
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage :  www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON 

INFORMATICS 
VISUALIZATION

Human Bone Age Estimation of Carpal Bone X-Ray Using Residual 
Network with Batch Normalization Classification 

Anisah Nabilah a, Riyanto Sigit a,*, Arna Fariza a, Madyono Madyono b 
a Information and Computer Engineering Departement, Politeknik Elektronika Negeri Surabaya, Jl. Raya ITS, Surabaya, 60111, Indonesia  

b Electrical Engineering Departement, Politeknik Elektronika Negeri Surabaya, Jl. Raya ITS, Surabaya , 60111, Indonesia 

Corresponding author: *riyanto@pens.ac.id 

 
 
Abstract—Bone age is an index used by pediatric radiology and endocrinology departments worldwide to define skeletal maturity for 

medical and non-medical purposes. In general, the clinical method for bone age assessment (BAA) is based on examining the visual 

ossification of individual bones in the left hand and then comparing it with a standard radiographic atlas of the hand. However, this 

method is highly dependent on the experience and conditions of the forensic expert. This paper proposes a new approach to age 

estimation of human bone based on the carpal bones in the hand and using a residual network architecture. The classification layer was 

modified with batch normalization to optimize the training process. Before carrying out the training process, we performed an image 

augmentation technique to make the dataset more varied. The following augmentation techniques were used: resizing; random affine 

transformation; horizontal flipping; adjusting brightness, contrast, saturation, and hue; and image inversion. The output is the 

classification of bone age in the range of 1 to 19 years. The results obtained when using a VGG16 model were an MAE value of 5.19 and 

an R2 
value of 0.56 while using the newly developed ResNeXt50(32x4d) model produced an MAE value of 4.75 and an R2 

value of 0.63. 

The research results indicate that the proposed modification of the residual training model improved classification compared to using 

the VGG16 model, as indicated by an MAE value of 4.75 and an R2
 value of 0.63. 
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I. INTRODUCTION 

In the case of an unknown victim of a crime or disaster, 
examining the body is important to determine the victim's 
identity [1]. Forensic doctors commonly use several parts of 
the hand bones to assess the age of a person’s bones. Forensic 
doctors' most widely used parameters to analyze the age of 
hand bones are the epiphysis and the metaphysis of the bone. 
Evaluation of bone age is usually carried out by radiological 
examination of the skeletal development of the left hand and 
then comparing the result with chronological age [2]. 

Changes in the human skeleton are similar for all bones 
because the bone development process is continuous and 
passes through the same stages, where bones have certain 
characteristics at each stage. Therefore, compared to 
chronological age (CA), bone age (SA) is a more accurate way 
of reflecting an individual’s growth and maturation rate [3]. 
Carpal bones are formed after birth by the ossification of 
carpal cartilage. The capitate and uncinatus bones are the first 
to show a center of ossification (2nd to 4th months), while the 

pisiform bones are the last (9 to 12 years) [4]. The dominant 
method used by experts in clinical practice are the methods of 
Greulich and Pyle (GP) [5], and Tanner and Whitehouse 
(TW2/3) [6].  

However, there are issues with manual bone age estimation, 
for example, as a result of insufficient bone X-ray image 
quality, the difficulty of assessing the level of ossification in 
the carpal bone phalanges, and factors such as the experience, 
health condition, concentration level, and biases of the 
radiologist. These issues influence the bone age estimation 
result, as considerable intra-observer and inter-observer 
variability always exist in clinical practice [7], [8]. 

Deep learning has recently received a great deal of 
attention as an approach to realizing artificial intelligence. 
Deep learning is a machine learning method often used in 
fields such as image recognition or categorization, speech 
recognition, and natural language recognition. Convolution 
neural networks are known to be very efficient for bone age 
estimation from X-ray images of the hand [9]. Several bone 
age recognition techniques have been developed based on the 
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hand carpal bone using CNNs. In 2018, Van Steenkiste et al. 
[10] used a VGG16 module with architectural modifications 
in the direction of regression, resulting in an accuracy of 
94.45%. 

Furthermore, in 2020, a study was conducted to classify 
bone age using a VGG16 training model, resulting in a mean 
absolute difference (MAD) value – also known as the mean 
absolute error (MAE) – of 0.50 [9]. Bulò et al. [11] added a 
batch normalization process to enhance the training process. 
Batch normalization makes the training process more optimal, 
faster, and more stable because it can reduce internal covariate 
shifts in the network. Bulò et al. focused on improving the 
memory efficiency of modern architecture training processes 
such as ResNet, ResNeXt, Inception- ResNet, wideResNet, 
etc., on making the neural network performance more optimal 
for semantic image classification or segmentation. 

This paper proposes a new approach to estimating human 
bone age using a residual network architecture based on the 
carpal bones in hand. The classification layer was modified 
by batch normalization to optimize the training process. 
Before carrying out the training process, image augmentation 
was done to enhance and add variation to the hand X-ray 
images used in the training process to maximize the accuracy 
of the results. The augmentation techniques used were 
resizing; random affine transformation; horizontal flipping; 
adjusting brightness, contrast, saturation, and hue; and image 
inversion. The model used for the training process was 
ResNeXt50(32x4d). The output of the proposed system is an 
estimation of human bone age in the range of 1 year to 19 
years. 

The remainder of this paper is organized as follows. 
Section 2 extensively surveys the latest papers on bone age 
estimation based on deep learning. Section 3 describes the 
proposed bone age estimation method using deep learning. 
Section 4 compares the experimental results of the commonly 
used VGG16 method and the proposed residual network 
method. Section 5 contains the conclusion of this paper. 

II. MATERIALS AND METHOD 

The stages of research carried out in this study start from 
identifying the problem and objectives, then conducting a 
literature study, collecting data used as input, performing 
system design, system testing, analyzing results, and finally, 
concluding. 

A. Research Analysis 

Based on Cavallo et al. [12] observations of bone 
maturation, it is best to define bone age based on hand and 
wrist radiographs because the hand and wrist correctly reflect 
the maturity of various types of skeletal bones. Carpal bones 
are very suitable to be used because they harden gradually 
throughout the ossification process, starting from the primary 
centers. Al-Khater et al. [13] conducted a study to collect data 
on the carpal bone ossification centers (the lower end of the 
radius and ulna). 

In addition, they examined the order of appearance of the 
carpal bones and the relationship of this sequence to the 
appearance of the distal epiphyses of the radius and ulna. The 
research consisted of a retrospective radiological study from 
2012 to 2020 at King Fahad University Hospital, Al- Khobar, 
Saudi Arabia. The dataset contained 279 X-ray images of 

Saudi children’s wrists. It was revealed that the first bones in 
the wrist area that appear are the capitate, hamate, and distal 
radius epiphyses. These bones appear in the first year of life, 
after which other bones develop at annual intervals. The last 
to appear is the piriformis, late in the first decade of life or 
late childhood (before puberty) [14], [15]. Skeletal Age 
Assessment (SAA) is a clinical procedure used to determine 
the skeletal age of children and adolescents. Several factors, 
including nutrition, hormonal secretions, and genetics, 
influence bone development.  

There are several factors to assess the maturity of the 
framework. These include inter- method variability, degree of 
variability in skeletal maturation estimates, low sources of 
accuracy, and dispersion of skeletal maturation values. 
Currently, the main clinical methods for skeletal age 
assessment are the Greulich and Pyle (GP) and Tanner and 
Whitehouse (TW) methods [15]. The GP method is based on 
a hand atlas, which consists of a series of X-ray templates of 
children's growth stages with varying degrees of bone 
maturity. The patient's X-ray images were then compared 
with the samples in the template series, and the most suitable 
template was selected as the patient's equivalent bone age. 
This approach is straightforward and can be done quickly.  

However, the GP Method is characterized by inter- and 
intra-observer variability. Moreover, it is difficult to 
accurately assess bone with large size variations, and the 
resulting bone age is very rough because the template series 
is arranged in intervals ranging from six months to one year 
[16]. TW2 increases intra- and inter-rater variability by 
proposing discrete stages [17]. In conclusion, several standard 
methods have been developed to evaluate bone maturity from 
hand and wrist radiographs [8], [9]. However, there are still 
weaknesses in manual bone age estimation, starting from 
factors such as the radiographer's knowledge, experience, and 
conditions, which may affect the estimation results. So there 
is a need for a system that can analyze in detail and 
automatically in bone age observations that can help forensic 
experts. 

Deep learning has been proven to be very successful in 
image feature recognition. Van Steenkiste et al. [10] estimated 
bone age by applying deep learning to X-ray images of the 
bones of the hands of children whose ages ranged from 0 to 
228 months. The dataset contained 12,661 X-ray images. The 
convolution neural network VGG16 was used as the learning 
method. The VGG16 architecture consists of 16 layers. Since 
it was originally designed for classification, the architecture 
was modified in the direction of regression. This study 
succeeded in achieving a classification accuracy of 94.45%. 

Marouf et al. [9] also developed an automated method for 
age estimation and worked on classifying bone images to 
identify gender, age, race, and target status in forensic 
identification. The method used to predict gender was a deep 
convolution neural network (DCNN), and the gender 
classification results had an accuracy of 79.6%. The VGG16 
model was used to estimate age, for which a mean absolute 
deviation (MAD) value of 0.50 years and a root mean squared 
(RMS) value of 0.67 years were obtained. 

Automated bone classification methods are carried out with 
a large number of images, and the complexity level of the 
CNN architecture is high, so computation takes a long time. 
Batch normalization is commonly used in CNNs to increase 
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training speed and stability. Rota, Lorenzo, and Peter [11] 
modified a deep learning method by adding batch 
normalization to the plugin activation layer to reduce the 
training time. The results of the experiments they carried out 
proved that their method could save up to 50% of memory 
usage for image classification. Chai, Pilanci, and Murmann 
[18] used concepts from the traditional adaptive filter domain 
to provide insight into the dynamics and workings of batch 
norms. Their experiments showed that the method provides 
several benefits in terms of speed and stability. If the learning 
speed is low, then batch normalization of the smallest 
eigenvalue increases the convergence speed, whereas if the 
learning speed is high, batch normalization of the largest 
eigenvalue ensures stability. In the training process, 
classification with batch normalization achieved the same 
level of optimization as the normalized least mean squares 
(NLMS) method. 

In several studies [11], [16], [17], attempts have been made 
with deep learning approaches to reduce complexity and 
produce better age estimates. After developing several 
VGG16 models, Xie et al. recently introduced a completely 
new model [19], i.e., ResNeXt50. This architecture was a 
winner in ILSVRC 2016. The network is built by repeating 
ResNet architecture blocks. This simple design results in a 
homogeneous, multi-pronged architecture that has only a 
small number of hyperparameters to set. It combines a set of 
transformations with the same topology. This method could 
increase the cardinality when the capacity of the dataset was 
increased and could also increase the classification accuracy 
on the ImageNet 1,000 dataset. In the present study, we used 
a combination of the latest methods and models for the 
training process to produce higher accuracy of bone age 
estimation. We used a CNN for the model to predict bone age, 
i.e., ResNeXt50(32x4d) [19]. Architectural modifications 
were made to the model, namely adding a batch normalization 
layer, activating ReLu, and fully connecting the layer to make 
the data learning process more stable and save memory. 

B. Proposed Methodology  

The proposed method for bone age estimation is based on 
X-rays of the carpal bones in hand. Fig. 1 is a flowchart of the 
research reported in this paper, and the input consisted of hand 
radiographic images.  
 

 
Fig. 1  General proposed method 

The first step was image augmentation, carried out with 
five techniques, namely resizing (the image is resized to 224 
x 224 pixels); random affine transformation; horizontal 
flipping; adjusting brightness to 0.4, a contrast to 0.1, 
saturation to 9, hue to 0.5; and finally, inversion of the image. 
After the augmentation process, dataset training was carried 
out using a convolution neural network with a residual model, 
namely ResNeXt50(32x4d), which was modified by adding 
batch normalization to make the training process more 
optimal, faster, and more stable. 

C. Data Collection 

The dataset consisted of X-ray images of male and female 
carpal bones of human hands in the bone age range of 1 to 19 
years obtained from the Radiological Society of North 
America (RSNA) [20]. Fig. 2 shows the images used were 
photos of the left hand, file type .png with a size of 1514 x 
2044 pixels and a bit depth of 8. In this study, 12,732 left-
hand X-ray images of males and females were used for the 
training process, and 134 left-hand X-ray images of males and 
females were used for testing. 

 

 
Fig. 2  X-ray hand images 

Because of the uneven distribution between classes, as can 
be seen in Fig. 3, less than optimal accuracy will be achieved 
when using this dataset in the training process. Thus, the 
dataset needed to be balanced first. This was done using the 
subset random sampler function, which samples elements 
according to a given list of indexes without replacement. The 
resulting balanced dataset contained 11,339 X-ray images of 
carpal bones in each class. 
 

 
Fig. 3  Distribution of bone age in the hand X-ray images in the dataset 
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Fig. 4  Distribution of the images for training, validation, and test processes 

Next, we divided the training and validation datasets, 
namely 80% for training and 20% for validation. Fig. 4 shows 
the distribution of the images for the training, validation, and 
testing processes. The training and validation dataset 
consisted of secondary data from the pediatric hand 
radiographs dataset (RSNA 2017), while the testing dataset 
consisted of primary data from Dr. Soetomo Hospital, 
Surabaya. 

D. Augmentation Dataset 

Data augmentation is a technique that can be used to 
artificially expand the size of a training dataset by creating 
modified versions of the images in a dataset [21]. Adding 
more images to the training dataset can produce a better model. 
The results of the augmentation step are shown in Fig. 3. The 
augmentation process changes the image size to 224 x 224 
pixels. Then, a random affine transformation is done by 
simultaneously applying translation, rotation, scale 
enlargement, and crop. 

 
Fig. 5  X-ray images after augmentation 

The affine transformation function is used to vary the 
images by transforming the 2D coordinate values into a new 
2D coordinate system. Eq. (1) is used to calculate the affine 
transformation. 

�� =  ��� +  ��� +  	� 


� =  ��� +  ��� +  	� 
(1) 

where �1, �1, 	1, �2, �2, ��
 	2 are the transformation 
parameters, with �1 ≠ �2, �2 ≠ �1. This does not produce the 
right shape, so changes in angles and distances are done by 
crammer elimination to complete the transformation step. 
Then the affine transformation matrix is formed with Eq. (2). 

                    �����1 � =  ������ +  ����� +  �������� + ����� +  ���1 � (2) 

Eq. (2) shows that the affine transformation affects four 
basic transformations: translation, scale, rotation, and shear. 
The next augmentation process is horizontal flipping, which 
consists of horizontally flipping the row and column of the 
image pixels. The reason for using this function is to rotate 

the image horizontally. The next step is to adjust the 
brightness, saturation, and hue to improve the visibility of the 
target of the research, i.e., the carpal bones in hand X-ray 
images. Using these three augmentation techniques, the carpal 
portion of the hand is still not optimally visible. Therefore, the 
image is further improved by adjusting the brightness, 
contrast, and saturation to enhance the sharpness of the image 
and, finally, adjusting the hue to enhance the color nuances in 
the image. The next step is image inversion to convert a 
positive image into a negative one, for which Eq. (3) is used. 

 ����, 
� = � ������� −  �!  ��, 
� (3) 

The maximum value of � in Eq. (1) is the highest value in 
color bits. In this study, images with a grayscale value of 8 
bits were used, so the maximum value of � was 255. As can 
be seen in Fig. 6, the augmentation process makes the X-ray 
image of the hand clearer, especially the carpal bone part. The 
image then proceeds to the next process, namely feature 
extraction using a convolution neural network. 

 
Fig. 6  X-ray images after augmentation 

E. ResNeXt50(32x4d) with batch normalization in the 
classification stage 

Feature extraction is performed using the ResNeXt 
architecture. It is designed simply to produce a homogeneous 
multi-pronged architecture with only a few hyperparameters 
to define. This strategy exposes a new dimension, which we 
call "cardinality" (size of the transformation set), as an 
important factor in depth and width dimensions. In this paper, 
we use ResNeXt with a cardinality of 32 for feature extraction 
as shown in Fig. 7 

 
Fig. 7  ResNeXt architecture block 

Fig. 8 shows a detailed architecture of ResNeXt-50 with 
cardinality C = 32 and bottleneck area d = 4. This is the 
ResNeXt50 (32x4d) architecture is preceded by an input layer 
for images with a size of 224 x 224 pixels. The images are 
grayscale, which means there is only one channel. Then, the 
convolution process is carried out with 64 neurons and an 
image size of 7 x 7. Convolution is carried out by repetition 
gradually, as shown in Figure 8(a),(b),(c),(d), then 
convolution will be lowered after convolution highest to avoid 
overfitting.  
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Fig. 8  ResNeXt50 (32x4d) convolution network architecture (a) convolution 
three times (b) convolution four times (c) convolution six times (d) 
convolution three times 

 

Next is the max pooling layer, which aims to reduce the 
input spatially by taking its highest value. The next layer 
consists of the ResNext50 architecture carried out in parallel 
three times. Then follows stride convolution and ResNext50 
parallelized four times. This process is repeated until the last 
layer of the ResNext50 architecture has been parallelized 
three times. 

Classification is done to estimate bone age in the range of 
1 to 19 years, so 19 classes must be classified. Classification 
is carried out through a training process with a convolution 
neural network, but layer modifications were made to 
optimize the training process and produce a higher accuracy 
level. Fig. 9 is the modified architecture of the CNN model 
for classification. 

 

 
Fig. 9  Modification of the 19-class classification architecture using batch 
normalization. 

 
The batch normalization layer already has a dimension of 

1D because it has undergone a flattening process. After that, 
it enters a fully connected layer, which uses 512 neurons, 
aiming for more detailed features in the classification. After 
that, a ReLu activation function was added, followed by two 
more layers: a batch normalization 1D layer and a fully 
connected layer, like in the previous step. The output of this 
classification process is 19 classes. 

F. Optimized Hyperparameters 

To control the training process, we must set optimized 
hyperparameters before the training process creates the model 
to be used. The model needs different limits, weights, and 
learning speeds to generalize different data patterns. This 
process aims to make the machine learning process run 
optimally. In this study, the following hyperparameters were 
set: the number of epochs was set at 200; the learning rate was 
set at 0.0001 using the Adam optimizer; the batch size was set 
at 50; the loss was set using loss entropy, as given in Table 1. 

TABLE I 
OPTIMIZED HYPERPARAMETERS 

Hyperparameter Value 

 

Batch size 50 
Epoch 200 
Optimizer Adam 
Loss Cross entropy 
Learning rate 0.0001 

 

Architecture ResNesXt  with cardinality 32 
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Architecture ResNesXt  with cardinality 32 
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Eq. (4) was used to calculate the loss using cross entropy 
[22]. 

 "#$$ =  ∑ log ) *+, �-./�
∑ *+, �-.0�0 1!  (4) 

Likewise, the derived gradient was used for updating the 
weights, following the Adam optimizer, as expressed in Eq. (5) 
[22]. 

�2 = 3��24� + �1 − 3��5� 

                           62 = 3�624� + �1 − 3��52�  (5) 

III. RESULT AND DISCUSSION 

An augmentation experiment was carried on the dataset 
training process using a residual convolution neural network 
(CNN) to estimate bone age in the range from 1 to 19 years, 
using Spyder Notebook 4.1.5 and the Python 3.8 
programming language on an Intel Core i7 system with 16 GB 
RAM and 2 TB ROM storage and running the Windows 10 
operating system. The model's performance was tested by 
entering a primary dataset of 134 hand X-ray images obtained 
from Dr. Soetomo Hospital Surabaya. The model's 
performance is presented in terms of the mean absolute error 
(MAE), and R squared. 

 789 =  ∑ | �;4�|
<   (6) 

Formula 6 was used to calculate the mean absolute error 
(MAE), where Y’ is the predicted value, Y is the actual value, 
and n is the number of images. 

 ==> = �∑ ?@ABC!D2!E< −  ?FGBAFHB ��  (7) 

 ==I = �∑ ?JD2KFL −  ?FGBAFHB ��  (8) 

 >� =  MMN
MMO  (9)  

Formula (9) was used to calculate R squared. Sum Square 
Regression (SSR) is the square of the difference between the 
predicted Y value and the average Y value, as shown in Eq. 
(7). Total Sum of Squared (SST) is the square of the 
difference between the actual Y value and the average Y value, 
as shown in Eq. (8). 

TABLE II 
ACCURACY AND LOSS FOR TRAINING WITH CNN MODELS 

No Model 
Result 

Accuracy Loss 

1 VGG16 87.6% 3.25 
2 VGG16  

with Batch Norm 
87.5% 2.99 

3 ResNeXt50(32x4d) 86.6% 3.67 
4 ResNeXt50(32x4d) 

with Batch Norm 
95.9% 3.25 

 
The next stage was feature extraction, which was carried 

out with a CNN-based training process, with 
ResNeXt50(32x4d) and VGG16 [23] as comparison models. 
After that, the training process was added with the proposed 
layer modifications for classification. Table 2 presents the 
accuracy and loss values that resulted from the training 
process that was carried out with the two CNN models. 

The training process results presented in Table 1 show that 
the highest accuracy value of 95.9% was achieved using the 
ResNesXt50(32x4d) training model with modified 
classification. The training was carried out with the epoch 
hyperparameter set to 200, a batch size of 50 using the Adam 
optimizer, loss calculated using cross-entropy, and a learning 
rate of 0.0001. Fig. 10 shows a graph of the accuracy and loss 
of the training results. 
 

 
Fig. 10 Accuracy graph of VGG16 training process without batch 
normalization 
 

 
Fig. 11  Loss graph of VGG16 training process without batch normalization 

 

The graph in Fig. 10 shows the accuracy from epochs 1 to 
200 when the training process was carried out without 
classification layer modification. The training accuracy, 
represented by the blue line, increased, while the validation 
accuracy, represented by the orange line, was stable at a value 
of 30 to 40. The resulting accuracy value was 87.6%. Fig. 12 
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shows the accuracy graph after adding the normalization 
batch process to the classification layer. 

 

 
Fig. 12  Accuracy graph of VGG16 training process with batch normalization 
 

 
Fig. 13  Loss graph of VGG16 training process with batch normalization 

 
The training accuracy increased, while the validation 

accuracy was still stable at 30 to 40, producing an accuracy 
value of 87.5%. Comparing the loss graphs in Fig. 11 and 13, 
it can be seen that the lowest loss value was 2.99, which was 
achieved when using the VGG16 model with batch 
normalization. 
 
 

 
 
 

 
Fig. 14  Accuracy graph of the ResNeXt50(32x4d) training process without 
batch normalization  

 

 
 

Fig. 15  Loss graph of the ResNeXt50(32x4d) training process without batch 
normalization 

 

Fig. 14 shows the accuracy graph for the 
ResNeXt50(32x4d) training model from epochs 1 to 
200. The training accuracy, indicated by the blue line), 
increased, while the validation accuracy, indicated by the 
orange line, increased to a value of 30. The resulting accuracy 
value was 86.6%. Furthermore, in Figure 16, the training 
accuracy increased, while the validation accuracy also 
increased to a value over 30, producing an accuracy of 95.9%. 
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Fig. 16  Accuracy graph of the ResNeXt50(32x4d) training process without 
batch normalization  

 

 
Fig. 17  Loss graph of the ResNeXt50(32x4d) training process with batch 
normalization 

 
Fig.13 and 17 show the loss graphs for the 

ResNeXt50(32x4d) training model. Comparing both graphs, 
we see that the validation loss in Fig. 16 (without batch 
normalization) is 3.67, while in Fig. 17 (with batch 
normalization, it is 3.25. Thus, it can be concluded that 
training with the ResNeXt50(32x4d) model performed better 
when the batch normalization process was added to the 
classification architecture. 

Looking at the training process results using CNN, namely 
the VGG16 and ResNeXt50 (32x4d) models, the best training 
results were obtained with the ResNeXt50(32x4d) model with 
a modified classification layer, which had an accuracy value 
of 95.9% and a loss value of 3.25. In comparison, the learning 
process outcomes for the VGG16 model with a modified 

classification layer were an accuracy value of 87.5% and a 
loss value of 2.99. 

After training the dataset, the model was tested. Testing 
was done by entering the results from the training process and 
the test data. The results from the testing process are the MAE 
and >2 values. The purpose of knowing the MAE value is to 
find out how effective the model is in predicting the dataset to 
solve the problem, where the lower the MAE value, the better 
its performance. If a good model is generated from the 
training results, then the MSE value can be used to find wrong 
estimates or errors that occur in the model. 

TABLE III 
MAE, MSE, AND R SQUARED VALUES FOR TRAINING WITHOUT BATCH 

NORMALIZATION 

Predict Value VGG16 ResNeXt50(32x4d) 

  

MAE 5.31 5.59 

>2 0.55 0.54 

TABLE IV 
MAE, MSE, AND R SQUARED VALUES FOR TRAINING WITH BATCH 

NORMALIZATION 

Predict Value VGG16 ResNeXt50(32x4d) 

  

MAE 5.19 4.75 

>2 0.56 0.63 

 

 
Fig. 18  Predictive graphs of the training model using ResNeXt50(32x4d) 
without back normalization 
 

 
Fig. 19  Prediction graph for the training model using ResNeXt50(32x4d) 
with batch normalization 
 

The squared value is used to determine the suitability ratio 
between bone age (BA) and chronological age (CA). Table 3 
presents the predicted values for 200 epochs without batch 
normalization, and Table 4 presents the predicted values for 
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200 epochs with batch normalization. Fig. 18 shows the 
prediction result using the ResNeXt50(23x4d) model without 
batch normalization. Fig. 19 shows the prediction graph for 
training with batch normalization added to the classification 
layer. 

TABLE V 
COMPARISON OF PERFORMANCE BETWEEN THE PROPOSED METHOD AND 

PREVIOUS WORK 

Model Performance 

 

[24] MAD: 0.50 years (for age classification) RMS : 
0.63 years (for age classification) 

[25]  For age classification:  
MAE (male) : 0.43 years  
MAE (female): 0.53 year 

[20] Accuracy: 36% (age classification) 
[9] Accuracy: 79,6% (for gender) 

MAD : 0.50 years (for age classification) RMS : 
0.67 years (for age classification) 

Proposed 
method 

MAE : 4.75 years (for age classification) >2: 0.63 (for age classification) 
 

Comparing the prediction graphs for ResNext50(32x4d) in 
Fig. 18 and 19, we can see that the best results were achieved 
with modified classification because the red dots indicating 
the predicted data are closer to the blue dots, which are the 
actual data. From the experimental results in Tables 3 and 4, 
it can be concluded that the highest training accuracy was 
achieved using the ResNeXt50(32x4d) model with batch 
normalization, which had an accuracy of 95.9%. The errors 
made by neurons can be seen from the loss value. The lowest 
loss value in this study among the four methods was 2.99, 
using the VGG16 module with batch normalization, as can be 
seen from Table 2. To evaluate the prediction results, we used 
the MAE and >2 values. The lowest MAE value was achieved 
by using the ResNeXt50(32x4d) model with batch 
normalization at 4.75. The best >2 value (closest to 1) was 
achieved by using the ResNeXt50(32x4d) model with batch 
normalization at 0.63. 

Table 5 shows the proposed performance systems and other 
previous work. As shown in Table 5, each research conducted 
has different performance parameters, namely the average 
MAE value, the proposed method has a better MAE value that 
can detect bone age in all genders, therefore the proposed 
method can outperform another method in the MAE value. 

IV. CONCLUSION 

This paper proposed a novel method for the estimation of 
bone age using a convolution neural network and a residual 
training model with a classification architecture modified by 
adding batch normalization. Most previous studies related to 
bone age estimation were carried out using a VGG16 model. 
Recently, a residual model has been introduced, i.e., 
ResNeXt50(32x4d). Techniques have been developed to 
optimize the training process because modern models have a 
large computational load and use a large amount of memory. 
Optimization can be done using batch normalization in order 
to stabilize and speed up the data processing and the training 
process, thereby increasing accuracy. After running 
experiments with two CNN models, namely VGG16 and 
ResNeXt50(32x4d), satisfactory MAE and >2 values were 
produced, namely, 4.75 and 0.63, respectively, where in a 

previous study related to carpal bone age estimation, the 
MAD (MAE) value was 0.50 [9]. The experiments conducted 
in this study showed that the ResNeXt50(32x4d) model, 
modified by adding batch normalization to the classification 
architecture, could reduce the MAE value considerably and 
produce an >2 value close to one. For further work, it is hoped 
that it will be possible to develop a carpal bone age estimation 
using the latest method to increase the value of training 
accuracy and prediction. 
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