different CNNs.

This experiment uses some model CNN to understand the

optimal result in recognition. Table III compares CNNs that

were used to optimize hand gesture recognition.

TABLE III
CNN MODEL COMPARISON TO OPTIMAL THE HAND GESTURE RECOGNITION

CNN Model Parameters BFLOPS Network

Size

YOLOv3-Tiny-PRN 4.7M 3.409 416

YOLOv4-Tiny 5.77M 6.795 416

MobileNetV2-

YOLOv3-NANO

- 0.482 320

YOLO-Fastest-1.1 0.35M 0.226 320

YOLO-Fastest-1.1-
XL

0.925M 0.695 320

Table III, which is from studies [21], [22], inform some

CNN model will extract a different number of features, the

base layers for every CNN model are all the same, and every

model will consist of three main layers which order are the

Convolutional Layer, Pooling Layer, and Fully Connected

Layer [23]. Even though each CNN models have the same

layers, the performance of each model will be different from

one another. Different CNN models mean different amounts

of features that can be extracted [24]. This study uses YOLO

Architecture, a single CNN that simultaneously predicts

multiple bounding boxes and the corresponding class
probabilities [25]. Also, each model has its unique

architecture, as shown in Table III, and each CNN model has

different parameters, BFLOPS, and network.

4) Hand gesture recognition system: Figure 5 illustrates

that after the training is complete, the system can start the

testing phase by importing the required files for testing. These

files are the trained weight file, configuration file, and

trainer.data file.

61

Fig. 5 Testing Phase to recognize hand gesture

The testing process starts by taking a frame from the webcam.

Then, calculate the prediction using non-max suppression

(NMS). The result is for making the bounding box on the

target object. The bounding box usually comes with other
information like class and coordinate, which is important for

Gesture Command and Calculation. It is to generate the

appropriate virtual key for the UI the receive. Then, some

condition cases algorithm decides which behavior to apply

within the case. Finally, The Tkinter UI should respond to the

virtual key according to the predefined bindings. As in figure

5, this whole process runs in a loop. For more details, the

following section will explain more about converting gesture

input into command.

5) Converting gesture input into the command: Figure 6

informs the experiment stages, and the hand gesture
recognition system is implemented into the self-service

technology. This concept of gesture recognition is how a

gesture can be converted into a command, just like how our

eyes turn visual input into thoughts [26]. For the system to

perform as previously stated, the AI needs to convert the

gesture input into a command so that the UI can respond.

Figure 6 shows that the AI converts the hand gesture input

into a virtual keyboard event input. Then, by binding the UI

with several keys based on the number of hand gesture types

(See Table IV), the UI can accept generated inputs from the

virtual key event. Each virtual keyboard input would react to

different UI commands (in Table IV). The UI has predefined

commands that execute when a certain key is detected. This

technique would make the self-service interface respond to

the hand gesture that the user makes.

Fig. 6 The Process of Converting Gesture Input into UI Command

TABLE IV
THE RESULTS OF CONVERTING HAND GESTURE INPUT

Hand Gestures Virtual Key UI Commands

NONE First Initialization
before moving to
the x and y axis
later on using the

“Fist” gesture.

“Right Arrow”,
“Left Arrow”,
“Down Arrow”, Or
“Up Arrow”

Move the selected
grid to the left,
right, up, or down
according to the
hand movement.

“Backspace” Going back to the
previous menu.

“Enter” Confirmation or
move to the next
menu.

62

“Space” Selecting the

item.

“Delete” Cancel the whole
ordering process

6) Measuring model performance: When a Raspberry Pi

device uses different CNN models for hand gesture

recognition, each model will perform differently. This

happens because each CNN model has a different architecture

that makes each model unique. This is why some models
could work well when in a certain situation. Therefore, by

using the data collected throughout the training process, it will

be possible to compare the five CNN models. Several

calculation metrics like mAP, Precision, Recall, and F1-score

are used as comparison variables. The comparison variables

between each CNN model will determine which is best for

hand gesture recognition in a Raspberry Pi device. The

samples needed for measuring the CNN model’s performance

are split into two categories. The first category is the positive

samples, which have the targeted object in them. The second

category is the negative samples, which have none of the
targeted objects in them. A more detailed explanation of these

calculation metrics is explained as follows:

 Precision and Recall

To calculate the value of precision, there are two necessary

variables. The first variable is the number of positive samples

the model correctly classified and the last one is the total
number of samples classified as positive samples (whether the

model correctly classified them or not). The range value of

precision is from 0 to 1, with 0 as its lowest score and 1 as its

highest score. This precision value reflects the model's

reliability when classifying the positive samples. The result of

precision is obtained by dividing only correctly classified

positive samples by the total number of positive samples.

Compared to precision, a recall is calculated by dividing the

number of positive samples the model correctly classified and

the number of total positive samples [27], [28]. Recall

completely ignores the negative samples and only focuses on
the result of the positive samples. With the range the same as

precision, a recall measures how many of the models correctly

classifies positive samples. Both precision and recall formulas

are illustrated below:

Precision

	

��
��������

��
�������� � ����
��������

(1)

Recall

	

��
��������

��
�������� � ����
��� ����

(2)

Where:

TRUEpositive = total of positive samples that the model

correctly classified

FALSEpositive = total of negative samples that the model

mistakenly classified as positive samples

FALSEnegative = total of positive samples that the model

could not classify.

 Intersection over Union (IoU)
Two things need to be addressed in Intersection over Union

or IoU because the two are defined later in the IoU formula.

Those two values are the predicted bounding box and the truth

bounding box. The predicted bounding box is the box that the

model predicts to have one of the targeted objects or items.
Meanwhile, the truth bounding box is the box that the tester

initially marked as the targeted object before the measuring

process. Finally, the definition of IoU is the ratio between the

intersection of the predicted bounding box and the truth

bounding box with the combined area or union of the two

boxes (see Figure 7).

Fig. 7 IoU Formula and Illustration

The more the predicted box overlays the truth box's area, the

higher the model's accuracy. In return, the IoU score would
be near the value of 1, which is the highest accuracy score

[27].

 F1-Score and mAP (mean Average Precision)

F1 Score used the two previous metrics, which are
precision and recall, F1-Score is a metric that combines the

precision and recall metrics into a single metric. The formula

for the F1-score is defined as the average of precision and

recall [27], [28]. Besides F1-score that summarizes the two

previous metrics, the mean Average Precision(mAP) is the

metric that shows the mean value of average precision for the

detection process of all the previously determined classes [3].

Average Precision, or AP, is the average of the precision

metric across all recall values between 0 and 1 at various IoU

thresholds [27]. The mAP model will be one of the core

metrics to determine which model has the best overall
performance because it considers all previously mentioned

metrics. The output of the formula will give an F1-score value

ranging from 0 to 1, where 1 is the highest accuracy value.

F1 score

	 2 ∗
%&'()*)+, ∗ �'(-..

%&'()*)+, � �'(-..

(3)

III. RESULTS AND DISCUSSION

A. Results

After doing the training proses using the Darknet model,

all models resulted in a good loss average result. The training

uses PCs with the latest CPU and GPU technology, and the

use of PC technology will not affect the aftermath use of the

models. This method has a benefit in accelerating the training

63

duration of the model because the darknet framework

supports the GPU Acceleration method for the training phase.

Thus, reducing the training time when compared to using the

CPU for training. If the training is done with much less

advanced technology, it will take more time to finish because

the output weight file would result in the same file. The bigger

the model architecture, the slower the machine can train. The

size of the model also affects the model output size.

Fortunately, all tested models are designed for small devices

and have a small architecture that could fit Raspberry Pi.

Figure 8 informs that the graph training curve can vary
depending on the model architecture. At first, most of the

model's loss declined in the first 1000 iterations. However, it

didn't happen to YOLO-Fastest-1.1 and YOLO-Fastest-1.1X

as they have a similar architecture, with one being smaller

than the other. It won't have any effects as long as it declines

to a level. After a steep decline at the start, the loss starts to

stabilize in a gentle curve. It shows that the model is starting

to understand the given dataset. Finally, the graph shows that

the loss stabilizes until the end of the iteration. This result

means the trained model has learned the given hand gestures

dataset without a problem. As stated, each model architecture
is unique and has its own beneficial impact in certain cases.

Therefore, the experiment can go on using the generated train

weights. A more detailed training result can be seen in Table

V. Table V informs the average loss of CNN model to

determines how it will perform.

Fig. 8 Training Graph of Each CNN Models

Thus, carrying out it is one of the key parameters that could

affect the test. As explained before, the lower the average loss,

the better the machine understands the dataset. This way, it

could potentially affect the performance of detecting objects.

If the machine does not understand, it will not detect the

object as expected. Table V shows that all models have an

average loss below 0.2. This value is pretty low enough and

acceptable for the experiment. YOLOv3-Tiny-PRN has the

highest average of 0.1655. Next, YOLOv4-Tiny has the

second-highest average at 0.0328. However, the difference

between them is more than 0.13, which is a lot. YOLO-
Fastest-1.1 comes third with an average loss of 0.0249. Then,

YOLO-Fastest-1.1-XL comes after YOLO-Fastest-1.1 with

an average loss of 0.0135. Last, MobileNet-YOLOv3-NANO

has the lowest average loss with a value of 0.0067. However,

without proper testing and analysis, the performance of a

model cannot be determined just by using loss value.

TABLE V
TRAINING RESULT OF EACH CNN MODELS USING AVERAGE LOSS PARAMETER

Model Average Loss (%)

YOLOv3-Tiny-PRN 0.1655
YOLOv4-Tiny 0.0328

YOLO-Fastest-1.1 0.0249
YOLO-Fastest-1.1-XL 0.0135
MobileNet-YOLOv3-NANO 0.0067

Before testing the weights trained in the self-service

application, the hand gesture recognition algorithm needs to

import the supporting files. The supporting files are the

training label, image path, model configuration, and a .data

file type called trainer.data. These supporting files are

necessary to execute the testing process, which uses the
OpenCV library as the inference. OpenCV is an open-source

library mainly used for image processing [29]. Then, the self-

service application and hand gesture recognition will

automatically be initiated simultaneously. Next, an

examination of hand gesture recognition is performed. This

examination was needed to make sure that the trained hand

gesture worked properly. In this case, the machine's frames

captured and processed were examined in a separate window.

Figures 9 are some of the UI of self-service technology that

was previously made, while figure 10 shows captured images

from the webcam with detected hand gestures. All of the
gestures were shown to be recognized by the machine.

Figure 9 illustrates that there is a total of five menu user

interfaces in the self-service technology, but the two user

interfaces above can use all or most of the hand gestures. The

other three menu user interfaces could only use some hand

gestures. The Hi combined with Fist type gestures can be used

to move up, down, left, and right around the item grid and to

adjust the chosen item quantity in the second step of the

process. OK hand gesture is used to move to the next menu,

while the three fingers hand gesture is used to go back to the

previous menu. The L hand gesture function is to select goods,
and gesture C is to cancel the order, and it will automatically

go back to the first menu. As previously mentioned, not all

hand gestures can be used in all menus since some hand

gestures are only necessary for one or two processes.

64

Fig. 9 Two out of Five Interfaces in the Self-Service Technology; Select Item

Menu and Quantity Control Menu

Fig. 10 Recognizing an OK, Hi, C, and L Hand Gesture as an example

Figure 10 shows examples of how a CNN model

recognizes hand gestures. The system will make a prediction

box surrounding the hand gesture with their class type. The

number located in the middle of the bounding box is an object

ID. The function of an object ID is to prevent the system from

recognizing one detected hand gesture as multiple different

hand gesture inputs when moving around the frame. For

example, a person gestures to input the machine and get the

machine's recognition. The system will give the object ID to

the corresponding hand. When the hand in the frame moves,

it will have the same object ID after some calculations. The
figure also shows that each frame of the hand recognition

system shows the summary of how many of each type of hand

gesture is detected, the total of hand gestures detected, and the

current hand gesture present in the frame.

When the application runs on a high-end device, it can

flawlessly object detections and calculations with above-

acceptable performance. That means a great response feel and

fast processing speed. This is required for real-time object

detection to make sure everything is processed without delay

between interactions. Thus, making a good self-service

experience for users. Next, the models get tested in a
Raspberry Pi 4B which is a small device. However, smaller

size comes at the price of processing performance. When it

was tested to run the same hand gesture recognition, the

response fell, and the processing speed was not acceptable. So,

it requires optimizations to meet acceptable performance. By

default, a model has either 416x416 or 320x320 network input

size. In the experiment, all of the model’s network input sizes

were reduced to 224x224. This is to reduce the processing

load, which could increase processing time. As stated before,

this benefit could come with a cost, as seen in Table VI.

Table VI informs that YOLOv3-Tiny-prn has the highest
overall score in all metrics before optimization. Both recall

and F1-score of YOLOv3-Tiny-prn have a 0.99 score, while

the precision metric has a score of 0.98. YOLOv4-Tiny

follows it with the second highest at 0.98 average. MobileNet-

YOLOv3-NANO comes third with an average of 0.72. Next,

YOLO-Fastest-1.1-XL has an average of 0.64. Last, YOLO-

Fastest-1.1 comes with a 0.60 average. After all, models have

been optimized; all variables have been reduced significantly.

YOLOv3-Tiny-prn has reduced by about 51%, making it

move to the third position. YOLOv4-Tiny.

On the other hand, only reduced by about 22%, which

makes it the highest average after optimization. Next,
MobileNet-YOLOV3-NANO has reduced to about 33%,

making it the worst after optimization. YOLO-Fastest-1.1-XL

has reduced to only about 11%, which is the third-best. And

the last, YOLO-Fastest-1.1 has reduced to about 19%, making

it the second-worst performing statistically.

TABLE VI

PRECISION, RECALL, AND F1-SCORE PARAMETERS BEFORE AND AFTER OPTIMIZATION COMPARISON

Model Precision Recall F1-score

Before After Before After Before After

YOLOv3-Tiny-PRN 0.98 0.65 0.99 0.34 0.99 0.44
YOLOv4-Tiny 0.98 0.83 0.98 0.69 0.98 0.76
YOLO-Fastest-1.1 0.50 0.51 0.75 0.36 0.60 0.42
YOLO-Fastest-1.1-XL 0.49 0.53 0.91 0.61 0.64 0.57
MobileNetV2-YOLOv3-NANO 0.64 0.55 0.81 0.27 0.72 0.36

65

Fig. 11 CNN Models Average IoU Before and After Optimization

Comparison

Figure 11 informs that each model's data results vary after

the optimization process. As usual, both YOLOv4-Tiny and

YOLOv3-Tiny-PRN have suffered a significant reduction in

IoU after optimization compared to the other models.

YOLOv4-Tiny has a reduced percentage from 87.49% to

68.69%, which has an 18.8% reduction.

YOLOv3-Tiny-PRN has the biggest reduction in IoU,

which has a 31.38% reduction after optimization. Next,

MobileNetV2-YOLOv3 has reduced to about 9%, which is

not as worse as the previously mentioned models. YOLO-

Fastest-1.1 only reduces to about 3%, which is a very small

amount compared to the other model. Even though YOLO-

Fastest-1.1 has the lowest reduction, it is also the worst-
performing model in this chart, with only a 33.79% IoU

performance. The last model is the YOLO-Fastest-1.1-XL,

the only model that sees an improvement of about 0.58%. All

the information about optimization comparison can be seen in

Table VI and Table VII.

TABLE VII

TABLE OF COMPARISON BETWEEN INFERENCE TIME, FPS, AND MAP@0.50

Fig. 12 Combined Model Inference Time Graph Before and After

Optimization

Figure 12 illustrates that the model inference time is needed
to determine whether the reduced network size also reduces

the inference time. Inference time calculates the time between

the captured frame and the process until it results in data in

terms of object detection [30]. The bigger the inference time,

the slower the detection becomes. This also worsens the

experience of using this technology. In figure 12, most models

show a reduction of about half the original inference time. For

YOLOv4-Tiny and YOLOv3-Tiny-PRN, they reduce to about

1/3 the original. However, they still feel too slow and

unsuitable for the test device due to the high value of inference

time. However, mAP also needs to be considered to know

more about compatibility on such devices. the mAP shows

about half the amount of reduction for YOLOv3-Tiny-PRN

and YOLO-Fastest-1.1. MobileNetV2-YOLOv3-NANO

suffered the most reduction to about 28.17% of mAP. Last,
YOLO-Fastest-1.1-XL and YOLOv3-Tiny show a slight

amount of reduction after optimization. This result shows that

YOLO-Fastest-1.1-XL is the most balanced in these metrics

after optimization.

Fig. 13 Combined Model Speed Graph Graph Before and After Optimization

Model

Before Optimization After Optimization

Inference Time

(ms)
FPS mAp@0.50

Inference Time

(ms)
FPS mAp@0.50

YOLOv3-Tiny-
PRN

245.2819739 3 99.97% 80.59535243 6 43.31%

YOLOv4-Tiny 456.2688647 2 99.83% 137.9290275 4 81.66%
YOLO-Fastest-1.1 51.42538966 6 56.70% 25.54194168 10 33.51%
YOLO-Fastest-1.1-

XL
106.0166445 5 67.60% 53.77346182 7 57.70%

MobileNetV2-
YOLOv3-
NANO

73.94764119 5 71.85% 38.79998658 9 28.17%

66

Figure 13 informs that the Frames per Second (FPS) graph

is similar to the inference time graph, which shows

mAp@0.50 but relative to FPS. More fps means faster

processing ability. This matter correlates with inference time.

The lesser the inference time, the more FPS it could produce.

Figure 13 shows MobileNetV2-YOLOv3-NANO has the

highest FPS after optimization at 10 FPS followed by YOLO-

Fastest-1.1 at 9 FPS. Both gained 4 more fps which is pretty

significant. Next, YOLOv3-Tiny-PRN gained 3 more FPS,

improving the average FPS from 3 to 6. YOLO-Fastest-1.1-

XL gained 2 more fps from 5 to 7, making it the third-best
performer. Lastly, YOLOv4-Tiny also gained 2 FPS, but it is

the worst performer at an average of 4 FPS. All models above

6 FPS result in an acceptable experience in using the

technology. Like before, mAP needs to be considered to find

the most balanced model. In this section, YOLOv3-Tiny-PRN

and YOLO-Fastest-1.1-XL are the most balanced.

Figure 14 informs that the average overall latency is equal

to the average loop time, which also includes inference time.

All models show a reduction in latency, and YOLOv4-Tiny

experienced a significant difference, which is more than 1/3

of the original latency. Even with the amount of latency that
has been reduced, the YOLOv4-Tiny still has the highest

latency compared to other models. YOLOv3-Tiny-PRN’s

latency was also reduced to about half the original amount,

making this CNN model the second-highest latency in the test,

even after optimization. The other three model does not lose

as much latency as YOLOv3-Tiny-PRN and YOLOv4-Tiny.

YOLO-Fastest-1.1-XL has been reduced to almost half of the

original value. MobileNetV2-YOLOv3-NANO is the second-

lowest latency in the test, with 0.0836 seconds per loop. Last,

YOLO-Fastest-1.1 has the lowest latency, with 0.0804

seconds per loop.

Fig. 14 CNN Models Average Overall Latency Before and After

Optimization Comparison

These metrics infer time, FPS, and mAp@0.50 before and

after optimization. All models show two similarities. The first

similarity is that all models have a reduced inference time and

mAp@0.50, with YOLOv3-Tiny-PRN having the biggest

reduction in mAp@0.50 and YOLOv4-Tiny having the

biggest reduction in inference time. The lowest inference time

after optimization is YOLO-Fastest-1.1, and the highest is

YOLOv4-tiny. Meanwhile, the highest mAp@0.50 after

optimization is YOLOv4-tiny, and the lowest one is

MobileNetV2-YOLOv3-NANO. The last similarity is all of

the models have an increased FPS, with YOLO-Fastest-1.1

and MobileNetV2-YOLOv3-NANO having the highest

increasing FPS, which is 4. The highest FPS score belongs to

YOLO-Fastest-1.1, with a score of 10 FPS. The reduction in

inference time and the gain in FPS don’t mean better for the

tested model. Because other factors also play a role in its

overall performance of it. This explanation will be explained

further in the discussion.

B. Discussion

In the experiment, there were a total of five models that are

being tested for their performance in a self-service technology

using a Raspberry Pi device. Each CNN model has its unique

architecture, and they all result in different metrics values

from each other. These differences will be the key

components for comparing the five CNN models and

determining which is best suited for self-service technology.

In Table VI, all the CNN models suffered a decreasing value

in the Precision, Recall, F1-Score, and average IoU (See

Figure 11 for average IoU). Only YOLO-Fastest-1.1-XL
received an improvement score of average IoU from 36.91%

to 37.49%, with an improvement value of 0.58%. The

reduction in Precision, Recall, F1-Score, and average IoU

metrics affects the accuracy of the CNN model. The changes

in how a model detects an object within a camera frame after

optimization is statistically shown by these metrics.

TABLE VIII
AVERAGE DIFFERENCE OF EVERY PARAMETER

Parameter Average Difference

FPS 3

mAP -30,32%
Inference Time -119,2601
Precision -10.40%
Recall -43.40%
F1-Score -27.60%

Table VIII illustrates that all metrics experienced a value

reduction except for FPS. These metrics need to be looked at

to determine the performance. The parameter for FPS, mAP,

inference time (ms), Precision, Recall, and F1-Score are

resulting in a significant difference after optimization in every

model (See Table VIII). Metrics such as FPS and inference

time would affect the result performance of a model,

especially on a small device. Inference time is the only one

that has a performance improvement because lesser inference
time means the model becomes lighter to process. A higher

FPS means more ability to process frames in a second. The

reduction in Precision, Recall, F1-Score, and mAP would

reduce the accuracy when detecting the chosen object.

Therefore, these statistics show that optimization only

benefits the FPS and inference time metrics but affects overall

accuracy.

Figure 15 shows how mAP affects the model’s ability to

recognize objects in real-time without looking at latency stats.

The test uses only two hand gestures for the test, which are Hi

Gesture and L-Shaped Gesture. Hypothetically, if the mAP of
a model is low, the model’s ability to recognize the object will

also be low. Figure 15 shows two models, which are

YOLOv4-Tiny and MobileNetV2-YOLOv3-NANO. The first

one has an mAP of 81.66%, and the other has an mAP of

28.17%. The figure tells that YOLOv4-Tiny can detect both

67

gestures correctly with no False-Positive. For MobileNetV2-

YOLOv3-NANO, it shows the result of False-Negative on

both gestures. False-negative detection indicates the model's

inability to detect the object. Therefore, mAP may affect the

performance of detecting objects in real-time. The higher the

mAP, the better the machine can detect objects. Finally, other

metrics such as FPS and inference time combined with this

discovery would tell more about the result of the overall

performance of a model.

Fig. 15 How mAP Affects the Model Prediction Accuracy when Recognizing

the Chosen Object.

As stated before, the lesser the inference time, the lighter

the model. This, in turn, increases the FPS. The decrease in

inference time also decreases the overall latency. However,

not all CNN models will have an acceptable response. Only
models with an overall latency of 0.1 seconds or less are

acceptable. This means MobileNetV2-YOLOv3-NANO,

YOLO-Fastest-1.1-XL, and YOLO-Fastest-1.1 have an

acceptable overall latency that is suitable to use on Raspberry

Pi devices. But, YOLOv4-Tiny and YOLOv3-Tiny-PRN

have an overall latency value of more than 0.1 seconds.

Making the two models unsuitable to use in such a device. But

when combined with mAP, YOLO-Fastest-XL has the most

balanced value between accuracy and performance that is

suitable for Raspberry Pi. Anything smaller and slower than

Raspberry is recommended to use YOLO-Fastest-1.1. It is not

recommended to use MobileNetV2-YOLOv3-NANO due to
unable to detect properly trained objects (See Figure 15)

which potentially ruins the self-service technology experience.

Fig. 16 How Lighting Affects CNN Model (YOLOv4-Tiny) Ability to Detect

Chosen Object

Figure 16 illustrates the object detection process, and

lighting could affect the technology’s performance. The lesser

light in the environment causes a lower accuracy score. So

lighting also affects the recognition process of the hand

gesture. Just like how human eyes work, most people will

have a hard time recognizing something they see. In this case,

the camera is the eye for the machine to see the world. This

test used YOLOv4-tiny, which has the highest mAP

compared to the other model. For the "With Room Lighting

Only" case, all lights in the room are on without additional

lighting for the camera. The figure shows the machine unable

to detect a given hand gesture.

On the other hand, the other case is the same but with the
help of a ring light behind the camera. The ring light helps the

machine to detect the correct gesture, as in Figure 16.

Therefore, this test shows even when a model has high mAP,

it is not easy for the machine to detect the gestures under dim

light. It is recommended to have sufficient light when using

object detection to help the machine recognize objects.

This analysis shows YOLO-Fastest-1.1-XL as the most

balanced and YOLO-Fastest-1.1 as the best performer

compared to the other CNN models according to the testing

data. Based on Table VII, YOLO-Fastest-1.1 provided a

better FPS performance than YOLO-Fastest-1.1-XL. This
means that YOLO-Fastest-1.1 is a lightweight model suitable

for slower devices than Raspberry Pi 4. The only disadvantage

is that it would be hard to detect objects due to the low value

of mAP. Fortunately, it is still better than MobileNetV2-

YOLOv3-NANO in mAP, FPS, and Inference Time.

On the other hand, YOLO-Fastest-1.1-XL has a 24.19 mAP

value with similar overall latency compared to YOLO-

Fastest-1.1. Therefore, this model is suitable for use in

Raspberry Pi 4. YOLOv3-Tiny-PRN and YOLOv4-Tiny,

these models are suitable for devices that are faster than

Raspberry Pi 4. To support more of these discoveries, a more
complex dataset, CNN models that are proven to be a lot more

efficient and compatible with small devices, and some tweaks

in another area could potentially improve the performance of

this kind of research on optimizing object detection

performance.

IV. CONCLUSION

This study uses six different chosen hand gesture images

as a training dataset to carry out the storage process. The
process uses the collected dataset as training for the darknet

and imports it to Open CV and other support files to run real-

time object detection. All models suffered a reduction in

Precision, Recall, and F1-Score. But for IoU, YOLO-Fastest-

1.1-XL is the only model that sees an improvement of about

0.58%. Moreover, the optimization result is only beneficial to

the FPS and inference time metrics, which improved by an

average of 3 FPS and reduced by an average of 119,260 ms

than before optimizing all CNN models.

However, room lighting and camera quality affect the

performance of real-time object detection on detecting objects.
It is recommended to have sufficient lighting when using

object detection technology. Two models that show better

behavior are YOLO-Fastest-1.1-XL which has the most

balanced result, and YOLO-Fastest-1.1, which shows lower

accuracy but higher FPS and is suitable for a smaller device.

A more complex dataset for training, CNN models that are

proven to be a lot more efficient, and some tweaks on some

areas might improve the performance even more.

68

REFERENCES

[1] H. El-Aawar, “Increasing The Transistor Count by CONSTRUCTING

A Two-Layer Crystal Square on A Single Chip,” Int. J. Comput. Sci.

Inf. Technol., vol. 7, no. 3, 2015, doi: 10.5121/ijcsit.2015.7308.

[2] R. Singh, “An approach to enhance performance of Computer-

Literature Review,” Int. J. Sci. Dev. Res., vol. 1, no. 5, 2016, Accessed:

Jun. 30, 2022. [Online]. Available: www.ijsdr.org.

[3] Z. Jiang, L. Zhao, S. Li, Y. Jia, and Z. Liquan, “Real-time object

detection method based on improved YOLOv4-tiny,” Nov. 2020, doi:

10.48550/arxiv.2011.04244.

[4] A. H. Rangkuti, V. H. Athala, N. F. Luthfi, S. V. Aditama, and J. M.

Kerta, “Reliable of traditional cloth pattern Classification Using

Convolutional Neural Network,” 2021 2nd Int. Conf. Artif. Intell. Data

Sci. AiDAS 2021, 2021, doi: 10.1109/AiDAS53897.2021.9574402.

[5] E. Considine and K. Cormican, “Self-service Technology Adoption:

An Analysis of Customer to Technology Interactions,” Procedia

Comput. Sci., vol. 100, pp. 103–109, Jan. 2016, doi:

10.1016/J.PROCS.2016.09.129.

[6] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal

Speed and Accuracy of Object Detection,” Apr. 2020, doi:

10.48550/arxiv.2004.10934.

[7] N. F. Thejowahyono, M. V. Setiawan, S. B. Handoyo, and A. H.

Rangkuti, “Hand Gesture Recognition as Signal for Help using Deep

Neural Network,” Int. J. Emerg. Technol. Adv. Eng., vol. 12, no. 2, pp.

37–47, 2022, doi: 10.46338/ijetae0222_05.

[8] C. Nyaga and R. Wario, “A Review of Sign Language Hand Gesture

Recognition Algorithms,” Adv. Intell. Syst. Comput., vol. 1213 AISC,

pp. 207–216, 2021, doi: 10.1007/978-3-030-51328-3_30.

[9] V. Moysiadis et al., “An Integrated Real-Time Hand Gesture

Recognition Framework for Human–Robot Interaction in Agriculture,”

Appl. Sci., vol. 12, no. 16, 2022, doi: 10.3390/app12168160.

[10] M. Peral, A. Sanfeliu, and A. Garrell, “Efficient Hand Gesture

Recognition for Human-Robot Interaction,” IEEE Robot. Autom. Lett.,

vol. 7, no. 4, pp. 10272–10279, Oct. 2022, doi:

10.1109/LRA.2022.3193251.

[11] Q. Gao, J. Liu, and Z. Ju, “Hand gesture recognition using multimodal

data fusion and multiscale parallel convolutional neural network for

human–robot interaction,” Expert Syst., vol. 38, no. 5, Aug. 2021, doi:

10.1111/EXSY.12490.

[12] N. M. Mahmoud, H. Fouad, and A. M. Soliman, “Smart healthcare

solutions using the internet of medical things for hand gesture

recognition system,” Complex Intell. Syst., vol. 7, no. 3, pp. 1253–

1264, Jun. 2021, doi: 10.1007/S40747-020-00194-9.

[13] E. Spandana, M. Rajasekar, and N. Sandhya, “Care-giver alerting for

bedridden patients using hand gesture recognition system,” J. Phys.

Conf. Ser., vol. 1921, no. 1, 2021, doi: 10.1088/1742-

6596/1921/1/012077.

[14] S. Ameur, A. Ben Khalifa, and M. S. Bouhlel, “Hand-Gesture-Based

Touchless Exploration of Medical Images with Leap Motion

Controller,” Proc. 17th Int. Multi-Conference Syst. Signals Devices,

SSD 2020, pp. 1116–1121, Jul. 2020, doi:

10.1109/SSD49366.2020.9364244.

[15] N. Zengeler, T. Kopinski, and U. Handmann, “Hand gesture

recognition in automotive human–machine interaction using depth

cameras,” Sensors (Switzerland), vol. 19, no. 1, Jan. 2019, doi:

10.3390/S19010059.

[16] H. Feng, G. Mu, S. Zhong, P. Zhang, and T. Yuan, “Benchmark

Analysis of YOLO Performance on Edge Intelligence Devices,”

Cryptography, vol. 6, no. 2, pp. 1–16, 2022, doi:

10.3390/cryptography6020016.

[17] K. Ntzelepi, M. Ε. Filippakis, M. E. Poulou, and A. Angelakis,

“Performance Evaluation of YOLOV4 and YOLOV4-TINY for Real-

Time Face-Mask Detection on Mobile Devices,” Int. J. Artif. Intell.

Appl., vol. 13, no. 3, 2022, doi: 10.5121/ijaia.2022.13303.

[18] C. Sager, C. Janiesch, and P. Zschech, “A survey of image labelling

for computer vision applications,” J. Bus. Anal., vol. 4, no. 2, pp. 91–

110, 2021, doi:

10.1080/2573234X.2021.1908861/SUPPL_FILE/TJBA_A_1908861

_SM4490.DOTX.

[19] L. Budagyan and R. Abagyan, “Weighted quality estimates in machine

learning,” Bioinformatics, vol. 22, no. 21, pp. 2597–2603, 2006, doi:

10.1093/bioinformatics/btl458.

[20] A. Anton, N. F. Nissa, A. Janiati, N. Cahya, and P. Astuti,

“Application of Deep Learning Using Convolutional Neural Network

(CNN) Method For Women’s Skin Classification,” Sci. J. Informatics,

vol. 8, no. 1, pp. 144–153, 2021, doi: 10.15294/sji.v8i1.26888.

[21] J. Redmon, “Darknet: Open Source Neural Networks in C.” 2013,

Accessed: Jun. 21, 2022. [Online]. Available:

https://pjreddie.com/darknet/.

[22] Dog-qiuqiu, “dog-qiuqiu/Yolo-Fastest: yolo-fastest-v1.1.0,” Zenodo,

Jul. 2021, doi: 10.5281/ZENODO.5131532.

[23] A. H. Rangkuti, V. H. Athala, E. Tanuar, and J. M. KERTA,

“Enhancing A Reliable Traditional Clothes Pattern Retrieval : CNN

Model and Distance Metrics,” vol. 100, no. 10, pp. 3183–3193, 2022,

[Online].

[24] A. H. Rangkuti, V. H. Atthala, E. Tanuar, and J. M. Kerta,

“Performance Evaluation of traditional Clothes pattern retrieval with

CNN Model and Distance Matrices,” pp. 1–9, 2020.

[25] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look

once: Unified, real-time object detection,” Proc. IEEE Comput. Soc.

Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 779–788,

2016, doi: 10.1109/CVPR.2016.91.

[26] S. Makahaube, A. M. Sambul, and S. R. U. A. Sompie,

“Implementation of Gesture Recognition Technology for Self-

Education Service Platform,” J. Tek. Inform., vol. 16, no. 4, pp. 465–

472, Oct. 2021, doi: 10.35793/JTI.16.4.2021.34210.

[27] Esri, “How the Compute Accuracy For Object Detection tool works,”

ArcGIS Pro, Esri. 2020, [Online]. Available:

https://pro.arcgis.com/en/pro-app/latest/tool-reference/image-

analyst/how-compute-accuracy-for-object-detection-works.htm.

[28] A. F. Gad, “Accuracy, Precision, and Recall in Deep Learning.” 2020,

[Online]. Available: https://blog.paperspace.com/deep-learning-

metrics-precision-recall-accuracy/.

[29] M. Naveenkumar and V. Ayyasamy, “OpenCV for Computer Vision

Applications,” Proc. Natl. Conf. Big Data Cloud Comput., no. March

2015, pp. 52–56, 2016, [Online]. Available:

https://www.researchgate.net/publication/301590571_OpenCV_for_

Computer_Vision_Applications.

[30] I. Martinez-Alpiste, G. Golcarenarenji, Q. Wang, · Jose, and M.

Alcaraz-Calero, “Smartphone-based real-time object recognition

architecture for portable and constrained systems,” J. Real-Time

Image Process., vol. 19, pp. 103–115, 2022, doi: 10.1007/s11554-021-

01164-1.

69

